regex_syntax/unicode.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
use alloc::{
string::{String, ToString},
vec::Vec,
};
use crate::hir;
/// An inclusive range of codepoints from a generated file (hence the static
/// lifetime).
type Range = &'static [(char, char)];
/// An error that occurs when dealing with Unicode.
///
/// We don't impl the Error trait here because these always get converted
/// into other public errors. (This error type isn't exported.)
#[derive(Debug)]
pub enum Error {
PropertyNotFound,
PropertyValueNotFound,
// Not used when unicode-perl is enabled.
#[allow(dead_code)]
PerlClassNotFound,
}
/// An error that occurs when Unicode-aware simple case folding fails.
///
/// This error can occur when the case mapping tables necessary for Unicode
/// aware case folding are unavailable. This only occurs when the
/// `unicode-case` feature is disabled. (The feature is enabled by default.)
#[derive(Debug)]
pub struct CaseFoldError(());
#[cfg(feature = "std")]
impl std::error::Error for CaseFoldError {}
impl core::fmt::Display for CaseFoldError {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
write!(
f,
"Unicode-aware case folding is not available \
(probably because the unicode-case feature is not enabled)"
)
}
}
/// An error that occurs when the Unicode-aware `\w` class is unavailable.
///
/// This error can occur when the data tables necessary for the Unicode aware
/// Perl character class `\w` are unavailable. This only occurs when the
/// `unicode-perl` feature is disabled. (The feature is enabled by default.)
#[derive(Debug)]
pub struct UnicodeWordError(());
#[cfg(feature = "std")]
impl std::error::Error for UnicodeWordError {}
impl core::fmt::Display for UnicodeWordError {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
write!(
f,
"Unicode-aware \\w class is not available \
(probably because the unicode-perl feature is not enabled)"
)
}
}
/// A state oriented traverser of the simple case folding table.
///
/// A case folder can be constructed via `SimpleCaseFolder::new()`, which will
/// return an error if the underlying case folding table is unavailable.
///
/// After construction, it is expected that callers will use
/// `SimpleCaseFolder::mapping` by calling it with codepoints in strictly
/// increasing order. For example, calling it on `b` and then on `a` is illegal
/// and will result in a panic.
///
/// The main idea of this type is that it tries hard to make mapping lookups
/// fast by exploiting the structure of the underlying table, and the ordering
/// assumption enables this.
#[derive(Debug)]
pub struct SimpleCaseFolder {
/// The simple case fold table. It's a sorted association list, where the
/// keys are Unicode scalar values and the values are the corresponding
/// equivalence class (not including the key) of the "simple" case folded
/// Unicode scalar values.
table: &'static [(char, &'static [char])],
/// The last codepoint that was used for a lookup.
last: Option<char>,
/// The index to the entry in `table` corresponding to the smallest key `k`
/// such that `k > k0`, where `k0` is the most recent key lookup. Note that
/// in particular, `k0` may not be in the table!
next: usize,
}
impl SimpleCaseFolder {
/// Create a new simple case folder, returning an error if the underlying
/// case folding table is unavailable.
pub fn new() -> Result<SimpleCaseFolder, CaseFoldError> {
#[cfg(not(feature = "unicode-case"))]
{
Err(CaseFoldError(()))
}
#[cfg(feature = "unicode-case")]
{
Ok(SimpleCaseFolder {
table: crate::unicode_tables::case_folding_simple::CASE_FOLDING_SIMPLE,
last: None,
next: 0,
})
}
}
/// Return the equivalence class of case folded codepoints for the given
/// codepoint. The equivalence class returned never includes the codepoint
/// given. If the given codepoint has no case folded codepoints (i.e.,
/// no entry in the underlying case folding table), then this returns an
/// empty slice.
