1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
// Copyright 2017 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

/*!
Defines an abstract syntax for regular expressions.
*/

use std::cmp::Ordering;
use std::error;
use std::fmt;

pub use ast::visitor::{Visitor, visit};

pub mod parse;
pub mod print;
mod visitor;

/// An error that occurred while parsing a regular expression into an abstract
/// syntax tree.
///
/// Note that note all ASTs represents a valid regular expression. For example,
/// an AST is constructed without error for `\p{Quux}`, but `Quux` is not a
/// valid Unicode property name. That particular error is reported when
/// translating an AST to the high-level intermediate representation (`HIR`).
#[derive(Clone, Debug, Eq, PartialEq)]
pub struct Error {
    /// The kind of error.
    kind: ErrorKind,
    /// The original pattern that the parser generated the error from. Every
    /// span in an error is a valid range into this string.
    pattern: String,
    /// The span of this error.
    span: Span,
}

impl Error {
    /// Return the type of this error.
    pub fn kind(&self) -> &ErrorKind {
        &self.kind
    }

    /// The original pattern string in which this error occurred.
    ///
    /// Every span reported by this error is reported in terms of this string.
    pub fn pattern(&self) -> &str {
        &self.pattern
    }

    /// Return the span at which this error occurred.
    pub fn span(&self) -> &Span {
        &self.span
    }

    /// Return an auxiliary span. This span exists only for some errors that
    /// benefit from being able to point to two locations in the original
    /// regular expression. For example, "duplicate" errors will have the
    /// main error position set to the duplicate occurrence while its
    /// auxiliary span will be set to the initial occurrence.
    pub fn auxiliary_span(&self) -> Option<&Span> {
        use self::ErrorKind::*;
        match self.kind {
            FlagDuplicate { ref original } => Some(original),
            FlagRepeatedNegation { ref original, .. } => Some(original),
            GroupNameDuplicate { ref original, .. } => Some(original),
            _ => None,
        }
    }
}

/// The type of an error that occurred while building an AST.
#[derive(Clone, Debug, Eq, PartialEq)]
pub enum ErrorKind {
    /// The capturing group limit was exceeded.
    ///
    /// Note that this represents a limit on the total number of capturing
    /// groups in a regex and not necessarily the number of nested capturing
    /// groups. That is, the nest limit can be low and it is still possible for
    /// this error to occur.
    CaptureLimitExceeded,
    /// An invalid escape sequence was found in a character class set.
    ClassEscapeInvalid,
    /// An invalid character class range was found. An invalid range is any
    /// range where the start is greater than the end.
    ClassRangeInvalid,
    /// An invalid range boundary was found in a character class. Range
    /// boundaries must be a single literal codepoint, but this error indicates
    /// that something else was found, such as a nested class.
    ClassRangeLiteral,
    /// An opening `[` was found with no corresponding closing `]`.
    ClassUnclosed,
    /// An empty decimal number was given where one was expected.
    DecimalEmpty,
    /// An invalid decimal number was given where one was expected.
    DecimalInvalid,
    /// A bracketed hex literal was empty.
    EscapeHexEmpty,
    /// A bracketed hex literal did not correspond to a Unicode scalar value.
    EscapeHexInvalid,
    /// An invalid hexadecimal digit was found.
    EscapeHexInvalidDigit,
    /// EOF was found before an escape sequence was completed.
    EscapeUnexpectedEof,
    /// An unrecognized escape sequence.
    EscapeUnrecognized,
    /// A dangling negation was used when setting flags, e.g., `i-`.
    FlagDanglingNegation,
    /// A flag was used twice, e.g., `i-i`.
    FlagDuplicate {
        /// The position of the original flag. The error position
        /// points to the duplicate flag.
        original: Span,
    },
    /// The negation operator was used twice, e.g., `-i-s`.
    FlagRepeatedNegation {
        /// The position of the original negation operator. The error position
        /// points to the duplicate negation operator.
        original: Span,
    },
    /// Expected a flag but got EOF, e.g., `(?`.
    FlagUnexpectedEof,
    /// Unrecognized flag, e.g., `a`.
    FlagUnrecognized,
    /// A duplicate capture name was found.
    GroupNameDuplicate {
        /// The position of the initial occurrence of the capture name. The
        /// error position itself points to the duplicate occurrence.
        original: Span,
    },
    /// A capture group name is empty, e.g., `(?P<>abc)`.
    GroupNameEmpty,
    /// An invalid character was seen for a capture group name. This includes
    /// errors where the first character is a digit (even though subsequent
    /// characters are allowed to be digits).
    GroupNameInvalid,
    /// A closing `>` could not be found for a capture group name.
    GroupNameUnexpectedEof,
    /// An unclosed group, e.g., `(ab`.
    ///
    /// The span of this error corresponds to the unclosed parenthesis.
    GroupUnclosed,
    /// An unopened group, e.g., `ab)`.
    GroupUnopened,
    /// The nest limit was exceeded. The limit stored here is the limit
    /// configured in the parser.
    NestLimitExceeded(u32),
    /// The range provided in a counted repetition operator is invalid. The
    /// range is invalid if the start is greater than the end.
    RepetitionCountInvalid,
    /// An opening `{` was found with no corresponding closing `}`.
    RepetitionCountUnclosed,
    /// A repetition operator was applied to a missing sub-expression. This
    /// occurs, for example, in the regex consisting of just a `*` or even
    /// `(?i)*`. It is, however, possible to create a repetition operating on
    /// an empty sub-expression. For example, `()*` is still considered valid.
    RepetitionMissing,
    /// When octal support is disabled, this error is produced when an octal
    /// escape is used. The octal escape is assumed to be an invocation of
    /// a backreference, which is the common case.
    UnsupportedBackreference,
    /// When syntax similar to PCRE's look-around is used, this error is
    /// returned. Some example syntaxes that are rejected include, but are
    /// not necessarily limited to, `(?=re)`, `(?!re)`, `(?<=re)` and
    /// `(?<!re)`. Note that all of these syntaxes are otherwise invalid; this
    /// error is used to improve the user experience.
    UnsupportedLookAround,
    /// Hints that destructuring should not be exhaustive.
    ///
    /// This enum may grow additional variants, so this makes sure clients
    /// don't count on exhaustive matching. (Otherwise, adding a new variant
    /// could break existing code.)
    #[doc(hidden)]
    __Nonexhaustive,
}

