1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
#![allow(non_snake_case)]
//! A few linear algebra operations on two-dimensional arrays.
use libnum::{Num, zero, one, Zero, One};
use libnum::Float;
use libnum::Complex;
use std::ops::{Add, Sub, Mul, Div};
use super::{Array, Ix};
/// Column vector.
pub type Col<A> = Array<A, Ix>;
/// Rectangular matrix.
pub type Mat<A> = Array<A, (Ix, Ix)>;
/// Trait union for a ring with 1.
pub trait Ring : Clone + Zero + Add<Output=Self> + Sub<Output=Self>
+ One + Mul<Output=Self> { }
impl<A: Clone + Zero + Add<Output=A> + Sub<Output=A> + One + Mul<Output=A>> Ring for A { }
/// Trait union for a field.
pub trait Field : Ring + Div<Output=Self> { }
impl<A: Ring + Div<Output=A>> Field for A { }
/// A real or complex number.
pub trait ComplexField : Copy + Field
{
#[inline]
fn conjugate(self) -> Self { self }
fn sqrt_real(self) -> Self;
#[inline]
fn is_complex() -> bool { false }
}
impl ComplexField for f32
{
#[inline]
fn sqrt_real(self) -> f32 { self.sqrt() }
}
impl ComplexField for f64
{
#[inline]
fn sqrt_real(self) -> f64 { self.sqrt() }
}
#[cfg(not(nocomplex))]
impl<A: Num + Float> ComplexField for Complex<A>
{
#[inline]
fn conjugate(self) -> Complex<A> { self.conj() }
fn sqrt_real(self) -> Complex<A> { Complex::new(self.re.sqrt(), zero()) }
#[inline]
fn is_complex() -> bool { true }
}
/// Return the identity matrix of dimension *n*.
pub fn eye<A: Clone + Zero + One>(n: Ix) -> Mat<A>
{
let mut eye = Array::zeros((n, n));
for a_ii in eye.diag_iter_mut() {
*a_ii = one::<A>();
}
eye
}
/*
/// Return the inverse matrix of square matrix `a`.
pub fn inverse<A: Primitive>(a: &Mat<A>) -> Mat<A>
{
fail!()
}
*/
/// Solve *a x = b* with linear least squares approximation.
///
/// It is used to find the best fit for an overdetermined system,
/// i.e. the number of rows in *a* is larger than the number of
/// unknowns *x*.
///
/// Return best fit for *x*.
pub fn least_squares<A: ComplexField>(a: &Mat<A>, b: &Col<A>) -> Col<A>
{
// Using transpose: a.T a x = a.T b;
// a.T a being square gives naive solution
// x_lstsq = inv(a.T a) a.T b
//
// Solve using cholesky decomposition
// aT a x = aT b
//
// Factor aT a into L L.T
//
// L L.T x = aT b
//
// => L z = aT b
// fw subst for z
// => L.T x = z
// bw subst for x estimate
//
let mut aT = a.clone();
aT.swap_axes(0, 1);
if <A as ComplexField>::is_complex() {
// conjugate transpose
for elt in aT.iter_mut() {
*elt = elt.conjugate();
}
}
let aT_a = aT.mat_mul(a);
let mut L = cholesky(aT_a);
let rhs = aT.mat_mul_col(b);
// Solve L z = aT b
let z = subst_fw(&L, &rhs);
// Solve L.T x = z
if <A as ComplexField>::is_complex() {
// conjugate transpose
// only elements below the diagonal have imag part
let (m, _) = L.dim();
for i in 1..m {
for j in 0..i {
let elt = &mut L[(i, j)];
*elt = elt.conjugate();
}
}
}
L.swap_axes(0, 1);
// => x_lstsq
subst_bw(&L, &z)
}
/// Factor *a = L L<sup>T</sup>*.
///
/// *a* should be a square matrix, hermitian and positive definite.
