1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
use super::RbWrap;
use core::{
mem::MaybeUninit,
num::NonZeroUsize,
ops::{Deref, Range},
ptr, slice,
};
#[cfg(feature = "alloc")]
use alloc::{rc::Rc, sync::Arc};
/// Basic ring buffer functionality.
///
/// Provides an access to raw underlying memory and `head`/`tail` counters.
///
/// *It is recommended not to use this trait directly. Use [`Producer`](`crate::Producer`) and [`Consumer`](`crate::Consumer`) instead.*
///
/// # Details
///
/// The ring buffer consists of an array (of `capacity` size) and two counters: `head` and `tail`.
/// When an item is extracted from the ring buffer it is taken from the `head` position and after that `head` is incremented.
/// New item is appended to the `tail` position and `tail` is incremented after that.
///
/// The `head` and `tail` counters are modulo `2 * capacity` (not just `capacity`).
/// It allows us to distinguish situations when the buffer is empty (`head == tail`) and when the buffer is full (`tail - head` modulo `2 * capacity` equals to `capacity`)
/// without using the space for an extra element in container.
/// And obviously we cannot store more than `capacity` items in the buffer, so `tail - head` modulo `2 * capacity` is not allowed to be greater than `capacity`.
pub trait RbBase<T> {
/// Returns underlying raw ring buffer memory as slice.
///
/// # Safety
///
/// Modifications of this data must properly update `head` and `tail` positions.
///
/// *Accessing raw data is extremely unsafe.*
/// It is recommended to use [`Consumer::as_slices`](`crate::Consumer::as_slices`) and [`Producer::free_space_as_slices`](`crate::Producer::free_space_as_slices`) instead.
#[allow(clippy::mut_from_ref)]
unsafe fn data(&self) -> &mut [MaybeUninit<T>];
/// Capacity of the ring buffer.
///
/// It is constant during the whole ring buffer lifetime.
fn capacity(&self) -> NonZeroUsize;
/// Head position.
fn head(&self) -> usize;
/// Tail position.
fn tail(&self) -> usize;
/// Modulus for `head` and `tail` values.
///
/// Equals to `2 * len`.
#[inline]
fn modulus(&self) -> NonZeroUsize {
unsafe { NonZeroUsize::new_unchecked(2 * self.capacity().get()) }
}
/// The number of items stored in the buffer at the moment.
fn occupied_len(&self) -> usize {
let modulus = self.modulus();
(modulus.get() + self.tail() - self.head()) % modulus
}
/// The number of vacant places in the buffer at the moment.
fn vacant_len(&self) -> usize {
let modulus = self.modulus();
(self.capacity().get() + self.head() - self.tail()) % modulus
}
/// Checks if the occupied range is empty.
fn is_empty(&self) -> bool {
self.head() == self.tail()
}
/// Checks if the vacant range is empty.
fn is_full(&self) -> bool {
self.vacant_len() == 0
}
}
/// Ring buffer read end.
///
/// Provides access to occupied memory and mechanism of item extraction.
///
/// *It is recommended not to use this trait directly. Use [`Producer`](`crate::Producer`) and [`Consumer`](`crate::Consumer`) instead.*
pub trait RbRead<T>: RbBase<T> {
/// Sets the new **head** position.
///
/// # Safety
///
/// This call must cohere with ring buffer data modification.
///
/// It is recommended to use `Self::advance_head` instead.
unsafe fn set_head(&self, value: usize);
/// Move **head** position by `count` items forward.
///
/// # Safety
///
/// First `count` items in occupied area must be **initialized** before this call.
///
/// *In debug mode panics if `count` is greater than number of items in the ring buffer.*
unsafe fn advance_head(&self, count: usize) {
debug_assert!(count <= self.occupied_len());
self.set_head((self.head() + count) % self.modulus());
}
/// Returns a pair of ranges of [`Self::occupied_slices`] location in underlying container.
fn occupied_ranges(&self) -> (Range<usize>, Range<usize>) {
let head = self.head();
let tail = self.tail();
let len = self.capacity();
let (head_div, head_mod) = (head / len, head % len);
let (tail_div, tail_mod) = (tail / len, tail % len);
if head_div == tail_div {
(head_mod..tail_mod, 0..0)
} else {
(head_mod..len.get(), 0..tail_mod)
}
}
/// Provides a direct mutable access to the ring buffer occupied memory.
///
/// Returns a pair of slices of stored items, the second one may be empty.
