revm_interpreter/instructions/
contract.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
mod call_helpers;

pub use call_helpers::{calc_call_gas, get_memory_input_and_out_ranges, resize_memory};

use crate::{
    gas::{self, cost_per_word, EOF_CREATE_GAS, KECCAK256WORD, MIN_CALLEE_GAS},
    interpreter::Interpreter,
    primitives::{
        eof::EofHeader, keccak256, Address, BerlinSpec, Bytes, Eof, Spec, SpecId::*, B256, U256,
    },
    CallInputs, CallScheme, CallValue, CreateInputs, CreateScheme, EOFCreateInputs, Host,
    InstructionResult, InterpreterAction, InterpreterResult, MAX_INITCODE_SIZE,
};
use core::cmp::max;
use std::boxed::Box;

/// EOF Create instruction
pub fn eofcreate<H: Host + ?Sized>(interpreter: &mut Interpreter, _host: &mut H) {
    require_eof!(interpreter);
    require_non_staticcall!(interpreter);
    gas!(interpreter, EOF_CREATE_GAS);
    let initcontainer_index = unsafe { *interpreter.instruction_pointer };
    pop!(interpreter, value, salt, data_offset, data_size);

    let sub_container = interpreter
        .eof()
        .expect("EOF is set")
        .body
        .container_section
        .get(initcontainer_index as usize)
        .cloned()
        .expect("EOF is checked");

    // resize memory and get return range.
    let Some(input_range) = resize_memory(interpreter, data_offset, data_size) else {
        return;
    };

    let input = if !input_range.is_empty() {
        interpreter
            .shared_memory
            .slice_range(input_range)
            .to_vec()
            .into()
    } else {
        Bytes::new()
    };

    let eof = Eof::decode(sub_container.clone()).expect("Subcontainer is verified");

    if !eof.body.is_data_filled {
        // should be always false as it is verified by eof verification.
        panic!("Panic if data section is not full");
    }

    // deduct gas for hash that is needed to calculate address.
    gas_or_fail!(
        interpreter,
        cost_per_word(sub_container.len() as u64, KECCAK256WORD)
    );

    let created_address = interpreter
        .contract
        .target_address
        .create2(salt.to_be_bytes(), keccak256(sub_container));

    let gas_limit = interpreter.gas().remaining_63_of_64_parts();
    gas!(interpreter, gas_limit);
    // Send container for execution container is preverified.
    interpreter.instruction_result = InstructionResult::CallOrCreate;
    interpreter.next_action = InterpreterAction::EOFCreate {
        inputs: Box::new(EOFCreateInputs::new_opcode(
            interpreter.contract.target_address,
            created_address,
            value,
            eof,
            gas_limit,
            input,
        )),
    };

    interpreter.instruction_pointer = unsafe { interpreter.instruction_pointer.offset(1) };
}

pub fn return_contract<H: Host + ?Sized>(interpreter: &mut Interpreter, _host: &mut H) {
    require_init_eof!(interpreter);
    let deploy_container_index = unsafe { *interpreter.instruction_pointer };
    pop!(interpreter, aux_data_offset, aux_data_size);
    let aux_data_size = as_usize_or_fail!(interpreter, aux_data_size);
    // important: offset must be ignored if len is zeros
    let container = interpreter
        .eof()
        .expect("EOF is set")
        .body
        .container_section
        .get(deploy_container_index as usize)
        .expect("EOF is checked")
        .clone();

    // convert to EOF so we can check data section size.
    let (eof_header, _) = EofHeader::decode(&container).expect("valid EOF header");

    let aux_slice = if aux_data_size != 0 {
        let aux_data_offset = as_usize_or_fail!(interpreter, aux_data_offset);
        resize_memory!(interpreter, aux_data_offset, aux_data_size);

        interpreter
            .shared_memory
            .slice(aux_data_offset, aux_data_size)
    } else {
        &[]
    };

    let static_aux_size = eof_header.eof_size() - container.len();

