regex_automata/util/iter.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
/*!
Generic helpers for iteration of matches from a regex engine in a haystack.
The principle type in this module is a [`Searcher`]. A `Searcher` provides
its own lower level iterator-like API in addition to methods for constructing
types that implement `Iterator`. The documentation for `Searcher` explains a
bit more about why these different APIs exist.
Currently, this module supports iteration over any regex engine that works
with the [`HalfMatch`], [`Match`] or [`Captures`] types.
*/
#[cfg(feature = "alloc")]
use crate::util::captures::Captures;
use crate::util::search::{HalfMatch, Input, Match, MatchError};
/// A searcher for creating iterators and performing lower level iteration.
///
/// This searcher encapsulates the logic required for finding all successive
/// non-overlapping matches in a haystack. In theory, iteration would look
/// something like this:
///
/// 1. Setting the start position to `0`.
/// 2. Execute a regex search. If no match, end iteration.
/// 3. Report the match and set the start position to the end of the match.
/// 4. Go back to (2).
///
/// And if this were indeed the case, it's likely that `Searcher` wouldn't
/// exist. Unfortunately, because a regex may match the empty string, the above
/// logic won't work for all possible regexes. Namely, if an empty match is
/// found, then step (3) would set the start position of the search to the
/// position it was at. Thus, iteration would never end.
///
/// Instead, a `Searcher` knows how to detect these cases and forcefully
/// advance iteration in the case of an empty match that overlaps with a
/// previous match.
///
/// If you know that your regex cannot match any empty string, then the simple
/// algorithm described above will work correctly.
///
/// When possible, prefer the iterators defined on the regex engine you're
/// using. This tries to abstract over the regex engine and is thus a bit more
/// unwieldy to use.
///
/// In particular, a `Searcher` is not itself an iterator. Instead, it provides
/// `advance` routines that permit moving the search along explicitly. It also
/// provides various routines, like [`Searcher::into_matches_iter`], that
/// accept a closure (representing how a regex engine executes a search) and
/// returns a conventional iterator.
///
/// The lifetime parameters come from the [`Input`] type passed to
/// [`Searcher::new`]:
///
/// * `'h` is the lifetime of the underlying haystack.
///
/// # Searcher vs Iterator
///
/// Why does a search type with "advance" APIs exist at all when we also have
/// iterators? Unfortunately, the reasoning behind this split is a complex
/// combination of the following things:
///
/// 1. While many of the regex engines expose their own iterators, it is also
/// nice to expose this lower level iteration helper because it permits callers
/// to provide their own `Input` configuration. Moreover, a `Searcher` can work
/// with _any_ regex engine instead of only the ones defined in this crate.
/// This way, everyone benefits from a shared iteration implementation.
/// 2. There are many different regex engines that, while they have the same
/// match semantics, they have slightly different APIs. Iteration is just
/// complex enough to want to share code, and so we need a way of abstracting
/// over those different regex engines. While we could define a new trait that
/// describes any regex engine search API, it would wind up looking very close
/// to a closure. While there may still be reasons for the more generic trait
/// to exist, for now and for the purposes of iteration, we use a closure.
/// Closures also provide a lot of easy flexibility at the call site, in that
/// they permit the caller to borrow any kind of state they want for use during
/// each search call.
/// 3. As a result of using closures, and because closures are anonymous types
/// that cannot be named, it is difficult to encapsulate them without both
/// costs to speed and added complexity to the public API. For example, in
/// defining an iterator type like
/// [`dfa::regex::FindMatches`](crate::dfa::regex::FindMatches),
/// if we use a closure internally, it's not possible to name this type in the
/// return type of the iterator constructor. Thus, the only way around it is
/// to erase the type by boxing it and turning it into a `Box<dyn FnMut ...>`.
/// This boxed closure is unlikely to be inlined _and_ it infects the public
/// API in subtle ways. Namely, unless you declare the closure as implementing
/// `Send` and `Sync`, then the resulting iterator type won't implement it
/// either. But there are practical issues with requiring the closure to
/// implement `Send` and `Sync` that result in other API complexities that
/// are beyond the scope of this already long exposition.
