regex_automata/util/
iter.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
/*!
Generic helpers for iteration of matches from a regex engine in a haystack.

The principle type in this module is a [`Searcher`]. A `Searcher` provides
its own lower level iterator-like API in addition to methods for constructing
types that implement `Iterator`. The documentation for `Searcher` explains a
bit more about why these different APIs exist.

Currently, this module supports iteration over any regex engine that works
with the [`HalfMatch`], [`Match`] or [`Captures`] types.
*/

#[cfg(feature = "alloc")]
use crate::util::captures::Captures;
use crate::util::search::{HalfMatch, Input, Match, MatchError};

/// A searcher for creating iterators and performing lower level iteration.
///
/// This searcher encapsulates the logic required for finding all successive
/// non-overlapping matches in a haystack. In theory, iteration would look
/// something like this:
///
/// 1. Setting the start position to `0`.
/// 2. Execute a regex search. If no match, end iteration.
/// 3. Report the match and set the start position to the end of the match.
/// 4. Go back to (2).
///
/// And if this were indeed the case, it's likely that `Searcher` wouldn't
/// exist. Unfortunately, because a regex may match the empty string, the above
/// logic won't work for all possible regexes. Namely, if an empty match is
/// found, then step (3) would set the start position of the search to the
/// position it was at. Thus, iteration would never end.
///
/// Instead, a `Searcher` knows how to detect these cases and forcefully
/// advance iteration in the case of an empty match that overlaps with a
/// previous match.
///
/// If you know that your regex cannot match any empty string, then the simple
/// algorithm described above will work correctly.
///
/// When possible, prefer the iterators defined on the regex engine you're
/// using. This tries to abstract over the regex engine and is thus a bit more
/// unwieldy to use.
///
/// In particular, a `Searcher` is not itself an iterator. Instead, it provides
/// `advance` routines that permit moving the search along explicitly. It also
/// provides various routines, like [`Searcher::into_matches_iter`], that
/// accept a closure (representing how a regex engine executes a search) and
/// returns a conventional iterator.
///
/// The lifetime parameters come from the [`Input`] type passed to
/// [`Searcher::new`]:
///
/// * `'h` is the lifetime of the underlying haystack.
///
/// # Searcher vs Iterator
///
/// Why does a search type with "advance" APIs exist at all when we also have
/// iterators? Unfortunately, the reasoning behind this split is a complex
/// combination of the following things:
///
/// 1. While many of the regex engines expose their own iterators, it is also
/// nice to expose this lower level iteration helper because it permits callers
/// to provide their own `Input` configuration. Moreover, a `Searcher` can work
/// with _any_ regex engine instead of only the ones defined in this crate.
/// This way, everyone benefits from a shared iteration implementation.
/// 2. There are many different regex engines that, while they have the same
/// match semantics, they have slightly different APIs. Iteration is just
/// complex enough to want to share code, and so we need a way of abstracting
/// over those different regex engines. While we could define a new trait that
/// describes any regex engine search API, it would wind up looking very close
/// to a closure. While there may still be reasons for the more generic trait
/// to exist, for now and for the purposes of iteration, we use a closure.
/// Closures also provide a lot of easy flexibility at the call site, in that
/// they permit the caller to borrow any kind of state they want for use during
/// each search call.
/// 3. As a result of using closures, and because closures are anonymous types
/// that cannot be named, it is difficult to encapsulate them without both
/// costs to speed and added complexity to the public API. For example, in
/// defining an iterator type like
/// [`dfa::regex::FindMatches`](crate::dfa::regex::FindMatches),
/// if we use a closure internally, it's not possible to name this type in the
/// return type of the iterator constructor. Thus, the only way around it is
/// to erase the type by boxing it and turning it into a `Box<dyn FnMut ...>`.
/// This boxed closure is unlikely to be inlined _and_ it infects the public
/// API in subtle ways. Namely, unless you declare the closure as implementing
/// `Send` and `Sync`, then the resulting iterator type won't implement it
/// either. But there are practical issues with requiring the closure to
/// implement `Send` and `Sync` that result in other API complexities that
/// are beyond the scope of this already long exposition.
/// 4. Some regex engines expose more complex match information than just
/// "which pattern matched" and "at what offsets." For example, the PikeVM
/// exposes match spans for each capturing group that participated in the
/// match. In such cases, it can be quite beneficial to reuse the capturing
/// group allocation on subsequent searches. A proper iterator doesn't permit
/// this API due to its interface, so it's useful to have something a bit lower
/// level that permits callers to amortize allocations while also reusing a
/// shared implementation of iteration. (See the documentation for
/// [`Searcher::advance`] for an example of using the "advance" API with the
/// PikeVM.)
///
/// What this boils down to is that there are "advance" APIs which require
/// handing a closure to it for every call, and there are also APIs to create
/// iterators from a closure. The former are useful for _implementing_
/// iterators or when you need more flexibility, while the latter are useful
/// for conveniently writing custom iterators on-the-fly.
///
/// # Example: iterating with captures
///
/// Several regex engines in this crate over convenient iterator APIs over
/// [`Captures`] values. To do so, this requires allocating a new `Captures`
/// value for each iteration step. This can perhaps be more costly than you
/// might want. Instead of implementing your own iterator to avoid that
/// cost (which can be a little subtle if you want to handle empty matches
/// correctly), you can use this `Searcher` to do it for you:
///
/// ```
/// use regex_automata::{
///     nfa::thompson::pikevm::PikeVM,
///     util::iter::Searcher,
///     Input, Span,
/// };
///
/// let re = PikeVM::new("foo(?P<numbers>[0-9]+)")?;
/// let haystack = "foo1 foo12 foo123";
///
/// let mut caps = re.create_captures();
/// let mut cache = re.create_cache();
/// let mut matches = vec![];
/// let mut searcher = Searcher::new(Input::new(haystack));
/// while let Some(_) = searcher.advance(|input| {
///     re.search(&mut cache, input, &mut caps);
///     Ok(caps.get_match())
/// }) {
///     // The unwrap is OK since 'numbers' matches if the pattern matches.
///     matches.push(caps.get_group_by_name("numbers").unwrap());
/// }
/// assert_eq!(matches, vec![
///     Span::from(3..4),
///     Span::from(8..10),
///     Span::from(14..17),
/// ]);
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[derive(Clone, Debug)]
pub struct Searcher<'h> {
    /// The input parameters to give to each regex engine call.
    ///
    /// The start position of the search is mutated during iteration.
    input: Input<'h>,
    /// Records the end offset of the most recent match. This is necessary to
    /// handle a corner case for preventing empty matches from overlapping with
    /// the ending bounds of a prior match.
    last_match_end: Option<usize>,
}