impl error::Error for Error {
    fn description(&self) -> &str {
        use self::ErrorKind::*;
        match self.kind {
            CaptureLimitExceeded => "capture group limit exceeded",
            ClassEscapeInvalid => "invalid escape sequence in character class",
            ClassRangeInvalid => "invalid character class range",
            ClassRangeLiteral => "invalid range boundary, must be a literal",
            ClassUnclosed => "unclosed character class",
            DecimalEmpty => "empty decimal literal",
            DecimalInvalid => "invalid decimal literal",
            EscapeHexEmpty => "empty hexadecimal literal",
            EscapeHexInvalid => "invalid hexadecimal literal",
            EscapeHexInvalidDigit => "invalid hexadecimal digit",
            EscapeUnexpectedEof => "unexpected eof (escape sequence)",
            EscapeUnrecognized => "unrecognized escape sequence",
            FlagDanglingNegation => "dangling flag negation operator",
            FlagDuplicate{..} => "duplicate flag",
            FlagRepeatedNegation{..} => "repeated negation",
            FlagUnexpectedEof => "unexpected eof (flag)",
            FlagUnrecognized => "unrecognized flag",
            GroupNameDuplicate{..} => "duplicate capture group name",
            GroupNameEmpty => "empty capture group name",
            GroupNameInvalid => "invalid capture group name",
            GroupNameUnexpectedEof => "unclosed capture group name",
            GroupUnclosed => "unclosed group",
            GroupUnopened => "unopened group",
            NestLimitExceeded(_) => "nest limit exceeded",
            RepetitionCountInvalid => "invalid repetition count range",
            RepetitionCountUnclosed => "unclosed counted repetition",
            RepetitionMissing => "repetition operator missing expression",
            UnsupportedBackreference => "backreferences are not supported",
            UnsupportedLookAround => "look-around is not supported",
            _ => unreachable!(),
        }
    }
}

impl fmt::Display for Error {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        ::error::Formatter::from(self).fmt(f)
    }
}

impl fmt::Display for ErrorKind {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        use self::ErrorKind::*;
        match *self {
            CaptureLimitExceeded => {
                write!(f, "exceeded the maximum number of \
                           capturing groups ({})", ::std::u32::MAX)
            }
            ClassEscapeInvalid => {
                write!(f, "invalid escape sequence found in character class")
            }
            ClassRangeInvalid => {
                write!(f, "invalid character class range, \
                           the start must be <= the end")
            }
            ClassRangeLiteral => {
                write!(f, "invalid range boundary, must be a literal")
            }
            ClassUnclosed => {
                write!(f, "unclosed character class")
            }
            DecimalEmpty => {
                write!(f, "decimal literal empty")
            }
            DecimalInvalid => {
                write!(f, "decimal literal invalid")
            }
            EscapeHexEmpty => {
                write!(f, "hexadecimal literal empty")
            }
            EscapeHexInvalid => {
                write!(f, "hexadecimal literal is not a Unicode scalar value")
            }
            EscapeHexInvalidDigit => {
                write!(f, "invalid hexadecimal digit")
            }
            EscapeUnexpectedEof => {
                write!(f, "incomplete escape sequence, \
                           reached end of pattern prematurely")
            }
            EscapeUnrecognized => {
                write!(f, "unrecognized escape sequence")
            }
            FlagDanglingNegation => {
                write!(f, "dangling flag negation operator")
            }
            FlagDuplicate{..} => {
                write!(f, "duplicate flag")
            }
            FlagRepeatedNegation{..} => {
                write!(f, "flag negation operator repeated")
            }
            FlagUnexpectedEof => {
                write!(f, "expected flag but got end of regex")
            }
            FlagUnrecognized => {
                write!(f, "unrecognized flag")
            }
            GroupNameDuplicate{..} => {
                write!(f, "duplicate capture group name")
            }
            GroupNameEmpty => {
                write!(f, "empty capture group name")
            }
            GroupNameInvalid => {
                write!(f, "invalid capture group character")
            }
            GroupNameUnexpectedEof => {
                write!(f, "unclosed capture group name")
            }
            GroupUnclosed => {
                write!(f, "unclosed group")
            }
            GroupUnopened => {
                write!(f, "unopened group")
            }
            NestLimitExceeded(limit) => {
                write!(f, "exceed the maximum number of \
                           nested parentheses/brackets ({})", limit)
            }
            RepetitionCountInvalid => {
                write!(f, "invalid repetition count range, \
                           the start must be <= the end")
            }
            RepetitionCountUnclosed => {
                write!(f, "unclosed counted repetition")
            }
            RepetitionMissing => {
                write!(f, "repetition operator missing expression")
            }
            UnsupportedBackreference => {
                write!(f, "backreferences are not supported")
            }
            UnsupportedLookAround => {
                write!(f, "look-around, including look-ahead and look-behind, \
                           is not supported")
            }
            _ => unreachable!(),
        }
    }
}

/// Span represents the position information of a single AST item.
///
/// All span positions are absolute byte offsets that can be used on the
/// original regular expression that was parsed.
#[derive(Clone, Copy, Eq, PartialEq)]
pub struct Span {
    /// The start byte offset.
    pub start: Position,
    /// The end byte offset.
    pub end: Position,
}

impl fmt::Debug for Span {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "Span({:?}, {:?})", self.start, self.end)
    }
}

impl Ord for Span {
    fn cmp(&self, other: &Span) -> Ordering {
        (&self.start, &self.end).cmp(&(&other.start, &other.end))
    }
}

impl PartialOrd for Span {
    fn partial_cmp(&self, other: &Span) -> Option<Ordering> {
        Some(self.cmp(other))
    }
}