    // data_size - static_aux_size give us current data `container` size.
    // and with aux_slice len we can calculate new data size.
    let new_data_size = eof_header.data_size as usize - static_aux_size + aux_slice.len();
    if new_data_size > 0xFFFF {
        // aux data is too big
        interpreter.instruction_result = InstructionResult::EofAuxDataOverflow;
        return;
    }
    if new_data_size < eof_header.data_size as usize {
        // aux data is too small
        interpreter.instruction_result = InstructionResult::EofAuxDataTooSmall;
        return;
    }
    let new_data_size = (new_data_size as u16).to_be_bytes();

    let mut output = [&container, aux_slice].concat();
    // set new data size in eof bytes as we know exact index.
    output[eof_header.data_size_raw_i()..][..2].clone_from_slice(&new_data_size);
    let output: Bytes = output.into();

    let result = InstructionResult::ReturnContract;
    interpreter.instruction_result = result;
    interpreter.next_action = crate::InterpreterAction::Return {
        result: InterpreterResult {
            output,
            gas: interpreter.gas,
            result,
        },
    };
}

pub fn extcall_input(interpreter: &mut Interpreter) -> Option<Bytes> {
    pop_ret!(interpreter, input_offset, input_size, None);

    let return_memory_offset = resize_memory(interpreter, input_offset, input_size)?;

    if return_memory_offset.is_empty() {
        return Some(Bytes::new());
    }

    Some(Bytes::copy_from_slice(
        interpreter
            .shared_memory
            .slice_range(return_memory_offset.clone()),
    ))
}

pub fn extcall_gas_calc<H: Host + ?Sized>(
    interpreter: &mut Interpreter,
    host: &mut H,
    target: Address,
    transfers_value: bool,
) -> Option<u64> {
    let Some(account_load) = host.load_account_delegated(target) else {
        interpreter.instruction_result = InstructionResult::FatalExternalError;
        return None;
    };
    // account_load.is_empty will be accounted if there is transfer value.
    let call_cost = gas::call_cost(BerlinSpec::SPEC_ID, transfers_value, account_load);
    gas!(interpreter, call_cost, None);

    // 7. Calculate the gas available to callee as caller’s
    // remaining gas reduced by max(ceil(gas/64), MIN_RETAINED_GAS) (MIN_RETAINED_GAS is 5000).
    let gas_reduce = max(interpreter.gas.remaining() / 64, 5000);
    let gas_limit = interpreter.gas().remaining().saturating_sub(gas_reduce);

    // The MIN_CALLEE_GAS rule is a replacement for stipend:
    // it simplifies the reasoning about the gas costs and is
    // applied uniformly for all introduced EXT*CALL instructions.
    //
    // If Gas available to callee is less than MIN_CALLEE_GAS trigger light failure (Same as Revert).
    if gas_limit < MIN_CALLEE_GAS {
        // Push 1 to stack to indicate that call light failed.
        // It is safe to ignore stack overflow error as we already popped multiple values from stack.
        let _ = interpreter.stack_mut().push(U256::from(1));
        interpreter.return_data_buffer.clear();
        // Return none to continue execution.
        return None;
    }

    gas!(interpreter, gas_limit, None);
    Some(gas_limit)
}

/// Pop target address from stack and check if it is valid.
///
/// Valid address has first 12 bytes as zeroes.
#[inline]
pub fn pop_extcall_target_address(interpreter: &mut Interpreter) -> Option<Address> {
    pop_ret!(interpreter, target_address, None);
    let target_address = B256::from(target_address);
    // Check if target is left padded with zeroes.
    if target_address[..12].iter().any(|i| *i != 0) {
        interpreter.instruction_result = InstructionResult::InvalidEXTCALLTarget;
        return None;
    }
    // discard first 12 bytes.
    Some(Address::from_word(target_address))
}

pub fn extcall<H: Host + ?Sized, SPEC: Spec>(interpreter: &mut Interpreter, host: &mut H) {
    require_eof!(interpreter);