impl<'h> Searcher<'h> {
    /// Create a new fallible non-overlapping matches iterator.
    ///
    /// The given `input` provides the parameters (including the haystack),
    /// while the `finder` represents a closure that calls the underlying regex
    /// engine. The closure may borrow any additional state that is needed,
    /// such as a prefilter scanner.
    pub fn new(input: Input<'h>) -> Searcher<'h> {
        Searcher { input, last_match_end: None }
    }

    /// Returns the current `Input` used by this searcher.
    ///
    /// The `Input` returned is generally equivalent to the one given to
    /// [`Searcher::new`], but its start position may be different to reflect
    /// the start of the next search to be executed.
    pub fn input<'s>(&'s self) -> &'s Input<'h> {
        &self.input
    }

    /// Return the next half match for an infallible search if one exists, and
    /// advance to the next position.
    ///
    /// This is like `try_advance_half`, except errors are converted into
    /// panics.
    ///
    /// # Panics
    ///
    /// If the given closure returns an error, then this panics. This is useful
    /// when you know your underlying regex engine has been configured to not
    /// return an error.
    ///
    /// # Example
    ///
    /// This example shows how to use a `Searcher` to iterate over all matches
    /// when using a DFA, which only provides "half" matches.
    ///
    /// ```
    /// use regex_automata::{
    ///     hybrid::dfa::DFA,
    ///     util::iter::Searcher,
    ///     HalfMatch, Input,
    /// };
    ///
    /// let re = DFA::new(r"[0-9]{4}-[0-9]{2}-[0-9]{2}")?;
    /// let mut cache = re.create_cache();
    ///
    /// let input = Input::new("2010-03-14 2016-10-08 2020-10-22");
    /// let mut it = Searcher::new(input);
    ///
    /// let expected = Some(HalfMatch::must(0, 10));
    /// let got = it.advance_half(|input| re.try_search_fwd(&mut cache, input));
    /// assert_eq!(expected, got);
    ///
    /// let expected = Some(HalfMatch::must(0, 21));
    /// let got = it.advance_half(|input| re.try_search_fwd(&mut cache, input));
    /// assert_eq!(expected, got);
    ///
    /// let expected = Some(HalfMatch::must(0, 32));
    /// let got = it.advance_half(|input| re.try_search_fwd(&mut cache, input));
    /// assert_eq!(expected, got);
    ///
    /// let expected = None;
    /// let got = it.advance_half(|input| re.try_search_fwd(&mut cache, input));
    /// assert_eq!(expected, got);
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    ///
    /// This correctly moves iteration forward even when an empty match occurs:
    ///
    /// ```
    /// use regex_automata::{
    ///     hybrid::dfa::DFA,
    ///     util::iter::Searcher,
    ///     HalfMatch, Input,
    /// };
    ///
    /// let re = DFA::new(r"a|")?;
    /// let mut cache = re.create_cache();
    ///
    /// let input = Input::new("abba");
    /// let mut it = Searcher::new(input);
    ///
    /// let expected = Some(HalfMatch::must(0, 1));
    /// let got = it.advance_half(|input| re.try_search_fwd(&mut cache, input));
    /// assert_eq!(expected, got);
    ///
    /// let expected = Some(HalfMatch::must(0, 2));
    /// let got = it.advance_half(|input| re.try_search_fwd(&mut cache, input));
    /// assert_eq!(expected, got);
    ///
    /// let expected = Some(HalfMatch::must(0, 4));
    /// let got = it.advance_half(|input| re.try_search_fwd(&mut cache, input));
    /// assert_eq!(expected, got);
    ///
    /// let expected = None;
    /// let got = it.advance_half(|input| re.try_search_fwd(&mut cache, input));
    /// assert_eq!(expected, got);
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    #[inline]
    pub fn advance_half<F>(&mut self, finder: F) -> Option<HalfMatch>
    where
        F: FnMut(&Input<'_>) -> Result<Option<HalfMatch>, MatchError>,
    {
        match self.try_advance_half(finder) {
            Ok(m) => m,
            Err(err) => panic!(
                "unexpected regex half find error: {}\n\