/// A single position in a regular expression.
///
/// A position encodes one half of a span, and include the byte offset, line
/// number and column number.
#[derive(Clone, Copy, Eq, PartialEq)]
pub struct Position {
    /// The absolute offset of this position, starting at `0` from the
    /// beginning of the regular expression pattern string.
    pub offset: usize,
    /// The line number, starting at `1`.
    pub line: usize,
    /// The approximate column number, starting at `1`.
    pub column: usize,
}

impl fmt::Debug for Position {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(
            f,
            "Position(o: {:?}, l: {:?}, c: {:?})",
            self.offset, self.line, self.column)
    }
}

impl Ord for Position {
    fn cmp(&self, other: &Position) -> Ordering {
        self.offset.cmp(&other.offset)
    }
}

impl PartialOrd for Position {
    fn partial_cmp(&self, other: &Position) -> Option<Ordering> {
        Some(self.cmp(other))
    }
}

impl Span {
    /// Create a new span with the given positions.
    pub fn new(start: Position, end: Position) -> Span {
        Span { start: start, end: end }
    }

    /// Create a new span using the given position as the start and end.
    pub fn splat(pos: Position) -> Span {
        Span::new(pos, pos)
    }

    /// Create a new span by replacing the starting the position with the one
    /// given.
    pub fn with_start(self, pos: Position) -> Span {
        Span { start: pos, ..self }
    }

    /// Create a new span by replacing the ending the position with the one
    /// given.
    pub fn with_end(self, pos: Position) -> Span {
        Span { end: pos, ..self }
    }

    /// Returns true if and only if this span occurs on a single line.
    pub fn is_one_line(&self) -> bool {
        self.start.line == self.end.line
    }

    /// Returns true if and only if this span is empty. That is, it points to
    /// a single position in the concrete syntax of a regular expression.
    pub fn is_empty(&self) -> bool {
        self.start.offset == self.end.offset
    }
}

impl Position {
    /// Create a new position with the given information.
    ///
    /// `offset` is the absolute offset of the position, starting at `0` from
    /// the beginning of the regular expression pattern string.
    ///
    /// `line` is the line number, starting at `1`.
    ///
    /// `column` is the approximate column number, starting at `1`.
    pub fn new(offset: usize, line: usize, column: usize) -> Position {
        Position { offset: offset, line: line, column: column }
    }
}

/// An abstract syntax tree for a singular expression along with comments
/// found.
///
/// Comments are not stored in the tree itself to avoid complexity. Each
/// comment contains a span of precisely where it occurred in the original
/// regular expression.
#[derive(Clone, Debug, Eq, PartialEq)]
pub struct WithComments {
    /// The actual ast.
    pub ast: Ast,
    /// All comments found in the original regular expression.
    pub comments: Vec<Comment>,
}

/// A comment from a regular expression with an associated span.
///
/// A regular expression can only contain comments when the `x` flag is
/// enabled.
#[derive(Clone, Debug, Eq, PartialEq)]
pub struct Comment {
    /// The span of this comment, including the beginning `#` and ending `\n`.
    pub span: Span,
    /// The comment text, starting with the first character following the `#`
    /// and ending with the last character preceding the `\n`.
    pub comment: String,
}

/// An abstract syntax tree for a single regular expression.
///
/// An `Ast`'s `fmt::Display` implementation uses constant stack space and heap
/// space proportional to the size of the `Ast`.
///
/// This type defines its own destructor that uses constant stack space and
/// heap space proportional to the size of the `Ast`.
#[derive(Clone, Debug, Eq, PartialEq)]
pub enum Ast {
    /// An empty regex that matches everything.
    Empty(Span),
    /// A set of flags, e.g., `(?is)`.
    Flags(SetFlags),
    /// A single character literal, which includes escape sequences.
    Literal(Literal),
    /// The "any character" class.
    Dot(Span),
    /// A single zero-width assertion.
    Assertion(Assertion),
    /// A single character class. This includes all forms of character classes
    /// except for `.`. e.g., `\d`, `\pN`, `[a-z]` and `[[:alpha:]]`.
    Class(Class),
    /// A repetition operator applied to an arbitrary regular expression.
    Repetition(Repetition),
    /// A grouped regular expression.
    Group(Group),
    /// An alternation of regular expressions.
    Alternation(Alternation),
    /// A concatenation of regular expressions.
    Concat(Concat),
}

impl Ast {
    /// Return the span of this abstract syntax tree.
    pub fn span(&self) -> &Span {
        match *self {
            Ast::Empty(ref span) => span,
            Ast::Flags(ref x) => &x.span,
            Ast::Literal(ref x) => &x.span,
            Ast::Dot(ref span) => span,
            Ast::Assertion(ref x) => &x.span,
            Ast::Class(ref x) => x.span(),
            Ast::Repetition(ref x) => &x.span,
            Ast::Group(ref x) => &x.span,
            Ast::Alternation(ref x) => &x.span,
            Ast::Concat(ref x) => &x.span,
        }
    }

    /// Return true if and only if this Ast is empty.
    pub fn is_empty(&self) -> bool {
        match *self {
            Ast::Empty(_) => true,
            _ => false,
        }
    }

    /// Returns true if and only if this AST has any (including possibly empty)
    /// subexpressions.
    fn has_subexprs(&self) -> bool {
        match *self {
            Ast::Empty(_)
            | Ast::Flags(_)
            | Ast::Literal(_)
            | Ast::Dot(_)
            | Ast::Assertion(_) => false,
            Ast::Class(_)
            | Ast::Repetition(_)
            | Ast::Group(_)
            | Ast::Alternation(_)
            | Ast::Concat(_) => true,
        }
    }
}

/// Print a display representation of this Ast.
///
/// This does not preserve any of the original whitespace formatting that may
/// have originally been present in the concrete syntax from which this Ast
/// was generated.
///
/// This implementation uses constant stack space and heap space proportional
/// to the size of the `Ast`.
impl fmt::Display for Ast {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        use ast::print::Printer;
        Printer::new().print(self, f)
    }
}

