1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
// Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

// Ported from the pathdiff crate, which adapted the original rustc's
// path_relative_from
// https://github.com/Manishearth/pathdiff/blob/master/src/lib.rs
// https://github.com/rust-lang/rust/blob/e1d0de82cc40b666b88d4a6d2c9dcbc81d7ed27f/src/librustc_back/rpath.rs#L116-L158

use std::error;
use std::fmt;
use std::path::{Path, PathBuf};

use crate::{Component, RelativePathBuf};

// Prevent downstream implementations, so methods may be added without backwards
// breaking changes.
mod sealed {
    use std::path::{Path, PathBuf};

    pub trait Sealed {}

    impl Sealed for Path {}
    impl Sealed for PathBuf {}
}

/// An error raised when attempting to convert a path using
/// [`PathExt::relative_to`].
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct RelativeToError {
    kind: RelativeToErrorKind,
}

/// Error kind for [`RelativeToError`].
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
#[non_exhaustive]
enum RelativeToErrorKind {
    /// Non-utf8 component in path.
    NonUtf8,
    /// Mismatching path prefixes.
    PrefixMismatch,
    /// A provided path is ambiguous, in that there is no way to determine which
    /// components should be added from one path to the other to traverse it.
    ///
    /// For example, `.` is ambiguous relative to `../..` because we don't know
    /// the names of the components being traversed.
    AmbiguousTraversal,
    /// This is a catch-all error since we don't control the `std::path` API a
    /// Components iterator might decide (intentionally or not) to produce
    /// components which violates its own contract.
    ///
    /// In particular we rely on only relative components being produced after
    /// the absolute prefix has been consumed.
    IllegalComponent,
}

impl fmt::Display for RelativeToError {
    fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
        match self.kind {
            RelativeToErrorKind::NonUtf8 => "path contains non-utf8 component".fmt(fmt),
            RelativeToErrorKind::PrefixMismatch => {
                "paths contain different absolute prefixes".fmt(fmt)
            }
            RelativeToErrorKind::AmbiguousTraversal => {
                "path traversal cannot be determined".fmt(fmt)
            }
            RelativeToErrorKind::IllegalComponent => "path contains illegal components".fmt(fmt),
        }
    }
}

impl error::Error for RelativeToError {}

impl From<RelativeToErrorKind> for RelativeToError {
    #[inline]
    fn from(kind: RelativeToErrorKind) -> Self {
        Self { kind }
    }
}

/// Extension methods for [`Path`] and [`PathBuf`] to for building and
/// interacting with [`RelativePath`].
///
/// [`RelativePath`]: crate::RelativePath
pub trait PathExt: sealed::Sealed {
    /// Build a relative path from the provided directory to `self`.
    ///
    /// Producing a relative path like this is a logical operation and does not
    /// guarantee that the constructed path corresponds to what the filesystem
    /// would do. On Linux for example symbolic links could mean that the
    /// logical path doesn't correspond to the filesystem path.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::path::Path;
    /// use relative_path::{RelativePath, PathExt};
    ///
    /// let baz = Path::new("/foo/bar/baz");
    /// let bar = Path::new("/foo/bar");
    /// let qux = Path::new("/foo/bar/qux");
    ///
    /// assert_eq!(bar.relative_to(baz)?, RelativePath::new("../"));
    /// assert_eq!(baz.relative_to(bar)?, RelativePath::new("baz"));
    /// assert_eq!(qux.relative_to(baz)?, RelativePath::new("../qux"));
    /// assert_eq!(baz.relative_to(qux)?, RelativePath::new("../baz"));
    /// assert_eq!(bar.relative_to(qux)?, RelativePath::new("../"));
    /// # Ok::<_, relative_path::RelativeToError>(())
    /// ```
    ///
    /// # Errors
    ///
    /// Errors in case the provided path contains components which cannot be
    /// converted into a relative path as needed, such as non-utf8 data.
    fn relative_to<P>(&self, root: P) -> Result<RelativePathBuf, RelativeToError>
    where
        P: AsRef<Path>;
}

impl PathExt for Path {
    fn relative_to<P>(&self, root: P) -> Result<RelativePathBuf, RelativeToError>
    where
        P: AsRef<Path>,
    {
        use std::path::Component::{CurDir, Normal, ParentDir, Prefix, RootDir};