                 to handle find errors, use 'try' or 'search' methods",
                err,
            ),
        }
    }

    /// Return the next match for an infallible search if one exists, and
    /// advance to the next position.
    ///
    /// The search is advanced even in the presence of empty matches by
    /// forbidding empty matches from overlapping with any other match.
    ///
    /// This is like `try_advance`, except errors are converted into panics.
    ///
    /// # Panics
    ///
    /// If the given closure returns an error, then this panics. This is useful
    /// when you know your underlying regex engine has been configured to not
    /// return an error.
    ///
    /// # Example
    ///
    /// This example shows how to use a `Searcher` to iterate over all matches
    /// when using a regex based on lazy DFAs:
    ///
    /// ```
    /// use regex_automata::{
    ///     hybrid::regex::Regex,
    ///     util::iter::Searcher,
    ///     Match, Input,
    /// };
    ///
    /// let re = Regex::new(r"[0-9]{4}-[0-9]{2}-[0-9]{2}")?;
    /// let mut cache = re.create_cache();
    ///
    /// let input = Input::new("2010-03-14 2016-10-08 2020-10-22");
    /// let mut it = Searcher::new(input);
    ///
    /// let expected = Some(Match::must(0, 0..10));
    /// let got = it.advance(|input| re.try_search(&mut cache, input));
    /// assert_eq!(expected, got);
    ///
    /// let expected = Some(Match::must(0, 11..21));
    /// let got = it.advance(|input| re.try_search(&mut cache, input));
    /// assert_eq!(expected, got);
    ///
    /// let expected = Some(Match::must(0, 22..32));
    /// let got = it.advance(|input| re.try_search(&mut cache, input));
    /// assert_eq!(expected, got);
    ///
    /// let expected = None;
    /// let got = it.advance(|input| re.try_search(&mut cache, input));
    /// assert_eq!(expected, got);
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    ///
    /// This example shows the same as above, but with the PikeVM. This example
    /// is useful because it shows how to use this API even when the regex
    /// engine doesn't directly return a `Match`.
    ///
    /// ```
    /// use regex_automata::{
    ///     nfa::thompson::pikevm::PikeVM,
    ///     util::iter::Searcher,
    ///     Match, Input,
    /// };
    ///
    /// let re = PikeVM::new(r"[0-9]{4}-[0-9]{2}-[0-9]{2}")?;
    /// let (mut cache, mut caps) = (re.create_cache(), re.create_captures());
    ///
    /// let input = Input::new("2010-03-14 2016-10-08 2020-10-22");
    /// let mut it = Searcher::new(input);
    ///
    /// let expected = Some(Match::must(0, 0..10));
    /// let got = it.advance(|input| {
    ///     re.search(&mut cache, input, &mut caps);
    ///     Ok(caps.get_match())
    /// });
    /// // Note that if we wanted to extract capturing group spans, we could
    /// // do that here with 'caps'.
    /// assert_eq!(expected, got);
    ///
    /// let expected = Some(Match::must(0, 11..21));
    /// let got = it.advance(|input| {
    ///     re.search(&mut cache, input, &mut caps);
    ///     Ok(caps.get_match())
    /// });
    /// assert_eq!(expected, got);
    ///
    /// let expected = Some(Match::must(0, 22..32));
    /// let got = it.advance(|input| {
    ///     re.search(&mut cache, input, &mut caps);
    ///     Ok(caps.get_match())
    /// });
    /// assert_eq!(expected, got);
    ///
    /// let expected = None;
    /// let got = it.advance(|input| {
    ///     re.search(&mut cache, input, &mut caps);
    ///     Ok(caps.get_match())
    /// });
    /// assert_eq!(expected, got);
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    #[inline]
    pub fn advance<F>(&mut self, finder: F) -> Option<Match>
    where
        F: FnMut(&Input<'_>) -> Result<Option<Match>, MatchError>,
    {
        match self.try_advance(finder) {
            Ok(m) => m,
            Err(err) => panic!(
                "unexpected regex find error: {}\n\
                 to handle find errors, use 'try' or 'search' methods",
                err,
            ),
        }
    }