/// An alternation of regular expressions.
#[derive(Clone, Debug, Eq, PartialEq)]
pub struct Alternation {
    /// The span of this alternation.
    pub span: Span,
    /// The alternate regular expressions.
    pub asts: Vec<Ast>,
}

impl Alternation {
    /// Return this alternation as an AST.
    ///
    /// If this alternation contains zero ASTs, then Ast::Empty is
    /// returned. If this alternation contains exactly 1 AST, then the
    /// corresponding AST is returned. Otherwise, Ast::Alternation is returned.
    pub fn into_ast(mut self) -> Ast {
        match self.asts.len() {
            0 => Ast::Empty(self.span),
            1 => self.asts.pop().unwrap(),
            _ => Ast::Alternation(self),
        }
    }
}

/// A concatenation of regular expressions.
#[derive(Clone, Debug, Eq, PartialEq)]
pub struct Concat {
    /// The span of this concatenation.
    pub span: Span,
    /// The concatenation regular expressions.
    pub asts: Vec<Ast>,
}

impl Concat {
    /// Return this concatenation as an AST.
    ///
    /// If this concatenation contains zero ASTs, then Ast::Empty is
    /// returned. If this concatenation contains exactly 1 AST, then the
    /// corresponding AST is returned. Otherwise, Ast::Concat is returned.
    pub fn into_ast(mut self) -> Ast {
        match self.asts.len() {
            0 => Ast::Empty(self.span),
            1 => self.asts.pop().unwrap(),
            _ => Ast::Concat(self),
        }
    }
}

/// A single literal expression.
///
/// A literal corresponds to a single Unicode scalar value. Literals may be
/// represented in their literal form, e.g., `a` or in their escaped form,
/// e.g., `\x61`.
#[derive(Clone, Debug, Eq, PartialEq)]
pub struct Literal {
    /// The span of this literal.
    pub span: Span,
    /// The kind of this literal.
    pub kind: LiteralKind,
    /// The Unicode scalar value corresponding to this literal.
    pub c: char,
}

impl Literal {
    /// If this literal was written as a `\x` hex escape, then this returns
    /// the corresponding byte value. Otherwise, this returns `None`.
    pub fn byte(&self) -> Option<u8> {
        let short_hex = LiteralKind::HexFixed(HexLiteralKind::X);
        if self.c as u32 <= 255 && self.kind == short_hex {
            Some(self.c as u8)
        } else {
            None
        }
    }
}

/// The kind of a single literal expression.
#[derive(Clone, Debug, Eq, PartialEq)]
pub enum LiteralKind {
    /// The literal is written verbatim, e.g., `a` or `☃`.
    Verbatim,
    /// The literal is written as an escape because it is punctuation, e.g.,
    /// `\*` or `\[`.
    Punctuation,
    /// The literal is written as an octal escape, e.g., `\141`.
    Octal,
    /// The literal is written as a hex code with a fixed number of digits
    /// depending on the type of the escape, e.g., `\x61` or or `\u0061` or
    /// `\U00000061`.
    HexFixed(HexLiteralKind),
    /// The literal is written as a hex code with a bracketed number of
    /// digits. The only restriction is that the bracketed hex code must refer
    /// to a valid Unicode scalar value.
    HexBrace(HexLiteralKind),
    /// The literal is written as a specially recognized escape, e.g., `\f`
    /// or `\n`.
    Special(SpecialLiteralKind),
}

/// The type of a special literal.
///
/// A special literal is a special escape sequence recognized by the regex
/// parser, e.g., `\f` or `\n`.
#[derive(Clone, Debug, Eq, PartialEq)]
pub enum SpecialLiteralKind {
    /// Bell, spelled `\a` (`\x07`).
    Bell,
    /// Form feed, spelled `\f` (`\x0C`).
    FormFeed,
    /// Tab, spelled `\t` (`\x09`).
    Tab,
    /// Line feed, spelled `\n` (`\x0A`).
    LineFeed,
    /// Carriage return, spelled `\r` (`\x0D`).
    CarriageReturn,
    /// Vertical tab, spelled `\v` (`\x0B`).
    VerticalTab,
    /// Space, spelled `\ ` (`\x20`). Note that this can only appear when
    /// parsing in verbose mode.
    Space,
}

/// The type of a Unicode hex literal.
///
/// Note that all variants behave the same when used with brackets. They only
/// differ when used without brackets in the number of hex digits that must
/// follow.
#[derive(Clone, Debug, Eq, PartialEq)]
pub enum HexLiteralKind {
    /// A `\x` prefix. When used without brackets, this form is limited to
    /// two digits.
    X,
    /// A `\u` prefix. When used without brackets, this form is limited to
    /// four digits.
    UnicodeShort,
    /// A `\U` prefix. When used without brackets, this form is limited to
    /// eight digits.
    UnicodeLong,
}

impl HexLiteralKind {
    /// The number of digits that must be used with this literal form when
    /// used without brackets. When used with brackets, there is no
    /// restriction on the number of digits.
    pub fn digits(&self) -> u32 {
        match *self {
            HexLiteralKind::X => 2,
            HexLiteralKind::UnicodeShort => 4,
            HexLiteralKind::UnicodeLong => 8,
        }
    }
}

/// A single character class expression.
#[derive(Clone, Debug, Eq, PartialEq)]
pub enum Class {
    /// A Unicode character class, e.g., `\pL` or `\p{Greek}`.
    Unicode(ClassUnicode),
    /// A perl character class, e.g., `\d` or `\W`.
    Perl(ClassPerl),
    /// A bracketed character class set, which may contain zero or more
    /// character ranges and/or zero or more nested classes. e.g.,
    /// `[a-zA-Z\pL]`.
    Bracketed(ClassBracketed),
}

impl Class {
    /// Return the span of this character class.
    pub fn span(&self) -> &Span {
        match *self {
            Class::Perl(ref x) => &x.span,
            Class::Unicode(ref x) => &x.span,
            Class::Bracketed(ref x) => &x.span,
        }
    }
}

