1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
// Copyright 2018 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your // option. This file may not be copied, modified, or distributed // except according to those terms. /*! This crate provides a robust regular expression parser. This crate defines two primary types: * [`Ast`](ast/enum.Ast.html) is the abstract syntax of a regular expression. An abstract syntax corresponds to a *structured representation* of the concrete syntax of a regular expression, where the concrete syntax is the pattern string itself (e.g., `foo(bar)+`). Given some abstract syntax, it can be converted back to the original concrete syntax (modulo some details, like whitespace). To a first approximation, the abstract syntax is complex and difficult to analyze. * [`Hir`](hir/struct.Hir.html) is the high-level intermediate representation ("HIR" or "high-level IR" for short) of regular expression. It corresponds to an intermediate state of a regular expression that sits between the abstract syntax and the low level compiled opcodes that are eventually responsible for executing a regular expression search. Given some high-level IR, it is not possible to produce the original concrete syntax (although it is possible to produce an equivalent conrete syntax, but it will likely scarcely resemble the original pattern). To a first approximation, the high-level IR is simple and easy to analyze. These two types come with conversion routines: * An [`ast::parse::Parser`](ast/parse/struct.Parser.html) converts concrete syntax (a `&str`) to an [`Ast`](ast/enum.Ast.html). * A [`hir::translate::Translator`](hir/translate/struct.Translator.html) converts an [`Ast`](ast/enum.Ast.html) to a [`Hir`](hir/struct.Hir.html). As a convenience, the above two conversion routines are combined into one via the top-level [`Parser`](struct.Parser.html) type. This `Parser` will first convert your pattern to an `Ast` and then convert the `Ast` to an `Hir`. # Example This example shows how to parse a pattern string into its HIR: ``` use regex_syntax::Parser; use regex_syntax::hir::{self, Hir}; let hir = Parser::new().parse("a|b").unwrap(); assert_eq!(hir, Hir::alternation(vec![ Hir::literal(hir::Literal::Unicode('a')), Hir::literal(hir::Literal::Unicode('b')), ])); ``` # Concrete syntax supported The concrete syntax is documented as part of the public API of the [`regex` crate](https://docs.rs/regex/%2A/regex/#syntax). # Input safety A key feature of this library is that it is safe to use with end user facing input. This plays a significant role in the internal implementation. In particular: 1. Parsers provide a `nest_limit` option that permits callers to control how deeply nested a regular expression is allowed to be. This makes it possible to do case analysis over an `Ast` or an `Hir` using recursion without worrying about stack overflow. 2. Since relying on a particular stack size is brittle, this crate goes to great lengths to ensure that all interactions with both the `Ast` and the `Hir` do not use recursion. Namely, they use constant stack space and heap space proportional to the size of the original pattern string (in bytes). This includes the type's corresponding destructors. (One exception to this is literal extraction, but this will eventually get fixed.) # Error reporting The `Display` implementations on all `Error` types exposed in this library provide nice human readable errors that are suitable for showing to end users in a monospace font. # Literal extraction This crate provides limited support for [literal extraction from `Hir` values](hir/literal/struct.Literals.html). Be warned that literal extraction currently uses recursion, and therefore, stack size proportional to the size of the `Hir`. The purpose of literal extraction is to speed up searches. That is, if you know a regular expression must match a prefix or suffix literal, then it is often quicker to search for instances of that literal, and then confirm or deny the match using the full regular expression engine. These optimizations are done automatically in the `regex` crate. */ #![deny(missing_docs)] extern crate ucd_util; pub use error::{Error, Result}; pub use parser::{Parser, ParserBuilder}; pub mod ast; mod either; mod error; pub mod hir; mod parser; mod unicode; mod unicode_tables; /// Escapes all regular expression meta characters in `text`. /// /// The string returned may be safely used as a literal in a regular /// expression. pub fn escape(text: &str) -> String { let mut quoted = String::with_capacity(text.len()); escape_into(text, &mut quoted); quoted } /// Escapes all meta characters in `text` and writes the result into `buf`. /// /// This will append escape characters into the given buffer. The characters /// that are appended are safe to use as a literal in a regular expression. pub fn escape_into(text: &str, buf: &mut String) { for c in text.chars() { if is_meta_character(c) { buf.push('\\'); } buf.push(c); } } /// Returns true if the give character has significance in a regex. /// /// These are the only characters that are allowed to be escaped, with one /// exception: an ASCII space character may be escaped when extended mode (with /// the `x` flag) is enabld. In particular, `is_meta_character(' ')` returns /// `false`. /// /// Note that the set of characters for which this function returns `true` or /// `false` is fixed and won't change in a semver compatible release. pub fn is_meta_character(c: char) -> bool { match c { '\\' | '.' | '+' | '*' | '?' | '(' | ')' | '|' | '[' | ']' | '{' | '}' | '^' | '$' | '#' | '&' | '-' | '~' => true, _ => false, } } /// Returns true if and only if the given character is a Unicode word /// character. /// /// A Unicode word character is defined by /// [UTS#18 Annex C](http://unicode.org/reports/tr18/#Compatibility_Properties). /// In particular, a character /// is considered a word character if it is in either of the `Alphabetic` or /// `Join_Control` properties, or is in one of the `Decimal_Number`, `Mark` /// or `Connector_Punctuation` general categories. pub fn is_word_character(c: char) -> bool { use std::cmp::Ordering; use unicode_tables::perl_word::PERL_WORD; if c <= 0x7F as char && is_word_byte(c as u8) { return true; } PERL_WORD .binary_search_by(|&(start, end)| { if start <= c && c <= end { Ordering::Equal } else if start > c { Ordering::Greater } else { Ordering::Less } }).is_ok() } /// Returns true if and only if the given character is an ASCII word character. /// /// An ASCII word character is defined by the following character class: /// `[_0-9a-zA-Z]'. pub fn is_word_byte(c: u8) -> bool { match c { b'_' | b'0' ... b'9' | b'a' ... b'z' | b'A' ... b'Z' => true, _ => false, } } #[cfg(test)] mod tests { use super::*; #[test] fn escape_meta() { assert_eq!( escape(r"\.+*?()|[]{}^$#&-~"), r"\\\.\+\*\?\(\)\|\[\]\{\}\^\$\#\&\-\~".to_string(), ); } #[test] fn word() { assert!(is_word_byte(b'a')); assert!(!is_word_byte(b'-')); assert!(is_word_character('a')); assert!(is_word_character('β')); assert!(!is_word_character('-')); assert!(!is_word_character('☃')); } }