/// 4. Some regex engines expose more complex match information than just
/// "which pattern matched" and "at what offsets." For example, the PikeVM
/// exposes match spans for each capturing group that participated in the
/// match. In such cases, it can be quite beneficial to reuse the capturing
/// group allocation on subsequent searches. A proper iterator doesn't permit
/// this API due to its interface, so it's useful to have something a bit lower
/// level that permits callers to amortize allocations while also reusing a
/// shared implementation of iteration. (See the documentation for
/// [`Searcher::advance`] for an example of using the "advance" API with the
/// PikeVM.)
///
/// What this boils down to is that there are "advance" APIs which require
/// handing a closure to it for every call, and there are also APIs to create
/// iterators from a closure. The former are useful for _implementing_
/// iterators or when you need more flexibility, while the latter are useful
/// for conveniently writing custom iterators on-the-fly.
///
/// # Example: iterating with captures
///
/// Several regex engines in this crate over convenient iterator APIs over
/// [`Captures`] values. To do so, this requires allocating a new `Captures`
/// value for each iteration step. This can perhaps be more costly than you
/// might want. Instead of implementing your own iterator to avoid that
/// cost (which can be a little subtle if you want to handle empty matches
/// correctly), you can use this `Searcher` to do it for you:
///
/// ```
/// use regex_automata::{
/// nfa::thompson::pikevm::PikeVM,
/// util::iter::Searcher,
/// Input, Span,
/// };
///
/// let re = PikeVM::new("foo(?P<numbers>[0-9]+)")?;
/// let haystack = "foo1 foo12 foo123";
///
/// let mut caps = re.create_captures();
/// let mut cache = re.create_cache();
/// let mut matches = vec![];
/// let mut searcher = Searcher::new(Input::new(haystack));
/// while let Some(_) = searcher.advance(|input| {
/// re.search(&mut cache, input, &mut caps);
/// Ok(caps.get_match())
/// }) {
/// // The unwrap is OK since 'numbers' matches if the pattern matches.
/// matches.push(caps.get_group_by_name("numbers").unwrap());
/// }
/// assert_eq!(matches, vec![
/// Span::from(3..4),
/// Span::from(8..10),
/// Span::from(14..17),
/// ]);
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[derive(Clone, Debug)]
pub struct Searcher<'h> {
/// The input parameters to give to each regex engine call.
///
/// The start position of the search is mutated during iteration.
input: Input<'h>,
/// Records the end offset of the most recent match. This is necessary to
/// handle a corner case for preventing empty matches from overlapping with
/// the ending bounds of a prior match.
last_match_end: Option<usize>,
}
impl<'h> Searcher<'h> {
/// Create a new fallible non-overlapping matches iterator.
///
/// The given `input` provides the parameters (including the haystack),
/// while the `finder` represents a closure that calls the underlying regex
/// engine. The closure may borrow any additional state that is needed,
/// such as a prefilter scanner.
pub fn new(input: Input<'h>) -> Searcher<'h> {
Searcher { input, last_match_end: None }
}
/// Returns the current `Input` used by this searcher.
///
/// The `Input` returned is generally equivalent to the one given to
/// [`Searcher::new`], but its start position may be different to reflect
/// the start of the next search to be executed.
pub fn input<'s>(&'s self) -> &'s Input<'h> {
&self.input
}
/// Return the next half match for an infallible search if one exists, and
/// advance to the next position.
///
/// This is like `try_advance_half`, except errors are converted into
/// panics.
///
/// # Panics
///
/// If the given closure returns an error, then this panics. This is useful
/// when you know your underlying regex engine has been configured to not
/// return an error.
///
/// # Example
///
/// This example shows how to use a `Searcher` to iterate over all matches
/// when using a DFA, which only provides "half" matches.