/// A Perl character class.
#[derive(Clone, Debug, Eq, PartialEq)]
pub struct ClassPerl {
    /// The span of this class.
    pub span: Span,
    /// The kind of Perl class.
    pub kind: ClassPerlKind,
    /// Whether the class is negated or not. e.g., `\d` is not negated but
    /// `\D` is.
    pub negated: bool,
}

/// The available Perl character classes.
#[derive(Clone, Debug, Eq, PartialEq)]
pub enum ClassPerlKind {
    /// Decimal numbers.
    Digit,
    /// Whitespace.
    Space,
    /// Word characters.
    Word,
}

/// An ASCII character class.
#[derive(Clone, Debug, Eq, PartialEq)]
pub struct ClassAscii {
    /// The span of this class.
    pub span: Span,
    /// The kind of ASCII class.
    pub kind: ClassAsciiKind,
    /// Whether the class is negated or not. e.g., `[[:alpha:]]` is not negated
    /// but `[[:^alpha:]]` is.
    pub negated: bool,
}

/// The available ASCII character classes.
#[derive(Clone, Debug, Eq, PartialEq)]
pub enum ClassAsciiKind {
    /// `[0-9A-Za-z]`
    Alnum,
    /// `[A-Za-z]`
    Alpha,
    /// `[\x00-\x7F]`
    Ascii,
    /// `[ \t]`
    Blank,
    /// `[\x00-\x1F\x7F]`
    Cntrl,
    /// `[0-9]`
    Digit,
    /// `[!-~]`
    Graph,
    /// `[a-z]`
    Lower,
    /// `[ -~]`
    Print,
    /// `[!-/:-@\[-`{-~]`
    Punct,
    /// `[\t\n\v\f\r ]`
    Space,
    /// `[A-Z]`
    Upper,
    /// `[0-9A-Za-z_]`
    Word,
    /// `[0-9A-Fa-f]`
    Xdigit,
}

impl ClassAsciiKind {
    /// Return the corresponding ClassAsciiKind variant for the given name.
    ///
    /// The name given should correspond to the lowercase version of the
    /// variant name. e.g., `cntrl` is the name for `ClassAsciiKind::Cntrl`.
    ///
    /// If no variant with the corresponding name exists, then `None` is
    /// returned.
    pub fn from_name(name: &str) -> Option<ClassAsciiKind> {
        use self::ClassAsciiKind::*;
        match name {
            "alnum" => Some(Alnum),
            "alpha" => Some(Alpha),
            "ascii" => Some(Ascii),
            "blank" => Some(Blank),
            "cntrl" => Some(Cntrl),
            "digit" => Some(Digit),
            "graph" => Some(Graph),
            "lower" => Some(Lower),
            "print" => Some(Print),
            "punct" => Some(Punct),
            "space" => Some(Space),
            "upper" => Some(Upper),
            "word" => Some(Word),
            "xdigit" => Some(Xdigit),
            _ => None,
        }
    }
}

/// A Unicode character class.
#[derive(Clone, Debug, Eq, PartialEq)]
pub struct ClassUnicode {
    /// The span of this class.
    pub span: Span,
    /// Whether this class is negated or not.
    ///
    /// Note: be careful when using this attribute. This specifically refers
    /// to whether the class is written as `\p` or `\P`, where the latter
    /// is `negated = true`. However, it also possible to write something like
    /// `\P{scx!=Katakana}` which is actually equivalent to
    /// `\p{scx=Katakana}` and is therefore not actually negated even though
    /// `negated = true` here. To test whether this class is truly negated
    /// or not, use the `is_negated` method.
    pub negated: bool,
    /// The kind of Unicode class.
    pub kind: ClassUnicodeKind,
}

impl ClassUnicode {
    /// Returns true if this class has been negated.
    ///
    /// Note that this takes the Unicode op into account, if it's present.
    /// e.g., `is_negated` for `\P{scx!=Katakana}` will return `false`.
    pub fn is_negated(&self) -> bool {
        match self.kind {
            ClassUnicodeKind::NamedValue {
                op: ClassUnicodeOpKind::NotEqual, ..
            } => !self.negated,
            _ => self.negated,
        }
    }
}

/// The available forms of Unicode character classes.
#[derive(Clone, Debug, Eq, PartialEq)]
pub enum ClassUnicodeKind {
    /// A one letter abbreviated class, e.g., `\pN`.
    OneLetter(char),
    /// A binary property, general category or script. The string may be
    /// empty.
    Named(String),
    /// A property name and an associated value.
    NamedValue {
        /// The type of Unicode op used to associate `name` with `value`.
        op: ClassUnicodeOpKind,
        /// The property name (which may be empty).
        name: String,
        /// The property value (which may be empty).
        value: String,
    },
}

/// The type of op used in a Unicode character class.
#[derive(Clone, Debug, Eq, PartialEq)]
pub enum ClassUnicodeOpKind {
    /// A property set to a specific value, e.g., `\p{scx=Katakana}`.
    Equal,
    /// A property set to a specific value using a colon, e.g.,
    /// `\p{scx:Katakana}`.
    Colon,
    /// A property that isn't a particular value, e.g., `\p{scx!=Katakana}`.
    NotEqual,
}

impl ClassUnicodeOpKind {
    /// Whether the op is an equality op or not.
    pub fn is_equal(&self) -> bool {
        match *self {
            ClassUnicodeOpKind::Equal|ClassUnicodeOpKind::Colon => true,
            _ => false,
        }
    }
}

/// A bracketed character class, e.g., `[a-z0-9]`.
#[derive(Clone, Debug, Eq, PartialEq)]
pub struct ClassBracketed {
    /// The span of this class.
    pub span: Span,
    /// Whether this class is negated or not. e.g., `[a]` is not negated but
    /// `[^a]` is.
    pub negated: bool,
    /// The type of this set. A set is either a normal union of things, e.g.,
    /// `[abc]` or a result of applying set operations, e.g., `[\pL--c]`.
    pub kind: ClassSet,
}