///
/// # Panics
///
/// This panics when called with a `c` that is less than or equal to the
/// previous call. In other words, callers need to use this method with
/// strictly increasing values of `c`.
pub fn mapping(&mut self, c: char) -> &'static [char] {
if let Some(last) = self.last {
assert!(
last < c,
"got codepoint U+{:X} which occurs before \
last codepoint U+{:X}",
u32::from(c),
u32::from(last),
);
}
self.last = Some(c);
if self.next >= self.table.len() {
return &[];
}
let (k, v) = self.table[self.next];
if k == c {
self.next += 1;
return v;
}
match self.get(c) {
Err(i) => {
self.next = i;
&[]
}
Ok(i) => {
// Since we require lookups to proceed
// in order, anything we find should be
// after whatever we thought might be
// next. Otherwise, the caller is either
// going out of order or we would have
// found our next key at 'self.next'.
assert!(i > self.next);
self.next = i + 1;
self.table[i].1
}
}
}
/// Returns true if and only if the given range overlaps with any region
/// of the underlying case folding table. That is, when true, there exists
/// at least one codepoint in the inclusive range `[start, end]` that has
/// a non-trivial equivalence class of case folded codepoints. Conversely,
/// when this returns false, all codepoints in the range `[start, end]`
/// correspond to the trivial equivalence class of case folded codepoints,
/// i.e., itself.
///
/// This is useful to call before iterating over the codepoints in the
/// range and looking up the mapping for each. If you know none of the
/// mappings will return anything, then you might be able to skip doing it
/// altogether.
///
/// # Panics
///
/// This panics when `end < start`.
pub fn overlaps(&self, start: char, end: char) -> bool {
use core::cmp::Ordering;
assert!(start <= end);
self.table
.binary_search_by(|&(c, _)| {
if start <= c && c <= end {
Ordering::Equal
} else if c > end {
Ordering::Greater
} else {
Ordering::Less
}
})
.is_ok()
}
/// Returns the index at which `c` occurs in the simple case fold table. If
/// `c` does not occur, then this returns an `i` such that `table[i-1].0 <
/// c` and `table[i].0 > c`.
fn get(&self, c: char) -> Result<usize, usize> {
self.table.binary_search_by_key(&c, |&(c1, _)| c1)
}
}
/// A query for finding a character class defined by Unicode. This supports
/// either use of a property name directly, or lookup by property value. The
/// former generally refers to Binary properties (see UTS#44, Table 8), but
/// as a special exception (see UTS#18, Section 1.2) both general categories
/// (an enumeration) and scripts (a catalog) are supported as if each of their
/// possible values were a binary property.
///
/// In all circumstances, property names and values are normalized and
/// canonicalized. That is, `GC == gc == GeneralCategory == general_category`.
///
/// The lifetime `'a` refers to the shorter of the lifetimes of property name
/// and property value.
#[derive(Debug)]
pub enum ClassQuery<'a> {
/// Return a class corresponding to a Unicode binary property, named by
/// a single letter.
OneLetter(char),
/// Return a class corresponding to a Unicode binary property.
///
/// Note that, by special exception (see UTS#18, Section 1.2), both
/// general category values and script values are permitted here as if
/// they were a binary property.
Binary(&'a str),
/// Return a class corresponding to all codepoints whose property
/// (identified by `property_name`) corresponds to the given value
/// (identified by `property_value`).
ByValue {
/// A property name.
property_name: &'a str,
/// A property value.
property_value: &'a str,
},
}
impl<'a> ClassQuery<'a> {
fn canonicalize(&self) -> Result<CanonicalClassQuery, Error> {
match *self {
ClassQuery::OneLetter(c) => self.canonical_binary(&c.to_string()),
ClassQuery::Binary(name) => self.canonical_binary(name),
ClassQuery::ByValue { property_name, property_value } => {
let property_name = symbolic_name_normalize(property_name);
let property_value = symbolic_name_normalize(property_value);
let canon_name = match canonical_prop(&property_name)? {
None => return Err(Error::PropertyNotFound),
Some(canon_name) => canon_name,
};
Ok(match canon_name {
"General_Category" => {
let canon = match canonical_gencat(&property_value)? {
None => return Err(Error::PropertyValueNotFound),
Some(canon) => canon,
};
CanonicalClassQuery::GeneralCategory(canon)
}
"Script" => {
let canon = match canonical_script(&property_value)? {
None => return Err(Error::PropertyValueNotFound),
Some(canon) => canon,
};
CanonicalClassQuery::Script(canon)
}
_ => {
let vals = match property_values(canon_name)? {
None => return Err(Error::PropertyValueNotFound),
Some(vals) => vals,
};
let canon_val =
match canonical_value(vals, &property_value) {
None => {
return Err(Error::PropertyValueNotFound)
}
Some(canon_val) => canon_val,
};
CanonicalClassQuery::ByValue {
property_name: canon_name,
property_value: canon_val,
}
}
})
}
}
}
fn canonical_binary(
&self,
name: &str,
) -> Result<CanonicalClassQuery, Error> {
let norm = symbolic_name_normalize(name);
// This is a special case where 'cf' refers to the 'Format' general
// category, but where the 'cf' abbreviation is also an abbreviation
// for the 'Case_Folding' property. But we want to treat it as
// a general category. (Currently, we don't even support the
// 'Case_Folding' property. But if we do in the future, users will be
// required to spell it out.)