///
/// https://en.wikipedia.org/wiki/Cholesky_decomposition
///
/// “The Cholesky decomposition is mainly used for the numerical solution of
/// linear equations Ax = b.
///
/// If A is symmetric and positive definite, then we can solve Ax = b by first
/// computing the Cholesky decomposition A = LL*, then solving Ly = b for y by
/// forward substitution, and finally solving L*x = y for x by back
/// substitution.”
///
/// Return L.
pub fn cholesky<A: ComplexField>(a: Mat<A>) -> Mat<A>
{
let z = zero::<A>();
let (m, n) = a.dim();
assert!(m == n);
// Perform the operation in-place on `a`
let mut L = a;
for i in 0..m {
// Entries 0 .. i before the diagonal
for j in 0..i {
// A = (
// L²_1,1
// L_2,1 L_1,1 L²_2,1 + L²_2,2
// L_3,1 L_1,1 L_3,1 L_2,1 + L_3,2 L_2,2 L²_3,1 + L²_3,2 + L²_3,3
// .. )
let mut lik_ljk_sum = z;
{
// L_ik for k = 0 .. j
// L_jk for k = 0 .. j
let Lik = L.row_iter(i);
let Ljk = L.row_iter(j);
for (&lik, &ljk) in Lik.zip(Ljk).take(j as usize) {
lik_ljk_sum = lik_ljk_sum + lik * ljk.conjugate();
}
}
// L_ij = [ A_ij - Sum(k = 1 .. j) L_ik L_jk ] / L_jj
L[(i, j)] = (L[(i, j)] - lik_ljk_sum) / L[(j, j)];
}
// Diagonal where i == j
// L_jj = Sqrt[ A_jj - Sum(k = 1 .. j) L_jk L_jk ]
let j = i;
let mut ljk_sum = z;
// L_jk for k = 0 .. j
for &ljk in L.row_iter(j).take(j as usize) {
ljk_sum = ljk_sum + ljk * ljk.conjugate();
}
L[(j, j)] = (L[(j, j)] - ljk_sum).sqrt_real();
// After the diagonal
// L_ij = 0 for j > i
for j in i + 1..n {
L[(i, j)] = z;
}
}
L
}
fn vec_elem<A: Copy>(elt: A, n: usize) -> Vec<A>
{
let mut v = Vec::with_capacity(n);
for _ in 0..n {
v.push(elt);
}
v
}
/// Solve *L x = b* where *L* is a lower triangular matrix.
pub fn subst_fw<A: Copy + Field>(l: &Mat<A>, b: &Col<A>) -> Col<A>
{
let (m, n) = l.dim();
assert!(m == n);
assert!(m == b.dim());
let mut x = vec_elem(zero::<A>(), m as usize);
for (i, bi) in b.indexed_iter() {
// b_lx_sum = b[i] - Sum(for j = 0 .. i) L_ij x_j
let mut b_lx_sum = *bi;
for (lij, xj) in l.row_iter(i).zip(x.iter()).take(i as usize) {
b_lx_sum = b_lx_sum - (*lij) * (*xj)
}
x[i as usize] = b_lx_sum / l[(i, i)];
}
Array::from_vec(x)
}
/// Solve *U x = b* where *U* is an upper triangular matrix.
pub fn subst_bw<A: Copy + Field>(u: &Mat<A>, b: &Col<A>) -> Col<A>
{
let (m, n) = u.dim();
assert!(m == n);
assert!(m == b.dim());
let mut x = vec_elem(zero::<A>(), m as usize);
for i in (0..m).rev() {
// b_ux_sum = b[i] - Sum(for j = i .. m) U_ij x_j
let mut b_ux_sum = b[i];
for (uij, xj) in u.row_iter(i).rev().zip(x.iter().rev()).take((m - i - 1) as usize) {
b_ux_sum = b_ux_sum - (*uij) * (*xj);
}
x[i as usize] = b_ux_sum / u[(i, i)];
}
Array::from_vec(x)
}