/// A character class set.
///
/// This type corresponds to the internal structure of a bracketed character
/// class. That is, every bracketed character is one of two types: a union of
/// items (literals, ranges, other bracketed classes) or a tree of binary set
/// operations.
#[derive(Clone, Debug, Eq, PartialEq)]
pub enum ClassSet {
    /// An item, which can be a single literal, range, nested character class
    /// or a union of items.
    Item(ClassSetItem),
    /// A single binary operation (i.e., &&, -- or ~~).
    BinaryOp(ClassSetBinaryOp),
}

impl ClassSet {
    /// Build a set from a union.
    pub fn union(ast: ClassSetUnion) -> ClassSet {
        ClassSet::Item(ClassSetItem::Union(ast))
    }

    /// Return the span of this character class set.
    pub fn span(&self) -> &Span {
        match *self {
            ClassSet::Item(ref x) => x.span(),
            ClassSet::BinaryOp(ref x) => &x.span,
        }
    }

    /// Return true if and only if this class set is empty.
    fn is_empty(&self) -> bool {
        match *self {
            ClassSet::Item(ClassSetItem::Empty(_)) => true,
            _ => false,
        }
    }
}

/// A single component of a character class set.
#[derive(Clone, Debug, Eq, PartialEq)]
pub enum ClassSetItem {
    /// An empty item.
    ///
    /// Note that a bracketed character class cannot contain a single empty
    /// item. Empty items can appear when using one of the binary operators.
    /// For example, `[&&]` is the intersection of two empty classes.
    Empty(Span),
    /// A single literal.
    Literal(Literal),
    /// A range between two literals.
    Range(ClassSetRange),
    /// An ASCII character class, e.g., `[:alnum:]` or `[:punct:]`.
    Ascii(ClassAscii),
    /// A Unicode character class, e.g., `\pL` or `\p{Greek}`.
    Unicode(ClassUnicode),
    /// A perl character class, e.g., `\d` or `\W`.
    Perl(ClassPerl),
    /// A bracketed character class set, which may contain zero or more
    /// character ranges and/or zero or more nested classes. e.g.,
    /// `[a-zA-Z\pL]`.
    Bracketed(Box<ClassBracketed>),
    /// A union of items.
    Union(ClassSetUnion),
}

impl ClassSetItem {
    /// Return the span of this character class set item.
    pub fn span(&self) -> &Span {
        match *self {
            ClassSetItem::Empty(ref span) => span,
            ClassSetItem::Literal(ref x) => &x.span,
            ClassSetItem::Range(ref x) => &x.span,
            ClassSetItem::Ascii(ref x) => &x.span,
            ClassSetItem::Perl(ref x) => &x.span,
            ClassSetItem::Unicode(ref x) => &x.span,
            ClassSetItem::Bracketed(ref x) => &x.span,
            ClassSetItem::Union(ref x) => &x.span,
        }
    }
}

/// A single character class range in a set.
#[derive(Clone, Debug, Eq, PartialEq)]
pub struct ClassSetRange {
    /// The span of this range.
    pub span: Span,
    /// The start of this range.
    pub start: Literal,
    /// The end of this range.
    pub end: Literal,
}

impl ClassSetRange {
    /// Returns true if and only if this character class range is valid.
    ///
    /// The only case where a range is invalid is if its start is greater than
    /// its end.
    pub fn is_valid(&self) -> bool {
        self.start.c <= self.end.c
    }
}

/// A union of items inside a character class set.
#[derive(Clone, Debug, Eq, PartialEq)]
pub struct ClassSetUnion {
    /// The span of the items in this operation. e.g., the `a-z0-9` in
    /// `[^a-z0-9]`
    pub span: Span,
    /// The sequence of items that make up this union.
    pub items: Vec<ClassSetItem>,
}

impl ClassSetUnion {
    /// Push a new item in this union.
    ///
    /// The ending position of this union's span is updated to the ending
    /// position of the span of the item given. If the union is empty, then
    /// the starting position of this union is set to the starting position
    /// of this item.
    ///
    /// In other words, if you only use this method to add items to a union
    /// and you set the spans on each item correctly, then you should never
    /// need to adjust the span of the union directly.
    pub fn push(&mut self, item: ClassSetItem) {
        if self.items.is_empty() {
            self.span.start = item.span().start;
        }
        self.span.end = item.span().end;
        self.items.push(item);
    }

    /// Return this union as a character class set item.
    ///
    /// If this union contains zero items, then an empty union is
    /// returned. If this concatenation contains exactly 1 item, then the
    /// corresponding item is returned. Otherwise, ClassSetItem::Union is
    /// returned.
    pub fn into_item(mut self) -> ClassSetItem {
        match self.items.len() {
            0 => ClassSetItem::Empty(self.span),
            1 => self.items.pop().unwrap(),
            _ => ClassSetItem::Union(self),
        }
    }
}

/// A Unicode character class set operation.
#[derive(Clone, Debug, Eq, PartialEq)]
pub struct ClassSetBinaryOp {
    /// The span of this operation. e.g., the `a-z--[h-p]` in `[a-z--h-p]`.
    pub span: Span,
    /// The type of this set operation.
    pub kind: ClassSetBinaryOpKind,
    /// The left hand side of the operation.
    pub lhs: Box<ClassSet>,
    /// The right hand side of the operation.
    pub rhs: Box<ClassSet>,
}

/// The type of a Unicode character class set operation.
///
/// Note that this doesn't explicitly represent union since there is no
/// explicit union operator. Concatenation inside a character class corresponds
/// to the union operation.
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
pub enum ClassSetBinaryOpKind {
    /// The intersection of two sets, e.g., `\pN&&[a-z]`.
    Intersection,
    /// The difference of two sets, e.g., `\pN--[0-9]`.
    Difference,
    /// The symmetric difference of two sets. The symmetric difference is the
    /// set of elements belonging to one but not both sets.
    /// e.g., `[\pL~~[:ascii:]]`.
    SymmetricDifference,
}

/// A single zero-width assertion.
#[derive(Clone, Debug, Eq, PartialEq)]
pub struct Assertion {
    /// The span of this assertion.
    pub span: Span,
    /// The assertion kind, e.g., `\b` or `^`.
    pub kind: AssertionKind,
}