        // Helper function to convert from a std::path::Component to a
        // relative_path::Component.
        fn std_to_c(c: std::path::Component<'_>) -> Result<Component<'_>, RelativeToError> {
            Ok(match c {
                CurDir => Component::CurDir,
                ParentDir => Component::ParentDir,
                Normal(n) => Component::Normal(n.to_str().ok_or(RelativeToErrorKind::NonUtf8)?),
                _ => return Err(RelativeToErrorKind::IllegalComponent.into()),
            })
        }

        let root = root.as_ref();
        let mut a_it = self.components();
        let mut b_it = root.components();

        // Ensure that the two paths are both either relative, or have the same
        // prefix. Strips any common prefix the two paths do have. Prefixes are
        // platform dependent, but different prefixes would for example indicate
        // paths for different drives on Windows.
        let (a_head, b_head) = loop {
            match (a_it.next(), b_it.next()) {
                (Some(RootDir), Some(RootDir)) => (),
                (Some(Prefix(a)), Some(Prefix(b))) if a == b => (),
                (Some(Prefix(_) | RootDir), _) | (_, Some(Prefix(_) | RootDir)) => {
                    return Err(RelativeToErrorKind::PrefixMismatch.into());
                }
                (None, None) => break (None, None),
                (a, b) if a != b => break (a, b),
                _ => (),
            }
        };

        let mut a_it = a_head.into_iter().chain(a_it);
        let mut b_it = b_head.into_iter().chain(b_it);
        let mut buf = RelativePathBuf::new();

        loop {
            let a = if let Some(a) = a_it.next() {
                a
            } else {
                for _ in b_it {
                    buf.push(Component::ParentDir);
                }

                break;
            };

            match b_it.next() {
                Some(CurDir) => buf.push(std_to_c(a)?),
                Some(ParentDir) => {
                    return Err(RelativeToErrorKind::AmbiguousTraversal.into());
                }
                root => {
                    if root.is_some() {
                        buf.push(Component::ParentDir);
                    }

                    for comp in b_it {
                        match comp {
                            ParentDir => {
                                if !buf.pop() {
                                    return Err(RelativeToErrorKind::AmbiguousTraversal.into());
                                }
                            }
                            CurDir => (),
                            _ => buf.push(Component::ParentDir),
                        }
                    }

                    buf.push(std_to_c(a)?);

                    for c in a_it {
                        buf.push(std_to_c(c)?);
                    }

                    break;
                }
            }
        }

        Ok(buf)
    }
}

impl PathExt for PathBuf {
    #[inline]
    fn relative_to<P>(&self, root: P) -> Result<RelativePathBuf, RelativeToError>
    where
        P: AsRef<Path>,
    {
        self.as_path().relative_to(root)
    }
}

#[cfg(test)]
mod tests {
    use std::path::Path;

    use super::{PathExt, RelativeToErrorKind};
    use crate::{RelativePathBuf, RelativeToError};

    macro_rules! assert_relative_to {
        ($path:expr, $base:expr, Ok($expected:expr) $(,)?) => {
            assert_eq!(
                Path::new($path).relative_to($base),
                Ok(RelativePathBuf::from($expected))
            );
        };

        ($path:expr, $base:expr, Err($expected:ident) $(,)?) => {
            assert_eq!(
                Path::new($path).relative_to($base),
                Err(RelativeToError::from(RelativeToErrorKind::$expected))
            );
        };
    }

    #[cfg(windows)]
    macro_rules! abs {
        ($path:expr) => {
            Path::new(concat!("C:\\", $path))
        };
    }

    #[cfg(not(windows))]
    macro_rules! abs {
        ($path:expr) => {
            Path::new(concat!("/", $path))
        };
    }