    // pop target address
    let Some(target_address) = pop_extcall_target_address(interpreter) else {
        return;
    };

    // input call
    let Some(input) = extcall_input(interpreter) else {
        return;
    };

    pop!(interpreter, value);
    let has_transfer = !value.is_zero();
    if interpreter.is_static && has_transfer {
        interpreter.instruction_result = InstructionResult::CallNotAllowedInsideStatic;
        return;
    }

    let Some(gas_limit) = extcall_gas_calc(interpreter, host, target_address, has_transfer) else {
        return;
    };

    // Call host to interact with target contract
    interpreter.next_action = InterpreterAction::Call {
        inputs: Box::new(CallInputs {
            input,
            gas_limit,
            target_address,
            caller: interpreter.contract.target_address,
            bytecode_address: target_address,
            value: CallValue::Transfer(value),
            scheme: CallScheme::ExtCall,
            is_static: interpreter.is_static,
            is_eof: true,
            return_memory_offset: 0..0,
        }),
    };
    interpreter.instruction_result = InstructionResult::CallOrCreate;
}

pub fn extdelegatecall<H: Host + ?Sized, SPEC: Spec>(interpreter: &mut Interpreter, host: &mut H) {
    require_eof!(interpreter);

    // pop target address
    let Some(target_address) = pop_extcall_target_address(interpreter) else {
        return;
    };

    // input call
    let Some(input) = extcall_input(interpreter) else {
        return;
    };

    let Some(gas_limit) = extcall_gas_calc(interpreter, host, target_address, false) else {
        return;
    };

    // Call host to interact with target contract
    interpreter.next_action = InterpreterAction::Call {
        inputs: Box::new(CallInputs {
            input,
            gas_limit,
            target_address: interpreter.contract.target_address,
            caller: interpreter.contract.caller,
            bytecode_address: target_address,
            value: CallValue::Apparent(interpreter.contract.call_value),
            scheme: CallScheme::ExtDelegateCall,
            is_static: interpreter.is_static,
            is_eof: true,
            return_memory_offset: 0..0,
        }),
    };
    interpreter.instruction_result = InstructionResult::CallOrCreate;
}

pub fn extstaticcall<H: Host + ?Sized>(interpreter: &mut Interpreter, host: &mut H) {
    require_eof!(interpreter);

    // pop target address
    let Some(target_address) = pop_extcall_target_address(interpreter) else {
        return;
    };

    // input call
    let Some(input) = extcall_input(interpreter) else {
        return;
    };

    let Some(gas_limit) = extcall_gas_calc(interpreter, host, target_address, false) else {
        return;
    };

    // Call host to interact with target contract
    interpreter.next_action = InterpreterAction::Call {
        inputs: Box::new(CallInputs {
            input,
            gas_limit,
            target_address,
            caller: interpreter.contract.target_address,
            bytecode_address: target_address,
            value: CallValue::Transfer(U256::ZERO),
            scheme: CallScheme::ExtStaticCall,
            is_static: true,
            is_eof: true,
            return_memory_offset: 0..0,
        }),
    };
    interpreter.instruction_result = InstructionResult::CallOrCreate;
}

pub fn create<const IS_CREATE2: bool, H: Host + ?Sized, SPEC: Spec>(
    interpreter: &mut Interpreter,
    host: &mut H,
) {
    require_non_staticcall!(interpreter);

    // EIP-1014: Skinny CREATE2
    if IS_CREATE2 {
        check!(interpreter, PETERSBURG);
    }

    pop!(interpreter, value, code_offset, len);
    let len = as_usize_or_fail!(interpreter, len);

    let mut code = Bytes::new();
    if len != 0 {
        // EIP-3860: Limit and meter initcode
        if SPEC::enabled(SHANGHAI) {
            // Limit is set as double of max contract bytecode size
            let max_initcode_size = host
                .env()
                .cfg
                .limit_contract_code_size
                .map(|limit| limit.saturating_mul(2))
                .unwrap_or(MAX_INITCODE_SIZE);
            if len > max_initcode_size {
                interpreter.instruction_result = InstructionResult::CreateInitCodeSizeLimit;
                return;
            }
            gas!(interpreter, gas::initcode_cost(len as u64));
        }

        let code_offset = as_usize_or_fail!(interpreter, code_offset);
        resize_memory!(interpreter, code_offset, len);
        code = Bytes::copy_from_slice(interpreter.shared_memory.slice(code_offset, len));
    }