    /// Return the next half match for a fallible search if one exists, and
    /// advance to the next position.
    ///
    /// This is like `advance_half`, except it permits callers to handle errors
    /// during iteration.
    #[inline]
    pub fn try_advance_half<F>(
        &mut self,
        mut finder: F,
    ) -> Result<Option<HalfMatch>, MatchError>
    where
        F: FnMut(&Input<'_>) -> Result<Option<HalfMatch>, MatchError>,
    {
        let mut m = match finder(&self.input)? {
            None => return Ok(None),
            Some(m) => m,
        };
        if Some(m.offset()) == self.last_match_end {
            m = match self.handle_overlapping_empty_half_match(m, finder)? {
                None => return Ok(None),
                Some(m) => m,
            };
        }
        self.input.set_start(m.offset());
        self.last_match_end = Some(m.offset());
        Ok(Some(m))
    }

    /// Return the next match for a fallible search if one exists, and advance
    /// to the next position.
    ///
    /// This is like `advance`, except it permits callers to handle errors
    /// during iteration.
    #[inline]
    pub fn try_advance<F>(
        &mut self,
        mut finder: F,
    ) -> Result<Option<Match>, MatchError>
    where
        F: FnMut(&Input<'_>) -> Result<Option<Match>, MatchError>,
    {
        let mut m = match finder(&self.input)? {
            None => return Ok(None),
            Some(m) => m,
        };
        if m.is_empty() && Some(m.end()) == self.last_match_end {
            m = match self.handle_overlapping_empty_match(m, finder)? {
                None => return Ok(None),
                Some(m) => m,
            };
        }
        self.input.set_start(m.end());
        self.last_match_end = Some(m.end());
        Ok(Some(m))
    }

    /// Given a closure that executes a single search, return an iterator over
    /// all successive non-overlapping half matches.
    ///
    /// The iterator returned yields result values. If the underlying regex
    /// engine is configured to never return an error, consider calling
    /// [`TryHalfMatchesIter::infallible`] to convert errors into panics.
    ///
    /// # Example
    ///
    /// This example shows how to use a `Searcher` to create a proper
    /// iterator over half matches.
    ///
    /// ```
    /// use regex_automata::{
    ///     hybrid::dfa::DFA,
    ///     util::iter::Searcher,
    ///     HalfMatch, Input,
    /// };
    ///
    /// let re = DFA::new(r"[0-9]{4}-[0-9]{2}-[0-9]{2}")?;
    /// let mut cache = re.create_cache();
    ///
    /// let input = Input::new("2010-03-14 2016-10-08 2020-10-22");
    /// let mut it = Searcher::new(input).into_half_matches_iter(|input| {
    ///     re.try_search_fwd(&mut cache, input)
    /// });
    ///
    /// let expected = Some(Ok(HalfMatch::must(0, 10)));
    /// assert_eq!(expected, it.next());
    ///
    /// let expected = Some(Ok(HalfMatch::must(0, 21)));
    /// assert_eq!(expected, it.next());
    ///
    /// let expected = Some(Ok(HalfMatch::must(0, 32)));
    /// assert_eq!(expected, it.next());
    ///
    /// let expected = None;
    /// assert_eq!(expected, it.next());
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    #[inline]
    pub fn into_half_matches_iter<F>(
        self,
        finder: F,
    ) -> TryHalfMatchesIter<'h, F>
    where
        F: FnMut(&Input<'_>) -> Result<Option<HalfMatch>, MatchError>,
    {
        TryHalfMatchesIter { it: self, finder }
    }