    #[test]
    #[cfg(windows)]
    fn test_different_prefixes() {
        assert_relative_to!("C:\\repo", "D:\\repo", Err(PrefixMismatch),);
        assert_relative_to!("C:\\repo", "C:\\repo", Ok(""));
        assert_relative_to!(
            "\\\\server\\share\\repo",
            "\\\\server2\\share\\repo",
            Err(PrefixMismatch),
        );
    }

    #[test]
    fn test_absolute() {
        assert_relative_to!(abs!("foo"), abs!("bar"), Ok("../foo"));
        assert_relative_to!("foo", "bar", Ok("../foo"));
        assert_relative_to!(abs!("foo"), "bar", Err(PrefixMismatch));
        assert_relative_to!("foo", abs!("bar"), Err(PrefixMismatch));
    }

    #[test]
    fn test_identity() {
        assert_relative_to!(".", ".", Ok(""));
        assert_relative_to!("../foo", "../foo", Ok(""));
        assert_relative_to!("./foo", "./foo", Ok(""));
        assert_relative_to!("/foo", "/foo", Ok(""));
        assert_relative_to!("foo", "foo", Ok(""));

        assert_relative_to!("../foo/bar/baz", "../foo/bar/baz", Ok(""));
        assert_relative_to!("foo/bar/baz", "foo/bar/baz", Ok(""));
    }

    #[test]
    fn test_subset() {
        assert_relative_to!("foo", "fo", Ok("../foo"));
        assert_relative_to!("fo", "foo", Ok("../fo"));
    }

    #[test]
    fn test_empty() {
        assert_relative_to!("", "", Ok(""));
        assert_relative_to!("foo", "", Ok("foo"));
        assert_relative_to!("", "foo", Ok(".."));
    }

    #[test]
    fn test_relative() {
        assert_relative_to!("../foo", "../bar", Ok("../foo"));
        assert_relative_to!("../foo", "../foo/bar/baz", Ok("../.."));
        assert_relative_to!("../foo/bar/baz", "../foo", Ok("bar/baz"));

        assert_relative_to!("foo/bar/baz", "foo", Ok("bar/baz"));
        assert_relative_to!("foo/bar/baz", "foo/bar", Ok("baz"));
        assert_relative_to!("foo/bar/baz", "foo/bar/baz", Ok(""));
        assert_relative_to!("foo/bar/baz", "foo/bar/baz/", Ok(""));

        assert_relative_to!("foo/bar/baz/", "foo", Ok("bar/baz"));
        assert_relative_to!("foo/bar/baz/", "foo/bar", Ok("baz"));
        assert_relative_to!("foo/bar/baz/", "foo/bar/baz", Ok(""));
        assert_relative_to!("foo/bar/baz/", "foo/bar/baz/", Ok(""));

        assert_relative_to!("foo/bar/baz", "foo/", Ok("bar/baz"));
        assert_relative_to!("foo/bar/baz", "foo/bar/", Ok("baz"));
        assert_relative_to!("foo/bar/baz", "foo/bar/baz", Ok(""));
    }

    #[test]
    fn test_current_directory() {
        assert_relative_to!(".", "foo", Ok("../."));
        assert_relative_to!("foo", ".", Ok("foo"));
        assert_relative_to!("/foo", "/.", Ok("foo"));
    }

    #[test]
    fn assert_does_not_skip_parents() {
        assert_relative_to!("some/path", "some/foo/baz/path", Ok("../../../path"));
        assert_relative_to!("some/path", "some/foo/bar/../baz/path", Ok("../../../path"));
    }

    #[test]
    fn test_ambiguous_paths() {
        // Parent directory name is unknown, so trying to make current directory
        // relative to it is impossible.
        assert_relative_to!(".", "../..", Err(AmbiguousTraversal));
        assert_relative_to!(".", "a/../..", Err(AmbiguousTraversal));
        // Common prefixes are ok.
        assert_relative_to!("../a/..", "../a/../b", Ok(".."));
        assert_relative_to!("../a/../b", "../a/..", Ok("b"));
    }
}