/// An assertion kind.
#[derive(Clone, Debug, Eq, PartialEq)]
pub enum AssertionKind {
    /// `^`
    StartLine,
    /// `$`
    EndLine,
    /// `\A`
    StartText,
    /// `\z`
    EndText,
    /// `\b`
    WordBoundary,
    /// `\B`
    NotWordBoundary,
}

/// A repetition operation applied to a regular expression.
#[derive(Clone, Debug, Eq, PartialEq)]
pub struct Repetition {
    /// The span of this operation.
    pub span: Span,
    /// The actual operation.
    pub op: RepetitionOp,
    /// Whether this operation was applied greedily or not.
    pub greedy: bool,
    /// The regular expression under repetition.
    pub ast: Box<Ast>,
}

/// The repetition operator itself.
#[derive(Clone, Debug, Eq, PartialEq)]
pub struct RepetitionOp {
    /// The span of this operator. This includes things like `+`, `*?` and
    /// `{m,n}`.
    pub span: Span,
    /// The type of operation.
    pub kind: RepetitionKind,
}

/// The kind of a repetition operator.
#[derive(Clone, Debug, Eq, PartialEq)]
pub enum RepetitionKind {
    /// `?`
    ZeroOrOne,
    /// `*`
    ZeroOrMore,
    /// `+`
    OneOrMore,
    /// `{m,n}`
    Range(RepetitionRange),
}

/// A range repetition operator.
#[derive(Clone, Debug, Eq, PartialEq)]
pub enum RepetitionRange {
    /// `{m}`
    Exactly(u32),
    /// `{m,}`
    AtLeast(u32),
    /// `{m,n}`
    Bounded(u32, u32),
}

impl RepetitionRange {
    /// Returns true if and only if this repetition range is valid.
    ///
    /// The only case where a repetition range is invalid is if it is bounded
    /// and its start is greater than its end.
    pub fn is_valid(&self) -> bool {
        match *self {
            RepetitionRange::Bounded(s, e) if s > e => false,
            _ => true,
        }
    }
}

/// A grouped regular expression.
///
/// This includes both capturing and non-capturing groups. This does **not**
/// include flag-only groups like `(?is)`, but does contain any group that
/// contains a sub-expression, e.g., `(a)`, `(?P<name>a)`, `(?:a)` and
/// `(?is:a)`.
#[derive(Clone, Debug, Eq, PartialEq)]
pub struct Group {
    /// The span of this group.
    pub span: Span,
    /// The kind of this group.
    pub kind: GroupKind,
    /// The regular expression in this group.
    pub ast: Box<Ast>,
}

impl Group {
    /// If this group is non-capturing, then this returns the (possibly empty)
    /// set of flags. Otherwise, `None` is returned.
    pub fn flags(&self) -> Option<&Flags> {
        match self.kind {
            GroupKind::NonCapturing(ref flags) => Some(flags),
            _ => None,
        }
    }

    /// Returns true if and only if this group is capturing.
    pub fn is_capturing(&self) -> bool {
        match self.kind {
            GroupKind::CaptureIndex(_) | GroupKind::CaptureName(_) => true,
            GroupKind::NonCapturing(_) => false,
        }
    }

    /// Returns the capture index of this group, if this is a capturing group.
    ///
    /// This returns a capture index precisely when `is_capturing` is `true`.
    pub fn capture_index(&self) -> Option<u32> {
        match self.kind {
            GroupKind::CaptureIndex(i) => Some(i),
            GroupKind::CaptureName(ref x) => Some(x.index),
            GroupKind::NonCapturing(_) => None,
        }
    }
}

/// The kind of a group.
#[derive(Clone, Debug, Eq, PartialEq)]
pub enum GroupKind {
    /// `(a)`
    CaptureIndex(u32),
    /// `(?P<name>a)`
    CaptureName(CaptureName),
    /// `(?:a)` and `(?i:a)`
    NonCapturing(Flags),
}

/// A capture name.
///
/// This corresponds to the name itself between the angle brackets in, e.g.,
/// `(?P<foo>expr)`.
#[derive(Clone, Debug, Eq, PartialEq)]
pub struct CaptureName {
    /// The span of this capture name.
    pub span: Span,
    /// The capture name.
    pub name: String,
    /// The capture index.
    pub index: u32,
}

/// A group of flags that is not applied to a particular regular expression.
#[derive(Clone, Debug, Eq, PartialEq)]
pub struct SetFlags {
    /// The span of these flags, including the grouping parentheses.
    pub span: Span,
    /// The actual sequence of flags.
    pub flags: Flags,
}

/// A group of flags.
///
/// This corresponds only to the sequence of flags themselves, e.g., `is-u`.
#[derive(Clone, Debug, Eq, PartialEq)]
pub struct Flags {
    /// The span of this group of flags.
    pub span: Span,
    /// A sequence of flag items. Each item is either a flag or a negation
    /// operator.
    pub items: Vec<FlagsItem>,
}

impl Flags {
    /// Add the given item to this sequence of flags.
    ///
    /// If the item was added successfully, then `None` is returned. If the
    /// given item is a duplicate, then `Some(i)` is returned, where
    /// `items[i].kind == item.kind`.
    pub fn add_item(&mut self, item: FlagsItem) -> Option<usize> {
        for (i, x) in self.items.iter().enumerate() {
            if x.kind == item.kind {
                return Some(i);
            }
        }
        self.items.push(item);
        None
    }

    /// Returns the state of the given flag in this set.
    ///
    /// If the given flag is in the set but is negated, then `Some(false)` is
    /// returned.
    ///
    /// If the given flag is in the set and is not negated, then `Some(true)`
    /// is returned.
    ///
    /// Otherwise, `None` is returned.
    pub fn flag_state(&self, flag: Flag) -> Option<bool> {
        let mut negated = false;
        for x in &self.items {
            match x.kind {
                FlagsItemKind::Negation => {
                    negated = true;
                }
                FlagsItemKind::Flag(ref xflag) if xflag == &flag => {
                    return Some(!negated);
                }
                _ => {}
            }
        }
        None
    }
}