    /// Given a closure that executes a single search, return an iterator over
    /// all successive non-overlapping matches.
    ///
    /// The iterator returned yields result values. If the underlying regex
    /// engine is configured to never return an error, consider calling
    /// [`TryMatchesIter::infallible`] to convert errors into panics.
    ///
    /// # Example
    ///
    /// This example shows how to use a `Searcher` to create a proper
    /// iterator over matches.
    ///
    /// ```
    /// use regex_automata::{
    ///     hybrid::regex::Regex,
    ///     util::iter::Searcher,
    ///     Match, Input,
    /// };
    ///
    /// let re = Regex::new(r"[0-9]{4}-[0-9]{2}-[0-9]{2}")?;
    /// let mut cache = re.create_cache();
    ///
    /// let input = Input::new("2010-03-14 2016-10-08 2020-10-22");
    /// let mut it = Searcher::new(input).into_matches_iter(|input| {
    ///     re.try_search(&mut cache, input)
    /// });
    ///
    /// let expected = Some(Ok(Match::must(0, 0..10)));
    /// assert_eq!(expected, it.next());
    ///
    /// let expected = Some(Ok(Match::must(0, 11..21)));
    /// assert_eq!(expected, it.next());
    ///
    /// let expected = Some(Ok(Match::must(0, 22..32)));
    /// assert_eq!(expected, it.next());
    ///
    /// let expected = None;
    /// assert_eq!(expected, it.next());
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    #[inline]
    pub fn into_matches_iter<F>(self, finder: F) -> TryMatchesIter<'h, F>
    where
        F: FnMut(&Input<'_>) -> Result<Option<Match>, MatchError>,
    {
        TryMatchesIter { it: self, finder }
    }

    /// Given a closure that executes a single search, return an iterator over
    /// all successive non-overlapping `Captures` values.
    ///
    /// The iterator returned yields result values. If the underlying regex
    /// engine is configured to never return an error, consider calling
    /// [`TryCapturesIter::infallible`] to convert errors into panics.
    ///
    /// Unlike the other iterator constructors, this accepts an initial
    /// `Captures` value. This `Captures` value is reused for each search, and
    /// the iterator implementation clones it before returning it. The caller
    /// must provide this value because the iterator is purposely ignorant
    /// of the underlying regex engine and thus doesn't know how to create
    /// one itself. More to the point, a `Captures` value itself has a few
    /// different constructors, which change which kind of information is
    /// available to query in exchange for search performance.
    ///
    /// # Example
    ///
    /// This example shows how to use a `Searcher` to create a proper iterator
    /// over `Captures` values, which provides access to all capturing group
    /// spans for each match.
    ///
    /// ```
    /// use regex_automata::{
    ///     nfa::thompson::pikevm::PikeVM,
    ///     util::iter::Searcher,
    ///     Input,
    /// };
    ///
    /// let re = PikeVM::new(
    ///     r"(?P<y>[0-9]{4})-(?P<m>[0-9]{2})-(?P<d>[0-9]{2})",
    /// )?;
    /// let (mut cache, caps) = (re.create_cache(), re.create_captures());
    ///
    /// let haystack = "2010-03-14 2016-10-08 2020-10-22";
    /// let input = Input::new(haystack);
    /// let mut it = Searcher::new(input)
    ///     .into_captures_iter(caps, |input, caps| {
    ///         re.search(&mut cache, input, caps);
    ///         Ok(())
    ///     });
    ///
    /// let got = it.next().expect("first date")?;
    /// let year = got.get_group_by_name("y").expect("must match");
    /// assert_eq!("2010", &haystack[year]);
    ///
    /// let got = it.next().expect("second date")?;
    /// let month = got.get_group_by_name("m").expect("must match");
    /// assert_eq!("10", &haystack[month]);
    ///
    /// let got = it.next().expect("third date")?;
    /// let day = got.get_group_by_name("d").expect("must match");
    /// assert_eq!("22", &haystack[day]);
    ///
    /// assert!(it.next().is_none());
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    #[cfg(feature = "alloc")]
    #[inline]
    pub fn into_captures_iter<F>(
        self,
        caps: Captures,
        finder: F,
    ) -> TryCapturesIter<'h, F>
    where
        F: FnMut(&Input<'_>, &mut Captures) -> Result<(), MatchError>,
    {
        TryCapturesIter { it: self, caps, finder }
    }