    // EIP-1014: Skinny CREATE2
    let scheme = if IS_CREATE2 {
        pop!(interpreter, salt);
        // SAFETY: len is reasonable in size as gas for it is already deducted.
        gas_or_fail!(interpreter, gas::create2_cost(len.try_into().unwrap()));
        CreateScheme::Create2 { salt }
    } else {
        gas!(interpreter, gas::CREATE);
        CreateScheme::Create
    };

    let mut gas_limit = interpreter.gas().remaining();

    // EIP-150: Gas cost changes for IO-heavy operations
    if SPEC::enabled(TANGERINE) {
        // take remaining gas and deduce l64 part of it.
        gas_limit -= gas_limit / 64
    }
    gas!(interpreter, gas_limit);

    // Call host to interact with target contract
    interpreter.next_action = InterpreterAction::Create {
        inputs: Box::new(CreateInputs {
            caller: interpreter.contract.target_address,
            scheme,
            value,
            init_code: code,
            gas_limit,
        }),
    };
    interpreter.instruction_result = InstructionResult::CallOrCreate;
}

pub fn call<H: Host + ?Sized, SPEC: Spec>(interpreter: &mut Interpreter, host: &mut H) {
    pop!(interpreter, local_gas_limit);
    pop_address!(interpreter, to);
    // max gas limit is not possible in real ethereum situation.
    let local_gas_limit = u64::try_from(local_gas_limit).unwrap_or(u64::MAX);

    pop!(interpreter, value);
    let has_transfer = !value.is_zero();
    if interpreter.is_static && has_transfer {
        interpreter.instruction_result = InstructionResult::CallNotAllowedInsideStatic;
        return;
    }

    let Some((input, return_memory_offset)) = get_memory_input_and_out_ranges(interpreter) else {
        return;
    };

    let Some(account_load) = host.load_account_delegated(to) else {
        interpreter.instruction_result = InstructionResult::FatalExternalError;
        return;
    };
    let Some(mut gas_limit) =
        calc_call_gas::<SPEC>(interpreter, account_load, has_transfer, local_gas_limit)
    else {
        return;
    };

    gas!(interpreter, gas_limit);

    // add call stipend if there is value to be transferred.
    if has_transfer {
        gas_limit = gas_limit.saturating_add(gas::CALL_STIPEND);
    }

    // Call host to interact with target contract
    interpreter.next_action = InterpreterAction::Call {
        inputs: Box::new(CallInputs {
            input,
            gas_limit,
            target_address: to,
            caller: interpreter.contract.target_address,
            bytecode_address: to,
            value: CallValue::Transfer(value),
            scheme: CallScheme::Call,
            is_static: interpreter.is_static,
            is_eof: false,
            return_memory_offset,
        }),
    };
    interpreter.instruction_result = InstructionResult::CallOrCreate;
}

pub fn call_code<H: Host + ?Sized, SPEC: Spec>(interpreter: &mut Interpreter, host: &mut H) {
    pop!(interpreter, local_gas_limit);
    pop_address!(interpreter, to);
    // max gas limit is not possible in real ethereum situation.
    let local_gas_limit = u64::try_from(local_gas_limit).unwrap_or(u64::MAX);

    pop!(interpreter, value);
    let Some((input, return_memory_offset)) = get_memory_input_and_out_ranges(interpreter) else {
        return;
    };

    let Some(mut load) = host.load_account_delegated(to) else {
        interpreter.instruction_result = InstructionResult::FatalExternalError;
        return;
    };
    // set is_empty to false as we are not creating this account.
    load.is_empty = false;
    let Some(mut gas_limit) =
        calc_call_gas::<SPEC>(interpreter, load, !value.is_zero(), local_gas_limit)
    else {
        return;
    };

    gas!(interpreter, gas_limit);