///
/// ```
/// use regex_automata::{
/// hybrid::dfa::DFA,
/// util::iter::Searcher,
/// HalfMatch, Input,
/// };
///
/// let re = DFA::new(r"[0-9]{4}-[0-9]{2}-[0-9]{2}")?;
/// let mut cache = re.create_cache();
///
/// let input = Input::new("2010-03-14 2016-10-08 2020-10-22");
/// let mut it = Searcher::new(input);
///
/// let expected = Some(HalfMatch::must(0, 10));
/// let got = it.advance_half(|input| re.try_search_fwd(&mut cache, input));
/// assert_eq!(expected, got);
///
/// let expected = Some(HalfMatch::must(0, 21));
/// let got = it.advance_half(|input| re.try_search_fwd(&mut cache, input));
/// assert_eq!(expected, got);
///
/// let expected = Some(HalfMatch::must(0, 32));
/// let got = it.advance_half(|input| re.try_search_fwd(&mut cache, input));
/// assert_eq!(expected, got);
///
/// let expected = None;
/// let got = it.advance_half(|input| re.try_search_fwd(&mut cache, input));
/// assert_eq!(expected, got);
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// This correctly moves iteration forward even when an empty match occurs:
///
/// ```
/// use regex_automata::{
/// hybrid::dfa::DFA,
/// util::iter::Searcher,
/// HalfMatch, Input,
/// };
///
/// let re = DFA::new(r"a|")?;
/// let mut cache = re.create_cache();
///
/// let input = Input::new("abba");
/// let mut it = Searcher::new(input);
///
/// let expected = Some(HalfMatch::must(0, 1));
/// let got = it.advance_half(|input| re.try_search_fwd(&mut cache, input));
/// assert_eq!(expected, got);
///
/// let expected = Some(HalfMatch::must(0, 2));
/// let got = it.advance_half(|input| re.try_search_fwd(&mut cache, input));
/// assert_eq!(expected, got);
///
/// let expected = Some(HalfMatch::must(0, 4));
/// let got = it.advance_half(|input| re.try_search_fwd(&mut cache, input));
/// assert_eq!(expected, got);
///
/// let expected = None;
/// let got = it.advance_half(|input| re.try_search_fwd(&mut cache, input));
/// assert_eq!(expected, got);
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[inline]
pub fn advance_half<F>(&mut self, finder: F) -> Option<HalfMatch>
where
F: FnMut(&Input<'_>) -> Result<Option<HalfMatch>, MatchError>,
{
match self.try_advance_half(finder) {
Ok(m) => m,
Err(err) => panic!(
"unexpected regex half find error: {}\n\
to handle find errors, use 'try' or 'search' methods",
err,
),
}
}
/// Return the next match for an infallible search if one exists, and
/// advance to the next position.
///
/// The search is advanced even in the presence of empty matches by
/// forbidding empty matches from overlapping with any other match.
///
/// This is like `try_advance`, except errors are converted into panics.
///
/// # Panics
///
/// If the given closure returns an error, then this panics. This is useful
/// when you know your underlying regex engine has been configured to not
/// return an error.
///
/// # Example
///
/// This example shows how to use a `Searcher` to iterate over all matches
/// when using a regex based on lazy DFAs:
///
/// ```
/// use regex_automata::{
/// hybrid::regex::Regex,
/// util::iter::Searcher,
/// Match, Input,
/// };
///
/// let re = Regex::new(r"[0-9]{4}-[0-9]{2}-[0-9]{2}")?;
/// let mut cache = re.create_cache();
///
/// let input = Input::new("2010-03-14 2016-10-08 2020-10-22");
/// let mut it = Searcher::new(input);
///
/// let expected = Some(Match::must(0, 0..10));
/// let got = it.advance(|input| re.try_search(&mut cache, input));
/// assert_eq!(expected, got);
///
/// let expected = Some(Match::must(0, 11..21));
/// let got = it.advance(|input| re.try_search(&mut cache, input));
/// assert_eq!(expected, got);
///
/// let expected = Some(Match::must(0, 22..32));
/// let got = it.advance(|input| re.try_search(&mut cache, input));
/// assert_eq!(expected, got);
///
/// let expected = None;
/// let got = it.advance(|input| re.try_search(&mut cache, input));
/// assert_eq!(expected, got);
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// This example shows the same as above, but with the PikeVM. This example
/// is useful because it shows how to use this API even when the regex
/// engine doesn't directly return a `Match`.
///
/// ```
/// use regex_automata::{
/// nfa::thompson::pikevm::PikeVM,
/// util::iter::Searcher,
/// Match, Input,
/// };
///
/// let re = PikeVM::new(r"[0-9]{4}-[0-9]{2}-[0-9]{2}")?;
/// let (mut cache, mut caps) = (re.create_cache(), re.create_captures());
///
/// let input = Input::new("2010-03-14 2016-10-08 2020-10-22");
/// let mut it = Searcher::new(input);
///
/// let expected = Some(Match::must(0, 0..10));
/// let got = it.advance(|input| {
/// re.search(&mut cache, input, &mut caps);
/// Ok(caps.get_match())
/// });
/// // Note that if we wanted to extract capturing group spans, we could
/// // do that here with 'caps'.