//
// Also 'sc' refers to the 'Currency_Symbol' general category, but is
// also the abbreviation for the 'Script' property. So we avoid calling
// 'canonical_prop' for it too, which would erroneously normalize it
// to 'Script'.
//
// Another case: 'lc' is an abbreviation for the 'Cased_Letter'
// general category, but is also an abbreviation for the 'Lowercase_Mapping'
// property. We don't currently support the latter, so as with 'cf'
// above, we treat 'lc' as 'Cased_Letter'.
if norm != "cf" && norm != "sc" && norm != "lc" {
if let Some(canon) = canonical_prop(&norm)? {
return Ok(CanonicalClassQuery::Binary(canon));
}
}
if let Some(canon) = canonical_gencat(&norm)? {
return Ok(CanonicalClassQuery::GeneralCategory(canon));
}
if let Some(canon) = canonical_script(&norm)? {
return Ok(CanonicalClassQuery::Script(canon));
}
Err(Error::PropertyNotFound)
}
}
/// Like ClassQuery, but its parameters have been canonicalized. This also
/// differentiates binary properties from flattened general categories and
/// scripts.
#[derive(Debug, Eq, PartialEq)]
enum CanonicalClassQuery {
/// The canonical binary property name.
Binary(&'static str),
/// The canonical general category name.
GeneralCategory(&'static str),
/// The canonical script name.
Script(&'static str),
/// An arbitrary association between property and value, both of which
/// have been canonicalized.
///
/// Note that by construction, the property name of ByValue will never
/// be General_Category or Script. Those two cases are subsumed by the
/// eponymous variants.
ByValue {
/// The canonical property name.
property_name: &'static str,
/// The canonical property value.
property_value: &'static str,
},
}
/// Looks up a Unicode class given a query. If one doesn't exist, then
/// `None` is returned.
pub fn class(query: ClassQuery<'_>) -> Result<hir::ClassUnicode, Error> {
use self::CanonicalClassQuery::*;
match query.canonicalize()? {
Binary(name) => bool_property(name),
GeneralCategory(name) => gencat(name),
Script(name) => script(name),
ByValue { property_name: "Age", property_value } => {
let mut class = hir::ClassUnicode::empty();
for set in ages(property_value)? {
class.union(&hir_class(set));
}
Ok(class)
}
ByValue { property_name: "Script_Extensions", property_value } => {
script_extension(property_value)
}
ByValue {
property_name: "Grapheme_Cluster_Break",
property_value,
} => gcb(property_value),
ByValue { property_name: "Sentence_Break", property_value } => {
sb(property_value)
}
ByValue { property_name: "Word_Break", property_value } => {
wb(property_value)
}
_ => {
// What else should we support?
Err(Error::PropertyNotFound)
}
}
}
/// Returns a Unicode aware class for \w.
///
/// This returns an error if the data is not available for \w.
pub fn perl_word() -> Result<hir::ClassUnicode, Error> {
#[cfg(not(feature = "unicode-perl"))]
fn imp() -> Result<hir::ClassUnicode, Error> {
Err(Error::PerlClassNotFound)
}
#[cfg(feature = "unicode-perl")]
fn imp() -> Result<hir::ClassUnicode, Error> {
use crate::unicode_tables::perl_word::PERL_WORD;
Ok(hir_class(PERL_WORD))
}
imp()
}
/// Returns a Unicode aware class for \s.