    /// Handles the special case of a match that begins where the previous
    /// match ended. Without this special handling, it'd be possible to get
    /// stuck where an empty match never results in forward progress. This
    /// also makes it more consistent with how presiding general purpose regex
    /// engines work.
    #[cold]
    #[inline(never)]
    fn handle_overlapping_empty_half_match<F>(
        &mut self,
        _: HalfMatch,
        mut finder: F,
    ) -> Result<Option<HalfMatch>, MatchError>
    where
        F: FnMut(&Input<'_>) -> Result<Option<HalfMatch>, MatchError>,
    {
        // Since we are only here when 'm.offset()' matches the offset of the
        // last match, it follows that this must have been an empty match.
        // Since we both need to make progress *and* prevent overlapping
        // matches, we discard this match and advance the search by 1.
        //
        // Note that this may start a search in the middle of a codepoint. The
        // regex engines themselves are expected to deal with that and not
        // report any matches within a codepoint if they are configured in
        // UTF-8 mode.
        self.input.set_start(self.input.start().checked_add(1).unwrap());
        finder(&self.input)
    }

    /// Handles the special case of an empty match by ensuring that 1) the
    /// iterator always advances and 2) empty matches never overlap with other
    /// matches.
    ///
    /// (1) is necessary because we principally make progress by setting the
    /// starting location of the next search to the ending location of the last
    /// match. But if a match is empty, then this results in a search that does
    /// not advance and thus does not terminate.
    ///
    /// (2) is not strictly necessary, but makes intuitive sense and matches
    /// the presiding behavior of most general purpose regex engines. The
    /// "intuitive sense" here is that we want to report NON-overlapping
    /// matches. So for example, given the regex 'a|(?:)' against the haystack
    /// 'a', without the special handling, you'd get the matches [0, 1) and [1,
    /// 1), where the latter overlaps with the end bounds of the former.
    ///
    /// Note that we mark this cold and forcefully prevent inlining because
    /// handling empty matches like this is extremely rare and does require
    /// quite a bit of code, comparatively. Keeping this code out of the main
    /// iterator function keeps it smaller and more amenable to inlining
    /// itself.
    #[cold]
    #[inline(never)]
    fn handle_overlapping_empty_match<F>(
        &mut self,
        m: Match,
        mut finder: F,
    ) -> Result<Option<Match>, MatchError>
    where
        F: FnMut(&Input<'_>) -> Result<Option<Match>, MatchError>,
    {
        assert!(m.is_empty());
        self.input.set_start(self.input.start().checked_add(1).unwrap());
        finder(&self.input)
    }
}

/// An iterator over all non-overlapping half matches for a fallible search.
///
/// The iterator yields a `Result<HalfMatch, MatchError>` value until no more
/// matches could be found.
///
/// The type parameters are as follows:
///
/// * `F` represents the type of a closure that executes the search.
///
/// The lifetime parameters come from the [`Input`] type:
///
/// * `'h` is the lifetime of the underlying haystack.
///
/// When possible, prefer the iterators defined on the regex engine you're
/// using. This tries to abstract over the regex engine and is thus a bit more
/// unwieldy to use.
///
/// This iterator is created by [`Searcher::into_half_matches_iter`].
pub struct TryHalfMatchesIter<'h, F> {
    it: Searcher<'h>,
    finder: F,
}

impl<'h, F> TryHalfMatchesIter<'h, F> {
    /// Return an infallible version of this iterator.
    ///
    /// Any item yielded that corresponds to an error results in a panic. This
    /// is useful if your underlying regex engine is configured in a way that
    /// it is guaranteed to never return an error.
    pub fn infallible(self) -> HalfMatchesIter<'h, F> {
        HalfMatchesIter(self)
    }

    /// Returns the current `Input` used by this iterator.
    ///
    /// The `Input` returned is generally equivalent to the one used to
    /// construct this iterator, but its start position may be different to
    /// reflect the start of the next search to be executed.
    pub fn input<'i>(&'i self) -> &'i Input<'h> {
        self.it.input()
    }
}

impl<'h, F> Iterator for TryHalfMatchesIter<'h, F>
where
    F: FnMut(&Input<'_>) -> Result<Option<HalfMatch>, MatchError>,
{
    type Item = Result<HalfMatch, MatchError>;

    #[inline]
    fn next(&mut self) -> Option<Result<HalfMatch, MatchError>> {
        self.it.try_advance_half(&mut self.finder).transpose()
    }
}

impl<'h, F> core::fmt::Debug for TryHalfMatchesIter<'h, F> {
    fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
        f.debug_struct("TryHalfMatchesIter")
            .field("it", &self.it)
            .field("finder", &"<closure>")
            .finish()
    }
}