/// assert_eq!(expected, got);
///
/// let expected = Some(Match::must(0, 11..21));
/// let got = it.advance(|input| {
/// re.search(&mut cache, input, &mut caps);
/// Ok(caps.get_match())
/// });
/// assert_eq!(expected, got);
///
/// let expected = Some(Match::must(0, 22..32));
/// let got = it.advance(|input| {
/// re.search(&mut cache, input, &mut caps);
/// Ok(caps.get_match())
/// });
/// assert_eq!(expected, got);
///
/// let expected = None;
/// let got = it.advance(|input| {
/// re.search(&mut cache, input, &mut caps);
/// Ok(caps.get_match())
/// });
/// assert_eq!(expected, got);
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[inline]
pub fn advance<F>(&mut self, finder: F) -> Option<Match>
where
F: FnMut(&Input<'_>) -> Result<Option<Match>, MatchError>,
{
match self.try_advance(finder) {
Ok(m) => m,
Err(err) => panic!(
"unexpected regex find error: {}\n\
to handle find errors, use 'try' or 'search' methods",
err,
),
}
}
/// Return the next half match for a fallible search if one exists, and
/// advance to the next position.
///
/// This is like `advance_half`, except it permits callers to handle errors
/// during iteration.
#[inline]
pub fn try_advance_half<F>(
&mut self,
mut finder: F,
) -> Result<Option<HalfMatch>, MatchError>
where
F: FnMut(&Input<'_>) -> Result<Option<HalfMatch>, MatchError>,
{
let mut m = match finder(&self.input)? {
None => return Ok(None),
Some(m) => m,
};
if Some(m.offset()) == self.last_match_end {
m = match self.handle_overlapping_empty_half_match(m, finder)? {
None => return Ok(None),
Some(m) => m,
};
}
self.input.set_start(m.offset());
self.last_match_end = Some(m.offset());
Ok(Some(m))
}
/// Return the next match for a fallible search if one exists, and advance
/// to the next position.
///
/// This is like `advance`, except it permits callers to handle errors
/// during iteration.
#[inline]
pub fn try_advance<F>(
&mut self,
mut finder: F,
) -> Result<Option<Match>, MatchError>
where
F: FnMut(&Input<'_>) -> Result<Option<Match>, MatchError>,
{
let mut m = match finder(&self.input)? {
None => return Ok(None),
Some(m) => m,
};
if m.is_empty() && Some(m.end()) == self.last_match_end {
m = match self.handle_overlapping_empty_match(m, finder)? {
None => return Ok(None),
Some(m) => m,
};
}
self.input.set_start(m.end());
self.last_match_end = Some(m.end());
Ok(Some(m))
}
/// Given a closure that executes a single search, return an iterator over
/// all successive non-overlapping half matches.
///
/// The iterator returned yields result values. If the underlying regex
/// engine is configured to never return an error, consider calling
/// [`TryHalfMatchesIter::infallible`] to convert errors into panics.
///
/// # Example
///
/// This example shows how to use a `Searcher` to create a proper
/// iterator over half matches.
///
/// ```
/// use regex_automata::{
/// hybrid::dfa::DFA,
/// util::iter::Searcher,
/// HalfMatch, Input,
/// };
///
/// let re = DFA::new(r"[0-9]{4}-[0-9]{2}-[0-9]{2}")?;
/// let mut cache = re.create_cache();
///
/// let input = Input::new("2010-03-14 2016-10-08 2020-10-22");
/// let mut it = Searcher::new(input).into_half_matches_iter(|input| {
/// re.try_search_fwd(&mut cache, input)
/// });
///
/// let expected = Some(Ok(HalfMatch::must(0, 10)));
/// assert_eq!(expected, it.next());
///
/// let expected = Some(Ok(HalfMatch::must(0, 21)));
/// assert_eq!(expected, it.next());
///
/// let expected = Some(Ok(HalfMatch::must(0, 32)));
/// assert_eq!(expected, it.next());
///
/// let expected = None;
/// assert_eq!(expected, it.next());
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[inline]
pub fn into_half_matches_iter<F>(
self,
finder: F,
) -> TryHalfMatchesIter<'h, F>
where
F: FnMut(&Input<'_>) -> Result<Option<HalfMatch>, MatchError>,
{
TryHalfMatchesIter { it: self, finder }
}
/// Given a closure that executes a single search, return an iterator over
/// all successive non-overlapping matches.