///
/// This returns an error if the data is not available for \s.
pub fn perl_space() -> Result<hir::ClassUnicode, Error> {
#[cfg(not(any(feature = "unicode-perl", feature = "unicode-bool")))]
fn imp() -> Result<hir::ClassUnicode, Error> {
Err(Error::PerlClassNotFound)
}
#[cfg(all(feature = "unicode-perl", not(feature = "unicode-bool")))]
fn imp() -> Result<hir::ClassUnicode, Error> {
use crate::unicode_tables::perl_space::WHITE_SPACE;
Ok(hir_class(WHITE_SPACE))
}
#[cfg(feature = "unicode-bool")]
fn imp() -> Result<hir::ClassUnicode, Error> {
use crate::unicode_tables::property_bool::WHITE_SPACE;
Ok(hir_class(WHITE_SPACE))
}
imp()
}
/// Returns a Unicode aware class for \d.
///
/// This returns an error if the data is not available for \d.
pub fn perl_digit() -> Result<hir::ClassUnicode, Error> {
#[cfg(not(any(feature = "unicode-perl", feature = "unicode-gencat")))]
fn imp() -> Result<hir::ClassUnicode, Error> {
Err(Error::PerlClassNotFound)
}
#[cfg(all(feature = "unicode-perl", not(feature = "unicode-gencat")))]
fn imp() -> Result<hir::ClassUnicode, Error> {
use crate::unicode_tables::perl_decimal::DECIMAL_NUMBER;
Ok(hir_class(DECIMAL_NUMBER))
}
#[cfg(feature = "unicode-gencat")]
fn imp() -> Result<hir::ClassUnicode, Error> {
use crate::unicode_tables::general_category::DECIMAL_NUMBER;
Ok(hir_class(DECIMAL_NUMBER))
}
imp()
}
/// Build a Unicode HIR class from a sequence of Unicode scalar value ranges.
pub fn hir_class(ranges: &[(char, char)]) -> hir::ClassUnicode {
let hir_ranges: Vec<hir::ClassUnicodeRange> = ranges
.iter()
.map(|&(s, e)| hir::ClassUnicodeRange::new(s, e))
.collect();
hir::ClassUnicode::new(hir_ranges)
}
/// Returns true only if the given codepoint is in the `\w` character class.
///
/// If the `unicode-perl` feature is not enabled, then this returns an error.
pub fn is_word_character(c: char) -> Result<bool, UnicodeWordError> {
#[cfg(not(feature = "unicode-perl"))]
fn imp(_: char) -> Result<bool, UnicodeWordError> {
Err(UnicodeWordError(()))
}
#[cfg(feature = "unicode-perl")]
fn imp(c: char) -> Result<bool, UnicodeWordError> {
use crate::{is_word_byte, unicode_tables::perl_word::PERL_WORD};
if u8::try_from(c).map_or(false, is_word_byte) {
return Ok(true);
}
Ok(PERL_WORD
.binary_search_by(|&(start, end)| {
use core::cmp::Ordering;
if start <= c && c <= end {
Ordering::Equal
} else if start > c {
Ordering::Greater
} else {
Ordering::Less
}
})
.is_ok())
}
imp(c)
}
/// A mapping of property values for a specific property.
///
/// The first element of each tuple is a normalized property value while the
/// second element of each tuple is the corresponding canonical property
/// value.
type PropertyValues = &'static [(&'static str, &'static str)];
fn canonical_gencat(
normalized_value: &str,
) -> Result<Option<&'static str>, Error> {
Ok(match normalized_value {
"any" => Some("Any"),
"assigned" => Some("Assigned"),
"ascii" => Some("ASCII"),
_ => {
let gencats = property_values("General_Category")?.unwrap();
canonical_value(gencats, normalized_value)
}
})
}
fn canonical_script(
normalized_value: &str,
) -> Result<Option<&'static str>, Error> {
let scripts = property_values("Script")?.unwrap();
Ok(canonical_value(scripts, normalized_value))
}
/// Find the canonical property name for the given normalized property name.
///
/// If no such property exists, then `None` is returned.
///
/// The normalized property name must have been normalized according to
/// UAX44 LM3, which can be done using `symbolic_name_normalize`.