/// An iterator over all non-overlapping half matches for an infallible search.
///
/// The iterator yields a [`HalfMatch`] value until no more matches could be
/// found.
///
/// The type parameters are as follows:
///
/// * `F` represents the type of a closure that executes the search.
///
/// The lifetime parameters come from the [`Input`] type:
///
/// * `'h` is the lifetime of the underlying haystack.
///
/// When possible, prefer the iterators defined on the regex engine you're
/// using. This tries to abstract over the regex engine and is thus a bit more
/// unwieldy to use.
///
/// This iterator is created by [`Searcher::into_half_matches_iter`] and
/// then calling [`TryHalfMatchesIter::infallible`].
#[derive(Debug)]
pub struct HalfMatchesIter<'h, F>(TryHalfMatchesIter<'h, F>);

impl<'h, F> HalfMatchesIter<'h, F> {
    /// Returns the current `Input` used by this iterator.
    ///
    /// The `Input` returned is generally equivalent to the one used to
    /// construct this iterator, but its start position may be different to
    /// reflect the start of the next search to be executed.
    pub fn input<'i>(&'i self) -> &'i Input<'h> {
        self.0.it.input()
    }
}

impl<'h, F> Iterator for HalfMatchesIter<'h, F>
where
    F: FnMut(&Input<'_>) -> Result<Option<HalfMatch>, MatchError>,
{
    type Item = HalfMatch;

    #[inline]
    fn next(&mut self) -> Option<HalfMatch> {
        match self.0.next()? {
            Ok(m) => Some(m),
            Err(err) => panic!(
                "unexpected regex half find error: {}\n\
                 to handle find errors, use 'try' or 'search' methods",
                err,
            ),
        }
    }
}

/// An iterator over all non-overlapping matches for a fallible search.
///
/// The iterator yields a `Result<Match, MatchError>` value until no more
/// matches could be found.
///
/// The type parameters are as follows:
///
/// * `F` represents the type of a closure that executes the search.
///
/// The lifetime parameters come from the [`Input`] type:
///
/// * `'h` is the lifetime of the underlying haystack.
///
/// When possible, prefer the iterators defined on the regex engine you're
/// using. This tries to abstract over the regex engine and is thus a bit more
/// unwieldy to use.
///
/// This iterator is created by [`Searcher::into_matches_iter`].
pub struct TryMatchesIter<'h, F> {
    it: Searcher<'h>,
    finder: F,
}

impl<'h, F> TryMatchesIter<'h, F> {
    /// Return an infallible version of this iterator.
    ///
    /// Any item yielded that corresponds to an error results in a panic. This
    /// is useful if your underlying regex engine is configured in a way that
    /// it is guaranteed to never return an error.
    pub fn infallible(self) -> MatchesIter<'h, F> {
        MatchesIter(self)
    }

    /// Returns the current `Input` used by this iterator.
    ///
    /// The `Input` returned is generally equivalent to the one used to
    /// construct this iterator, but its start position may be different to
    /// reflect the start of the next search to be executed.
    pub fn input<'i>(&'i self) -> &'i Input<'h> {
        self.it.input()
    }
}

impl<'h, F> Iterator for TryMatchesIter<'h, F>
where
    F: FnMut(&Input<'_>) -> Result<Option<Match>, MatchError>,
{
    type Item = Result<Match, MatchError>;

    #[inline]
    fn next(&mut self) -> Option<Result<Match, MatchError>> {
        self.it.try_advance(&mut self.finder).transpose()
    }
}

impl<'h, F> core::fmt::Debug for TryMatchesIter<'h, F> {
    fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
        f.debug_struct("TryMatchesIter")
            .field("it", &self.it)
            .field("finder", &"<closure>")
            .finish()
    }
}