///
/// The iterator returned yields result values. If the underlying regex
/// engine is configured to never return an error, consider calling
/// [`TryMatchesIter::infallible`] to convert errors into panics.
///
/// # Example
///
/// This example shows how to use a `Searcher` to create a proper
/// iterator over matches.
///
/// ```
/// use regex_automata::{
/// hybrid::regex::Regex,
/// util::iter::Searcher,
/// Match, Input,
/// };
///
/// let re = Regex::new(r"[0-9]{4}-[0-9]{2}-[0-9]{2}")?;
/// let mut cache = re.create_cache();
///
/// let input = Input::new("2010-03-14 2016-10-08 2020-10-22");
/// let mut it = Searcher::new(input).into_matches_iter(|input| {
/// re.try_search(&mut cache, input)
/// });
///
/// let expected = Some(Ok(Match::must(0, 0..10)));
/// assert_eq!(expected, it.next());
///
/// let expected = Some(Ok(Match::must(0, 11..21)));
/// assert_eq!(expected, it.next());
///
/// let expected = Some(Ok(Match::must(0, 22..32)));
/// assert_eq!(expected, it.next());
///
/// let expected = None;
/// assert_eq!(expected, it.next());
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[inline]
pub fn into_matches_iter<F>(self, finder: F) -> TryMatchesIter<'h, F>
where
F: FnMut(&Input<'_>) -> Result<Option<Match>, MatchError>,
{
TryMatchesIter { it: self, finder }
}
/// Given a closure that executes a single search, return an iterator over
/// all successive non-overlapping `Captures` values.
///
/// The iterator returned yields result values. If the underlying regex
/// engine is configured to never return an error, consider calling
/// [`TryCapturesIter::infallible`] to convert errors into panics.
///
/// Unlike the other iterator constructors, this accepts an initial
/// `Captures` value. This `Captures` value is reused for each search, and
/// the iterator implementation clones it before returning it. The caller
/// must provide this value because the iterator is purposely ignorant
/// of the underlying regex engine and thus doesn't know how to create
/// one itself. More to the point, a `Captures` value itself has a few
/// different constructors, which change which kind of information is
/// available to query in exchange for search performance.
///
/// # Example
///
/// This example shows how to use a `Searcher` to create a proper iterator
/// over `Captures` values, which provides access to all capturing group
/// spans for each match.
///
/// ```
/// use regex_automata::{
/// nfa::thompson::pikevm::PikeVM,
/// util::iter::Searcher,
/// Input,
/// };
///
/// let re = PikeVM::new(
/// r"(?P<y>[0-9]{4})-(?P<m>[0-9]{2})-(?P<d>[0-9]{2})",
/// )?;
/// let (mut cache, caps) = (re.create_cache(), re.create_captures());
///
/// let haystack = "2010-03-14 2016-10-08 2020-10-22";
/// let input = Input::new(haystack);
/// let mut it = Searcher::new(input)
/// .into_captures_iter(caps, |input, caps| {
/// re.search(&mut cache, input, caps);
/// Ok(())
/// });
///
/// let got = it.next().expect("first date")?;
/// let year = got.get_group_by_name("y").expect("must match");
/// assert_eq!("2010", &haystack[year]);
///
/// let got = it.next().expect("second date")?;
/// let month = got.get_group_by_name("m").expect("must match");
/// assert_eq!("10", &haystack[month]);
///
/// let got = it.next().expect("third date")?;
/// let day = got.get_group_by_name("d").expect("must match");
/// assert_eq!("22", &haystack[day]);
///
/// assert!(it.next().is_none());
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[cfg(feature = "alloc")]
#[inline]
pub fn into_captures_iter<F>(
self,
caps: Captures,
finder: F,
) -> TryCapturesIter<'h, F>
where
F: FnMut(&Input<'_>, &mut Captures) -> Result<(), MatchError>,
{
TryCapturesIter { it: self, caps, finder }
}
/// Handles the special case of a match that begins where the previous
/// match ended. Without this special handling, it'd be possible to get
/// stuck where an empty match never results in forward progress. This
/// also makes it more consistent with how presiding general purpose regex
/// engines work.