///
/// If the property names data is not available, then an error is returned.
fn canonical_prop(
normalized_name: &str,
) -> Result<Option<&'static str>, Error> {
#[cfg(not(any(
feature = "unicode-age",
feature = "unicode-bool",
feature = "unicode-gencat",
feature = "unicode-perl",
feature = "unicode-script",
feature = "unicode-segment",
)))]
fn imp(_: &str) -> Result<Option<&'static str>, Error> {
Err(Error::PropertyNotFound)
}
#[cfg(any(
feature = "unicode-age",
feature = "unicode-bool",
feature = "unicode-gencat",
feature = "unicode-perl",
feature = "unicode-script",
feature = "unicode-segment",
))]
fn imp(name: &str) -> Result<Option<&'static str>, Error> {
use crate::unicode_tables::property_names::PROPERTY_NAMES;
Ok(PROPERTY_NAMES
.binary_search_by_key(&name, |&(n, _)| n)
.ok()
.map(|i| PROPERTY_NAMES[i].1))
}
imp(normalized_name)
}
/// Find the canonical property value for the given normalized property
/// value.
///
/// The given property values should correspond to the values for the property
/// under question, which can be found using `property_values`.
///
/// If no such property value exists, then `None` is returned.
///
/// The normalized property value must have been normalized according to
/// UAX44 LM3, which can be done using `symbolic_name_normalize`.
fn canonical_value(
vals: PropertyValues,
normalized_value: &str,
) -> Option<&'static str> {
vals.binary_search_by_key(&normalized_value, |&(n, _)| n)
.ok()
.map(|i| vals[i].1)
}
/// Return the table of property values for the given property name.
///
/// If the property values data is not available, then an error is returned.
fn property_values(
canonical_property_name: &'static str,
) -> Result<Option<PropertyValues>, Error> {
#[cfg(not(any(
feature = "unicode-age",
feature = "unicode-bool",
feature = "unicode-gencat",
feature = "unicode-perl",
feature = "unicode-script",
feature = "unicode-segment",
)))]
fn imp(_: &'static str) -> Result<Option<PropertyValues>, Error> {
Err(Error::PropertyValueNotFound)
}
#[cfg(any(
feature = "unicode-age",
feature = "unicode-bool",
feature = "unicode-gencat",
feature = "unicode-perl",
feature = "unicode-script",
feature = "unicode-segment",
))]
fn imp(name: &'static str) -> Result<Option<PropertyValues>, Error> {
use crate::unicode_tables::property_values::PROPERTY_VALUES;
Ok(PROPERTY_VALUES
.binary_search_by_key(&name, |&(n, _)| n)
.ok()
.map(|i| PROPERTY_VALUES[i].1))
}
imp(canonical_property_name)
}
// This is only used in some cases, but small enough to just let it be dead
// instead of figuring out (and maintaining) the right set of features.
#[allow(dead_code)]
fn property_set(
name_map: &'static [(&'static str, Range)],
canonical: &'static str,
) -> Option<Range> {
name_map
.binary_search_by_key(&canonical, |x| x.0)
.ok()
.map(|i| name_map[i].1)
}
/// Returns an iterator over Unicode Age sets. Each item corresponds to a set
/// of codepoints that were added in a particular revision of Unicode. The
/// iterator yields items in chronological order.
///
/// If the given age value isn't valid or if the data isn't available, then an
/// error is returned instead.
fn ages(canonical_age: &str) -> Result<impl Iterator<Item = Range>, Error> {
#[cfg(not(feature = "unicode-age"))]
fn imp(_: &str) -> Result<impl Iterator<Item = Range>, Error> {
use core::option::IntoIter;
Err::<IntoIter<Range>, _>(Error::PropertyNotFound)
}
#[cfg(feature = "unicode-age")]
fn imp(canonical_age: &str) -> Result<impl Iterator<Item = Range>, Error> {
use crate::unicode_tables::age;
const AGES: &[(&str, Range)] = &[
("V1_1", age::V1_1),
("V2_0", age::V2_0),
("V2_1", age::V2_1),
("V3_0", age::V3_0),
("V3_1", age::V3_1),
("V3_2", age::V3_2),
("V4_0", age::V4_0),
("V4_1", age::V4_1),
("V5_0", age::V5_0),
("V5_1", age::V5_1),
("V5_2", age::V5_2),
("V6_0", age::V6_0),
("V6_1", age::V6_1),
("V6_2", age::V6_2),
("V6_3", age::V6_3),
("V7_0", age::V7_0),
("V8_0", age::V8_0),
("V9_0", age::V9_0),
("V10_0", age::V10_0),
("V11_0", age::V11_0),
("V12_0", age::V12_0),
("V12_1", age::V12_1),
("V13_0", age::V13_0),
("V14_0", age::V14_0),
("V15_0", age::V15_0),
("V15_1", age::V15_1),
("V16_0", age::V16_0),
];
assert_eq!(AGES.len(), age::BY_NAME.len(), "ages are out of sync");
let pos = AGES.iter().position(|&(age, _)| canonical_age == age);
match pos {
None => Err(Error::PropertyValueNotFound),
Some(i) => Ok(AGES[..=i].iter().map(|&(_, classes)| classes)),
}
}
imp(canonical_age)
}
/// Returns the Unicode HIR class corresponding to the given general category.