/// An iterator over all non-overlapping matches for an infallible search.
///
/// The iterator yields a [`Match`] value until no more matches could be found.
///
/// The type parameters are as follows:
///
/// * `F` represents the type of a closure that executes the search.
///
/// The lifetime parameters come from the [`Input`] type:
///
/// * `'h` is the lifetime of the underlying haystack.
///
/// When possible, prefer the iterators defined on the regex engine you're
/// using. This tries to abstract over the regex engine and is thus a bit more
/// unwieldy to use.
///
/// This iterator is created by [`Searcher::into_matches_iter`] and
/// then calling [`TryMatchesIter::infallible`].
#[derive(Debug)]
pub struct MatchesIter<'h, F>(TryMatchesIter<'h, F>);

impl<'h, F> MatchesIter<'h, F> {
    /// Returns the current `Input` used by this iterator.
    ///
    /// The `Input` returned is generally equivalent to the one used to
    /// construct this iterator, but its start position may be different to
    /// reflect the start of the next search to be executed.
    pub fn input<'i>(&'i self) -> &'i Input<'h> {
        self.0.it.input()
    }
}

impl<'h, F> Iterator for MatchesIter<'h, F>
where
    F: FnMut(&Input<'_>) -> Result<Option<Match>, MatchError>,
{
    type Item = Match;

    #[inline]
    fn next(&mut self) -> Option<Match> {
        match self.0.next()? {
            Ok(m) => Some(m),
            Err(err) => panic!(
                "unexpected regex find error: {}\n\
                 to handle find errors, use 'try' or 'search' methods",
                err,
            ),
        }
    }
}

/// An iterator over all non-overlapping captures for a fallible search.
///
/// The iterator yields a `Result<Captures, MatchError>` value until no more
/// matches could be found.
///
/// The type parameters are as follows:
///
/// * `F` represents the type of a closure that executes the search.
///
/// The lifetime parameters come from the [`Input`] type:
///
/// * `'h` is the lifetime of the underlying haystack.
///
/// When possible, prefer the iterators defined on the regex engine you're
/// using. This tries to abstract over the regex engine and is thus a bit more
/// unwieldy to use.
///
/// This iterator is created by [`Searcher::into_captures_iter`].
#[cfg(feature = "alloc")]
pub struct TryCapturesIter<'h, F> {
    it: Searcher<'h>,
    caps: Captures,
    finder: F,
}

#[cfg(feature = "alloc")]
impl<'h, F> TryCapturesIter<'h, F> {
    /// Return an infallible version of this iterator.
    ///
    /// Any item yielded that corresponds to an error results in a panic. This
    /// is useful if your underlying regex engine is configured in a way that
    /// it is guaranteed to never return an error.
    pub fn infallible(self) -> CapturesIter<'h, F> {
        CapturesIter(self)
    }
}

#[cfg(feature = "alloc")]
impl<'h, F> Iterator for TryCapturesIter<'h, F>
where
    F: FnMut(&Input<'_>, &mut Captures) -> Result<(), MatchError>,
{
    type Item = Result<Captures, MatchError>;

    #[inline]
    fn next(&mut self) -> Option<Result<Captures, MatchError>> {
        let TryCapturesIter { ref mut it, ref mut caps, ref mut finder } =
            *self;
        let result = it
            .try_advance(|input| {
                (finder)(input, caps)?;
                Ok(caps.get_match())
            })
            .transpose()?;
        match result {
            Ok(_) => Some(Ok(caps.clone())),
            Err(err) => Some(Err(err)),
        }
    }
}

#[cfg(feature = "alloc")]
impl<'h, F> core::fmt::Debug for TryCapturesIter<'h, F> {
    fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
        f.debug_struct("TryCapturesIter")
            .field("it", &self.it)
            .field("caps", &self.caps)
            .field("finder", &"<closure>")
            .finish()
    }
}

/// An iterator over all non-overlapping captures for an infallible search.
///
/// The iterator yields a [`Captures`] value until no more matches could be
/// found.
///
/// The type parameters are as follows:
///
/// * `F` represents the type of a closure that executes the search.
///
/// The lifetime parameters come from the [`Input`] type:
///
/// * `'h` is the lifetime of the underlying haystack.
///
/// When possible, prefer the iterators defined on the regex engine you're
/// using. This tries to abstract over the regex engine and is thus a bit more
/// unwieldy to use.
///
/// This iterator is created by [`Searcher::into_captures_iter`] and then
/// calling [`TryCapturesIter::infallible`].
#[cfg(feature = "alloc")]
#[derive(Debug)]
pub struct CapturesIter<'h, F>(TryCapturesIter<'h, F>);

#[cfg(feature = "alloc")]
impl<'h, F> Iterator for CapturesIter<'h, F>
where
    F: FnMut(&Input<'_>, &mut Captures) -> Result<(), MatchError>,
{
    type Item = Captures;

    #[inline]
    fn next(&mut self) -> Option<Captures> {
        match self.0.next()? {
            Ok(m) => Some(m),
            Err(err) => panic!(
                "unexpected regex captures error: {}\n\
                 to handle find errors, use 'try' or 'search' methods",
                err,
            ),
        }
    }
}