#[cold]
#[inline(never)]
fn handle_overlapping_empty_half_match<F>(
&mut self,
_: HalfMatch,
mut finder: F,
) -> Result<Option<HalfMatch>, MatchError>
where
F: FnMut(&Input<'_>) -> Result<Option<HalfMatch>, MatchError>,
{
// Since we are only here when 'm.offset()' matches the offset of the
// last match, it follows that this must have been an empty match.
// Since we both need to make progress *and* prevent overlapping
// matches, we discard this match and advance the search by 1.
//
// Note that this may start a search in the middle of a codepoint. The
// regex engines themselves are expected to deal with that and not
// report any matches within a codepoint if they are configured in
// UTF-8 mode.
self.input.set_start(self.input.start().checked_add(1).unwrap());
finder(&self.input)
}
/// Handles the special case of an empty match by ensuring that 1) the
/// iterator always advances and 2) empty matches never overlap with other
/// matches.
///
/// (1) is necessary because we principally make progress by setting the
/// starting location of the next search to the ending location of the last
/// match. But if a match is empty, then this results in a search that does
/// not advance and thus does not terminate.
///
/// (2) is not strictly necessary, but makes intuitive sense and matches
/// the presiding behavior of most general purpose regex engines. The
/// "intuitive sense" here is that we want to report NON-overlapping
/// matches. So for example, given the regex 'a|(?:)' against the haystack
/// 'a', without the special handling, you'd get the matches [0, 1) and [1,
/// 1), where the latter overlaps with the end bounds of the former.
///
/// Note that we mark this cold and forcefully prevent inlining because
/// handling empty matches like this is extremely rare and does require
/// quite a bit of code, comparatively. Keeping this code out of the main
/// iterator function keeps it smaller and more amenable to inlining
/// itself.
#[cold]
#[inline(never)]
fn handle_overlapping_empty_match<F>(
&mut self,
m: Match,
mut finder: F,
) -> Result<Option<Match>, MatchError>
where
F: FnMut(&Input<'_>) -> Result<Option<Match>, MatchError>,
{
assert!(m.is_empty());
self.input.set_start(self.input.start().checked_add(1).unwrap());
finder(&self.input)
}
}
/// An iterator over all non-overlapping half matches for a fallible search.
///
/// The iterator yields a `Result<HalfMatch, MatchError>` value until no more
/// matches could be found.
///
/// The type parameters are as follows:
///
/// * `F` represents the type of a closure that executes the search.
///
/// The lifetime parameters come from the [`Input`] type:
///
/// * `'h` is the lifetime of the underlying haystack.
///
/// When possible, prefer the iterators defined on the regex engine you're
/// using. This tries to abstract over the regex engine and is thus a bit more
/// unwieldy to use.
///
/// This iterator is created by [`Searcher::into_half_matches_iter`].
pub struct TryHalfMatchesIter<'h, F> {
it: Searcher<'h>,
finder: F,
}
impl<'h, F> TryHalfMatchesIter<'h, F> {
/// Return an infallible version of this iterator.
///
/// Any item yielded that corresponds to an error results in a panic. This
/// is useful if your underlying regex engine is configured in a way that
/// it is guaranteed to never return an error.
pub fn infallible(self) -> HalfMatchesIter<'h, F> {
HalfMatchesIter(self)
}
/// Returns the current `Input` used by this iterator.
///
/// The `Input` returned is generally equivalent to the one used to
/// construct this iterator, but its start position may be different to
/// reflect the start of the next search to be executed.
pub fn input<'i>(&'i self) -> &'i Input<'h> {
self.it.input()
}
}
impl<'h, F> Iterator for TryHalfMatchesIter<'h, F>
where
F: FnMut(&Input<'_>) -> Result<Option<HalfMatch>, MatchError>,
{
type Item = Result<HalfMatch, MatchError>;
#[inline]
fn next(&mut self) -> Option<Result<HalfMatch, MatchError>> {
self.it.try_advance_half(&mut self.finder).transpose()
}
}
impl<'h, F> core::fmt::Debug for TryHalfMatchesIter<'h, F> {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
f.debug_struct("TryHalfMatchesIter")
.field("it", &self.it)
.field("finder", &"<closure>")
.finish()
}
}
/// An iterator over all non-overlapping half matches for an infallible search.