///
/// Name canonicalization is assumed to be performed by the caller.
///
/// If the given general category could not be found, or if the general
/// category data is not available, then an error is returned.
fn gencat(canonical_name: &'static str) -> Result<hir::ClassUnicode, Error> {
#[cfg(not(feature = "unicode-gencat"))]
fn imp(_: &'static str) -> Result<hir::ClassUnicode, Error> {
Err(Error::PropertyNotFound)
}
#[cfg(feature = "unicode-gencat")]
fn imp(name: &'static str) -> Result<hir::ClassUnicode, Error> {
use crate::unicode_tables::general_category::BY_NAME;
match name {
"ASCII" => Ok(hir_class(&[('\0', '\x7F')])),
"Any" => Ok(hir_class(&[('\0', '\u{10FFFF}')])),
"Assigned" => {
let mut cls = gencat("Unassigned")?;
cls.negate();
Ok(cls)
}
name => property_set(BY_NAME, name)
.map(hir_class)
.ok_or(Error::PropertyValueNotFound),
}
}
match canonical_name {
"Decimal_Number" => perl_digit(),
name => imp(name),
}
}
/// Returns the Unicode HIR class corresponding to the given script.
///
/// Name canonicalization is assumed to be performed by the caller.
///
/// If the given script could not be found, or if the script data is not
/// available, then an error is returned.
fn script(canonical_name: &'static str) -> Result<hir::ClassUnicode, Error> {
#[cfg(not(feature = "unicode-script"))]
fn imp(_: &'static str) -> Result<hir::ClassUnicode, Error> {
Err(Error::PropertyNotFound)
}
#[cfg(feature = "unicode-script")]
fn imp(name: &'static str) -> Result<hir::ClassUnicode, Error> {
use crate::unicode_tables::script::BY_NAME;
property_set(BY_NAME, name)
.map(hir_class)
.ok_or(Error::PropertyValueNotFound)
}
imp(canonical_name)
}
/// Returns the Unicode HIR class corresponding to the given script extension.
///
/// Name canonicalization is assumed to be performed by the caller.
///
/// If the given script extension could not be found, or if the script data is
/// not available, then an error is returned.
fn script_extension(
canonical_name: &'static str,
) -> Result<hir::ClassUnicode, Error> {
#[cfg(not(feature = "unicode-script"))]
fn imp(_: &'static str) -> Result<hir::ClassUnicode, Error> {
Err(Error::PropertyNotFound)
}
#[cfg(feature = "unicode-script")]
fn imp(name: &'static str) -> Result<hir::ClassUnicode, Error> {
use crate::unicode_tables::script_extension::BY_NAME;
property_set(BY_NAME, name)
.map(hir_class)
.ok_or(Error::PropertyValueNotFound)
}
imp(canonical_name)
}
/// Returns the Unicode HIR class corresponding to the given Unicode boolean
/// property.
///
/// Name canonicalization is assumed to be performed by the caller.
///
/// If the given boolean property could not be found, or if the boolean
/// property data is not available, then an error is returned.
fn bool_property(
canonical_name: &'static str,
) -> Result<hir::ClassUnicode, Error> {
#[cfg(not(feature = "unicode-bool"))]
fn imp(_: &'static str) -> Result<hir::ClassUnicode, Error> {
Err(Error::PropertyNotFound)
}
#[cfg(feature = "unicode-bool")]
fn imp(name: &'static str) -> Result<hir::ClassUnicode, Error> {
use crate::unicode_tables::property_bool::BY_NAME;
property_set(BY_NAME, name)
.map(hir_class)
.ok_or(Error::PropertyNotFound)
}
match canonical_name {
"Decimal_Number" => perl_digit(),
"White_Space" => perl_space(),
name => imp(name),
}
}
/// Returns the Unicode HIR class corresponding to the given grapheme cluster
/// break property.