    // add call stipend if there is value to be transferred.
    if !value.is_zero() {
        gas_limit = gas_limit.saturating_add(gas::CALL_STIPEND);
    }

    // Call host to interact with target contract
    interpreter.next_action = InterpreterAction::Call {
        inputs: Box::new(CallInputs {
            input,
            gas_limit,
            target_address: interpreter.contract.target_address,
            caller: interpreter.contract.target_address,
            bytecode_address: to,
            value: CallValue::Transfer(value),
            scheme: CallScheme::CallCode,
            is_static: interpreter.is_static,
            is_eof: false,
            return_memory_offset,
        }),
    };
    interpreter.instruction_result = InstructionResult::CallOrCreate;
}

pub fn delegate_call<H: Host + ?Sized, SPEC: Spec>(interpreter: &mut Interpreter, host: &mut H) {
    check!(interpreter, HOMESTEAD);
    pop!(interpreter, local_gas_limit);
    pop_address!(interpreter, to);
    // max gas limit is not possible in real ethereum situation.
    let local_gas_limit = u64::try_from(local_gas_limit).unwrap_or(u64::MAX);

    let Some((input, return_memory_offset)) = get_memory_input_and_out_ranges(interpreter) else {
        return;
    };

    let Some(mut load) = host.load_account_delegated(to) else {
        interpreter.instruction_result = InstructionResult::FatalExternalError;
        return;
    };
    // set is_empty to false as we are not creating this account.
    load.is_empty = false;
    let Some(gas_limit) = calc_call_gas::<SPEC>(interpreter, load, false, local_gas_limit) else {
        return;
    };

    gas!(interpreter, gas_limit);

    // Call host to interact with target contract
    interpreter.next_action = InterpreterAction::Call {
        inputs: Box::new(CallInputs {
            input,
            gas_limit,
            target_address: interpreter.contract.target_address,
            caller: interpreter.contract.caller,
            bytecode_address: to,
            value: CallValue::Apparent(interpreter.contract.call_value),
            scheme: CallScheme::DelegateCall,
            is_static: interpreter.is_static,
            is_eof: false,
            return_memory_offset,
        }),
    };
    interpreter.instruction_result = InstructionResult::CallOrCreate;
}

pub fn static_call<H: Host + ?Sized, SPEC: Spec>(interpreter: &mut Interpreter, host: &mut H) {
    check!(interpreter, BYZANTIUM);
    pop!(interpreter, local_gas_limit);
    pop_address!(interpreter, to);
    // max gas limit is not possible in real ethereum situation.
    let local_gas_limit = u64::try_from(local_gas_limit).unwrap_or(u64::MAX);

    let Some((input, return_memory_offset)) = get_memory_input_and_out_ranges(interpreter) else {
        return;
    };

    let Some(mut load) = host.load_account_delegated(to) else {
        interpreter.instruction_result = InstructionResult::FatalExternalError;
        return;
    };
    // set is_empty to false as we are not creating this account.
    load.is_empty = false;
    let Some(gas_limit) = calc_call_gas::<SPEC>(interpreter, load, false, local_gas_limit) else {
        return;
    };
    gas!(interpreter, gas_limit);

    // Call host to interact with target contract
    interpreter.next_action = InterpreterAction::Call {
        inputs: Box::new(CallInputs {
            input,
            gas_limit,
            target_address: to,
            caller: interpreter.contract.target_address,
            bytecode_address: to,
            value: CallValue::Transfer(U256::ZERO),
            scheme: CallScheme::StaticCall,
            is_static: true,
            is_eof: false,
            return_memory_offset,
        }),
    };
    interpreter.instruction_result = InstructionResult::CallOrCreate;
}