///
/// The iterator yields a [`HalfMatch`] value until no more matches could be
/// found.
///
/// The type parameters are as follows:
///
/// * `F` represents the type of a closure that executes the search.
///
/// The lifetime parameters come from the [`Input`] type:
///
/// * `'h` is the lifetime of the underlying haystack.
///
/// When possible, prefer the iterators defined on the regex engine you're
/// using. This tries to abstract over the regex engine and is thus a bit more
/// unwieldy to use.
///
/// This iterator is created by [`Searcher::into_half_matches_iter`] and
/// then calling [`TryHalfMatchesIter::infallible`].
#[derive(Debug)]
pub struct HalfMatchesIter<'h, F>(TryHalfMatchesIter<'h, F>);
impl<'h, F> HalfMatchesIter<'h, F> {
/// Returns the current `Input` used by this iterator.
///
/// The `Input` returned is generally equivalent to the one used to
/// construct this iterator, but its start position may be different to
/// reflect the start of the next search to be executed.
pub fn input<'i>(&'i self) -> &'i Input<'h> {
self.0.it.input()
}
}
impl<'h, F> Iterator for HalfMatchesIter<'h, F>
where
F: FnMut(&Input<'_>) -> Result<Option<HalfMatch>, MatchError>,
{
type Item = HalfMatch;
#[inline]
fn next(&mut self) -> Option<HalfMatch> {
match self.0.next()? {
Ok(m) => Some(m),
Err(err) => panic!(
"unexpected regex half find error: {}\n\
to handle find errors, use 'try' or 'search' methods",
err,
),
}
}
}
/// An iterator over all non-overlapping matches for a fallible search.
///
/// The iterator yields a `Result<Match, MatchError>` value until no more
/// matches could be found.
///
/// The type parameters are as follows:
///
/// * `F` represents the type of a closure that executes the search.
///
/// The lifetime parameters come from the [`Input`] type:
///
/// * `'h` is the lifetime of the underlying haystack.
///
/// When possible, prefer the iterators defined on the regex engine you're
/// using. This tries to abstract over the regex engine and is thus a bit more
/// unwieldy to use.
///
/// This iterator is created by [`Searcher::into_matches_iter`].
pub struct TryMatchesIter<'h, F> {
it: Searcher<'h>,
finder: F,
}
impl<'h, F> TryMatchesIter<'h, F> {
/// Return an infallible version of this iterator.
///
/// Any item yielded that corresponds to an error results in a panic. This
/// is useful if your underlying regex engine is configured in a way that
/// it is guaranteed to never return an error.
pub fn infallible(self) -> MatchesIter<'h, F> {
MatchesIter(self)
}
/// Returns the current `Input` used by this iterator.
///
/// The `Input` returned is generally equivalent to the one used to
/// construct this iterator, but its start position may be different to
/// reflect the start of the next search to be executed.
pub fn input<'i>(&'i self) -> &'i Input<'h> {
self.it.input()
}
}
impl<'h, F> Iterator for TryMatchesIter<'h, F>
where
F: FnMut(&Input<'_>) -> Result<Option<Match>, MatchError>,
{
type Item = Result<Match, MatchError>;
#[inline]
fn next(&mut self) -> Option<Result<Match, MatchError>> {
self.it.try_advance(&mut self.finder).transpose()
}
}
impl<'h, F> core::fmt::Debug for TryMatchesIter<'h, F> {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
f.debug_struct("TryMatchesIter")
.field("it", &self.it)
.field("finder", &"<closure>")
.finish()
}
}
/// An iterator over all non-overlapping matches for an infallible search.
///
/// The iterator yields a [`Match`] value until no more matches could be found.
///
/// The type parameters are as follows:
///
/// * `F` represents the type of a closure that executes the search.
///
/// The lifetime parameters come from the [`Input`] type:
///
/// * `'h` is the lifetime of the underlying haystack.
///
/// When possible, prefer the iterators defined on the regex engine you're
/// using. This tries to abstract over the regex engine and is thus a bit more
/// unwieldy to use.
///
/// This iterator is created by [`Searcher::into_matches_iter`] and
/// then calling [`TryMatchesIter::infallible`].