///
/// Name canonicalization is assumed to be performed by the caller.
///
/// If the given property could not be found, or if the corresponding data is
/// not available, then an error is returned.
fn gcb(canonical_name: &'static str) -> Result<hir::ClassUnicode, Error> {
#[cfg(not(feature = "unicode-segment"))]
fn imp(_: &'static str) -> Result<hir::ClassUnicode, Error> {
Err(Error::PropertyNotFound)
}
#[cfg(feature = "unicode-segment")]
fn imp(name: &'static str) -> Result<hir::ClassUnicode, Error> {
use crate::unicode_tables::grapheme_cluster_break::BY_NAME;
property_set(BY_NAME, name)
.map(hir_class)
.ok_or(Error::PropertyValueNotFound)
}
imp(canonical_name)
}
/// Returns the Unicode HIR class corresponding to the given word break
/// property.
///
/// Name canonicalization is assumed to be performed by the caller.
///
/// If the given property could not be found, or if the corresponding data is
/// not available, then an error is returned.
fn wb(canonical_name: &'static str) -> Result<hir::ClassUnicode, Error> {
#[cfg(not(feature = "unicode-segment"))]
fn imp(_: &'static str) -> Result<hir::ClassUnicode, Error> {
Err(Error::PropertyNotFound)
}
#[cfg(feature = "unicode-segment")]
fn imp(name: &'static str) -> Result<hir::ClassUnicode, Error> {
use crate::unicode_tables::word_break::BY_NAME;
property_set(BY_NAME, name)
.map(hir_class)
.ok_or(Error::PropertyValueNotFound)
}
imp(canonical_name)
}
/// Returns the Unicode HIR class corresponding to the given sentence
/// break property.
///
/// Name canonicalization is assumed to be performed by the caller.
///
/// If the given property could not be found, or if the corresponding data is
/// not available, then an error is returned.
fn sb(canonical_name: &'static str) -> Result<hir::ClassUnicode, Error> {
#[cfg(not(feature = "unicode-segment"))]
fn imp(_: &'static str) -> Result<hir::ClassUnicode, Error> {
Err(Error::PropertyNotFound)
}
#[cfg(feature = "unicode-segment")]
fn imp(name: &'static str) -> Result<hir::ClassUnicode, Error> {
use crate::unicode_tables::sentence_break::BY_NAME;
property_set(BY_NAME, name)
.map(hir_class)
.ok_or(Error::PropertyValueNotFound)
}
imp(canonical_name)
}
/// Like symbolic_name_normalize_bytes, but operates on a string.
fn symbolic_name_normalize(x: &str) -> String {
let mut tmp = x.as_bytes().to_vec();
let len = symbolic_name_normalize_bytes(&mut tmp).len();
tmp.truncate(len);
// This should always succeed because `symbolic_name_normalize_bytes`
// guarantees that `&tmp[..len]` is always valid UTF-8.
//
// N.B. We could avoid the additional UTF-8 check here, but it's unlikely
// to be worth skipping the additional safety check. A benchmark must
// justify it first.
String::from_utf8(tmp).unwrap()
}
/// Normalize the given symbolic name in place according to UAX44-LM3.
///
/// A "symbolic name" typically corresponds to property names and property
/// value aliases. Note, though, that it should not be applied to property
/// string values.
///
/// The slice returned is guaranteed to be valid UTF-8 for all possible values
/// of `slice`.
///
/// See: https://unicode.org/reports/tr44/#UAX44-LM3
fn symbolic_name_normalize_bytes(slice: &mut [u8]) -> &mut [u8] {
// I couldn't find a place in the standard that specified that property
// names/aliases had a particular structure (unlike character names), but
// we assume that it's ASCII only and drop anything that isn't ASCII.
let mut start = 0;
let mut starts_with_is = false;
if slice.len() >= 2 {
// Ignore any "is" prefix.
starts_with_is = slice[0..2] == b"is"[..]
|| slice[0..2] == b"IS"[..]
|| slice[0..2] == b"iS"[..]