/// A single item in a group of flags.
#[derive(Clone, Debug, Eq, PartialEq)]
pub struct FlagsItem {
    /// The span of this item.
    pub span: Span,
    /// The kind of this item.
    pub kind: FlagsItemKind,
}

/// The kind of an item in a group of flags.
#[derive(Clone, Debug, Eq, PartialEq)]
pub enum FlagsItemKind {
    /// A negation operator applied to all subsequent flags in the enclosing
    /// group.
    Negation,
    /// A single flag in a group.
    Flag(Flag),
}

impl FlagsItemKind {
    /// Returns true if and only if this item is a negation operator.
    pub fn is_negation(&self) -> bool {
        match *self {
            FlagsItemKind::Negation => true,
            _ => false,
        }
    }
}

/// A single flag.
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
pub enum Flag {
    /// `i`
    CaseInsensitive,
    /// `m`
    MultiLine,
    /// `s`
    DotMatchesNewLine,
    /// `U`
    SwapGreed,
    /// `u`
    Unicode,
    /// `x`
    IgnoreWhitespace,
}

/// A custom `Drop` impl is used for `Ast` such that it uses constant stack
/// space but heap space proportional to the depth of the `Ast`.
impl Drop for Ast {
    fn drop(&mut self) {
        use std::mem;

        match *self {
            Ast::Empty(_)
            | Ast::Flags(_)
            | Ast::Literal(_)
            | Ast::Dot(_)
            | Ast::Assertion(_)
            // Classes are recursive, so they get their own Drop impl.
            | Ast::Class(_) => return,
            Ast::Repetition(ref x) if !x.ast.has_subexprs() => return,
            Ast::Group(ref x) if !x.ast.has_subexprs() => return,
            Ast::Alternation(ref x) if x.asts.is_empty() => return,
            Ast::Concat(ref x) if x.asts.is_empty() => return,
            _ => {}
        }

        let empty_span = || Span::splat(Position::new(0, 0, 0));
        let empty_ast = || Ast::Empty(empty_span());
        let mut stack = vec![mem::replace(self, empty_ast())];
        while let Some(mut ast) = stack.pop() {
            match ast {
                Ast::Empty(_)
                | Ast::Flags(_)
                | Ast::Literal(_)
                | Ast::Dot(_)
                | Ast::Assertion(_)
                // Classes are recursive, so they get their own Drop impl.
                | Ast::Class(_) => {}
                Ast::Repetition(ref mut x) => {
                    stack.push(mem::replace(&mut x.ast, empty_ast()));
                }
                Ast::Group(ref mut x) => {
                    stack.push(mem::replace(&mut x.ast, empty_ast()));
                }
                Ast::Alternation(ref mut x) => {
                    stack.extend(x.asts.drain(..));
                }
                Ast::Concat(ref mut x) => {
                    stack.extend(x.asts.drain(..));
                }
            }
        }
    }
}

/// A custom `Drop` impl is used for `ClassSet` such that it uses constant
/// stack space but heap space proportional to the depth of the `ClassSet`.
impl Drop for ClassSet {
    fn drop(&mut self) {
        use std::mem;

        match *self {
            ClassSet::Item(ref item) => {
                match *item {
                    ClassSetItem::Empty(_)
                    | ClassSetItem::Literal(_)
                    | ClassSetItem::Range(_)
                    | ClassSetItem::Ascii(_)
                    | ClassSetItem::Unicode(_)
                    | ClassSetItem::Perl(_) => return,
                    ClassSetItem::Bracketed(ref x) => {
                        if x.kind.is_empty() {
                            return;
                        }
                    }
                    ClassSetItem::Union(ref x) => {
                        if x.items.is_empty() {
                            return;
                        }
                    }
                }
            }
            ClassSet::BinaryOp(ref op) => {
                if op.lhs.is_empty() && op.rhs.is_empty() {
                    return;
                }
            }
        }

        let empty_span = || Span::splat(Position::new(0, 0, 0));
        let empty_set = || ClassSet::Item(ClassSetItem::Empty(empty_span()));
        let mut stack = vec![mem::replace(self, empty_set())];
        while let Some(mut set) = stack.pop() {
            match set {
                ClassSet::Item(ref mut item) => {
                    match *item {
                        ClassSetItem::Empty(_)
                        | ClassSetItem::Literal(_)
                        | ClassSetItem::Range(_)
                        | ClassSetItem::Ascii(_)
                        | ClassSetItem::Unicode(_)
                        | ClassSetItem::Perl(_) => {}
                        ClassSetItem::Bracketed(ref mut x) => {
                            stack.push(mem::replace(&mut x.kind, empty_set()));
                        }
                        ClassSetItem::Union(ref mut x) => {
                            stack.extend(
                                x.items.drain(..).map(ClassSet::Item));
                        }
                    }
                }
                ClassSet::BinaryOp(ref mut op) => {
                    stack.push(mem::replace(&mut op.lhs, empty_set()));
                    stack.push(mem::replace(&mut op.rhs, empty_set()));
                }
            }
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    // We use a thread with an explicit stack size to test that our destructor
    // for Ast can handle arbitrarily sized expressions in constant stack
    // space. In case we run on a platform without threads (WASM?), we limit
    // this test to Windows/Unix.
    #[test]
    #[cfg(any(unix, windows))]
    fn no_stack_overflow_on_drop() {
        use std::thread;

        let run = || {
            let span = || Span::splat(Position::new(0, 0, 0));
            let mut ast = Ast::Empty(span());
            for i in 0..200 {
                ast = Ast::Group(Group {
                    span: span(),
                    kind: GroupKind::CaptureIndex(i),
                    ast: Box::new(ast),
                });
            }
            assert!(!ast.is_empty());
        };

        // We run our test on a thread with a small stack size so we can
        // force the issue more easily.
        thread::Builder::new()
            .stack_size(1<<10)
            .spawn(run)
            .unwrap()
            .join()
            .unwrap();
    }
}