#[derive(Debug)]
pub struct MatchesIter<'h, F>(TryMatchesIter<'h, F>);
impl<'h, F> MatchesIter<'h, F> {
/// Returns the current `Input` used by this iterator.
///
/// The `Input` returned is generally equivalent to the one used to
/// construct this iterator, but its start position may be different to
/// reflect the start of the next search to be executed.
pub fn input<'i>(&'i self) -> &'i Input<'h> {
self.0.it.input()
}
}
impl<'h, F> Iterator for MatchesIter<'h, F>
where
F: FnMut(&Input<'_>) -> Result<Option<Match>, MatchError>,
{
type Item = Match;
#[inline]
fn next(&mut self) -> Option<Match> {
match self.0.next()? {
Ok(m) => Some(m),
Err(err) => panic!(
"unexpected regex find error: {}\n\
to handle find errors, use 'try' or 'search' methods",
err,
),
}
}
}
/// An iterator over all non-overlapping captures for a fallible search.
///
/// The iterator yields a `Result<Captures, MatchError>` value until no more
/// matches could be found.
///
/// The type parameters are as follows:
///
/// * `F` represents the type of a closure that executes the search.
///
/// The lifetime parameters come from the [`Input`] type:
///
/// * `'h` is the lifetime of the underlying haystack.
///
/// When possible, prefer the iterators defined on the regex engine you're
/// using. This tries to abstract over the regex engine and is thus a bit more
/// unwieldy to use.
///
/// This iterator is created by [`Searcher::into_captures_iter`].
#[cfg(feature = "alloc")]
pub struct TryCapturesIter<'h, F> {
it: Searcher<'h>,
caps: Captures,
finder: F,
}
#[cfg(feature = "alloc")]
impl<'h, F> TryCapturesIter<'h, F> {
/// Return an infallible version of this iterator.
///
/// Any item yielded that corresponds to an error results in a panic. This
/// is useful if your underlying regex engine is configured in a way that
/// it is guaranteed to never return an error.
pub fn infallible(self) -> CapturesIter<'h, F> {
CapturesIter(self)
}
}
#[cfg(feature = "alloc")]
impl<'h, F> Iterator for TryCapturesIter<'h, F>
where
F: FnMut(&Input<'_>, &mut Captures) -> Result<(), MatchError>,
{
type Item = Result<Captures, MatchError>;
#[inline]
fn next(&mut self) -> Option<Result<Captures, MatchError>> {
let TryCapturesIter { ref mut it, ref mut caps, ref mut finder } =
*self;
let result = it
.try_advance(|input| {
(finder)(input, caps)?;
Ok(caps.get_match())
})
.transpose()?;
match result {
Ok(_) => Some(Ok(caps.clone())),
Err(err) => Some(Err(err)),
}
}
}
#[cfg(feature = "alloc")]
impl<'h, F> core::fmt::Debug for TryCapturesIter<'h, F> {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
f.debug_struct("TryCapturesIter")
.field("it", &self.it)
.field("caps", &self.caps)
.field("finder", &"<closure>")
.finish()
}
}
/// An iterator over all non-overlapping captures for an infallible search.
///
/// The iterator yields a [`Captures`] value until no more matches could be
/// found.
///
/// The type parameters are as follows:
///
/// * `F` represents the type of a closure that executes the search.
///
/// The lifetime parameters come from the [`Input`] type:
///
/// * `'h` is the lifetime of the underlying haystack.
///
/// When possible, prefer the iterators defined on the regex engine you're
/// using. This tries to abstract over the regex engine and is thus a bit more
/// unwieldy to use.
///
/// This iterator is created by [`Searcher::into_captures_iter`] and then
/// calling [`TryCapturesIter::infallible`].
#[cfg(feature = "alloc")]
#[derive(Debug)]
pub struct CapturesIter<'h, F>(TryCapturesIter<'h, F>);
#[cfg(feature = "alloc")]
impl<'h, F> Iterator for CapturesIter<'h, F>
where
F: FnMut(&Input<'_>, &mut Captures) -> Result<(), MatchError>,
{
type Item = Captures;
#[inline]
fn next(&mut self) -> Option<Captures> {
match self.0.next()? {
Ok(m) => Some(m),
Err(err) => panic!(
"unexpected regex captures error: {}\n\
to handle find errors, use 'try' or 'search' methods",
err,
),
}
}
}