|| slice[0..2] == b"Is"[..];
if starts_with_is {
start = 2;
}
}
let mut next_write = 0;
for i in start..slice.len() {
// VALIDITY ARGUMENT: To guarantee that the resulting slice is valid
// UTF-8, we ensure that the slice contains only ASCII bytes. In
// particular, we drop every non-ASCII byte from the normalized string.
let b = slice[i];
if b == b' ' || b == b'_' || b == b'-' {
continue;
} else if b'A' <= b && b <= b'Z' {
slice[next_write] = b + (b'a' - b'A');
next_write += 1;
} else if b <= 0x7F {
slice[next_write] = b;
next_write += 1;
}
}
// Special case: ISO_Comment has a 'isc' abbreviation. Since we generally
// ignore 'is' prefixes, the 'isc' abbreviation gets caught in the cross
// fire and ends up creating an alias for 'c' to 'ISO_Comment', but it
// is actually an alias for the 'Other' general category.
if starts_with_is && next_write == 1 && slice[0] == b'c' {
slice[0] = b'i';
slice[1] = b's';
slice[2] = b'c';
next_write = 3;
}
&mut slice[..next_write]
}
#[cfg(test)]
mod tests {
use super::*;
#[cfg(feature = "unicode-case")]
fn simple_fold_ok(c: char) -> impl Iterator<Item = char> {
SimpleCaseFolder::new().unwrap().mapping(c).iter().copied()
}
#[cfg(feature = "unicode-case")]
fn contains_case_map(start: char, end: char) -> bool {
SimpleCaseFolder::new().unwrap().overlaps(start, end)
}
#[test]
#[cfg(feature = "unicode-case")]
fn simple_fold_k() {
let xs: Vec<char> = simple_fold_ok('k').collect();
assert_eq!(xs, alloc::vec!['K', 'K']);
let xs: Vec<char> = simple_fold_ok('K').collect();
assert_eq!(xs, alloc::vec!['k', 'K']);
let xs: Vec<char> = simple_fold_ok('K').collect();
assert_eq!(xs, alloc::vec!['K', 'k']);
}
#[test]
#[cfg(feature = "unicode-case")]
fn simple_fold_a() {
let xs: Vec<char> = simple_fold_ok('a').collect();
assert_eq!(xs, alloc::vec!['A']);
let xs: Vec<char> = simple_fold_ok('A').collect();
assert_eq!(xs, alloc::vec!['a']);
}
#[test]
#[cfg(not(feature = "unicode-case"))]
fn simple_fold_disabled() {
assert!(SimpleCaseFolder::new().is_err());
}
#[test]
#[cfg(feature = "unicode-case")]
fn range_contains() {
assert!(contains_case_map('A', 'A'));
assert!(contains_case_map('Z', 'Z'));
assert!(contains_case_map('A', 'Z'));
assert!(contains_case_map('@', 'A'));
assert!(contains_case_map('Z', '['));
assert!(contains_case_map('☃', 'Ⰰ'));
assert!(!contains_case_map('[', '['));
assert!(!contains_case_map('[', '`'));
assert!(!contains_case_map('☃', '☃'));
}
#[test]
#[cfg(feature = "unicode-gencat")]
fn regression_466() {
use super::{CanonicalClassQuery, ClassQuery};
let q = ClassQuery::OneLetter('C');
assert_eq!(
q.canonicalize().unwrap(),
CanonicalClassQuery::GeneralCategory("Other")
);
}
#[test]
fn sym_normalize() {
let sym_norm = symbolic_name_normalize;
assert_eq!(sym_norm("Line_Break"), "linebreak");
assert_eq!(sym_norm("Line-break"), "linebreak");
assert_eq!(sym_norm("linebreak"), "linebreak");
assert_eq!(sym_norm("BA"), "ba");
assert_eq!(sym_norm("ba"), "ba");
assert_eq!(sym_norm("Greek"), "greek");
assert_eq!(sym_norm("isGreek"), "greek");
assert_eq!(sym_norm("IS_Greek"), "greek");
assert_eq!(sym_norm("isc"), "isc");
assert_eq!(sym_norm("is c"), "isc");
assert_eq!(sym_norm("is_c"), "isc");
}
#[test]
fn valid_utf8_symbolic() {
let mut x = b"abc\xFFxyz".to_vec();
let y = symbolic_name_normalize_bytes(&mut x);
assert_eq!(y, b"abcxyz");
}
}