/// Elements with lower indices in slice are older. First slice contains older items that second one.
///
/// # Safety
///
/// All items are initialized. Elements must be removed starting from the beginning of first slice.
/// When all items are removed from the first slice then items must be removed from the beginning of the second slice.
///
/// *This method must be followed by [`Self::advance_head`] call with the number of items being removed previously as argument.*
/// *No other mutating calls allowed before that.*
unsafe fn occupied_slices(&self) -> (&mut [MaybeUninit<T>], &mut [MaybeUninit<T>]) {
let ranges = self.occupied_ranges();
let ptr = self.data().as_mut_ptr();
(
slice::from_raw_parts_mut(ptr.add(ranges.0.start), ranges.0.len()),
slice::from_raw_parts_mut(ptr.add(ranges.1.start), ranges.1.len()),
)
}
/// Removes items from the head of ring buffer and drops them.
///
/// + If `count_or_all` is `Some(count)` then exactly `count` items will be removed.
/// *In debug mode panics if `count` is greater than number of items stored in the buffer.*
/// + If `count_or_all` is `None` then all items in ring buffer will be removed.
/// *If there is concurring producer activity then the buffer may be not empty after this call.*
///
/// Returns the number of removed items.
///
/// # Safety
///
/// Must not be called concurrently.
unsafe fn skip(&self, count_or_all: Option<usize>) -> usize {
let (left, right) = self.occupied_slices();
let count = match count_or_all {
Some(count) => {
debug_assert!(count <= left.len() + right.len());
count
}
None => left.len() + right.len(),
};
for elem in left.iter_mut().chain(right.iter_mut()).take(count) {
ptr::drop_in_place(elem.as_mut_ptr());
}
self.advance_head(count);
count
}
}
/// Ring buffer write end.
///
/// Provides access to vacant memory and mechanism of item insertion.
///
/// *It is recommended not to use this trait directly. Use [`Producer`](`crate::Producer`) and [`Consumer`](`crate::Consumer`) instead.*
pub trait RbWrite<T>: RbBase<T> {
/// Sets the new **tail** position.
///
/// # Safety
///
/// This call must cohere with ring buffer data modification.
///
/// It is recommended to use `Self::advance_tail` instead.
unsafe fn set_tail(&self, value: usize);
/// Move **tail** position by `count` items forward.
///
/// # Safety
///
/// First `count` items in vacant area must be **de-initialized** (dropped) before this call.
///
/// *In debug mode panics if `count` is greater than number of vacant places in the ring buffer.*
unsafe fn advance_tail(&self, count: usize) {
debug_assert!(count <= self.vacant_len());
self.set_tail((self.tail() + count) % self.modulus());
}
/// Returns a pair of ranges of [`Self::vacant_slices`] location in underlying container.
fn vacant_ranges(&self) -> (Range<usize>, Range<usize>) {
let head = self.head();
let tail = self.tail();
let len = self.capacity();
let (head_div, head_mod) = (head / len, head % len);
let (tail_div, tail_mod) = (tail / len, tail % len);
if head_div == tail_div {
(tail_mod..len.get(), 0..head_mod)
} else {
(tail_mod..head_mod, 0..0)
}
}
/// Provides a direct access to the ring buffer vacant memory.
/// Returns a pair of slices of uninitialized memory, the second one may be empty.
///
/// # Safety
///
/// Vacant memory is uninitialized. Initialized items must be put starting from the beginning of first slice.
/// When first slice is fully filled then items must be put to the beginning of the second slice.
///
/// *This method must be followed by [`Self::advance_tail`] call with the number of items being put previously as argument.*
/// *No other mutating calls allowed before that.*
unsafe fn vacant_slices(&self) -> (&mut [MaybeUninit<T>], &mut [MaybeUninit<T>]) {
let ranges = self.vacant_ranges();
let ptr = self.data().as_mut_ptr();
(
slice::from_raw_parts_mut(ptr.add(ranges.0.start), ranges.0.len()),
slice::from_raw_parts_mut(ptr.add(ranges.1.start), ranges.1.len()),
)
}
}
/// An abstract ring buffer.
pub trait Rb<T>: RbRead<T> + RbWrite<T> {}
/// An abstract reference to the ring buffer.
pub trait RbRef: Deref<Target = Self::Rb> {
type Rb;
}
impl<B> RbRef for RbWrap<B> {
type Rb = B;
}
impl<'a, B> RbRef for &'a B {
type Rb = B;
}
#[cfg(feature = "alloc")]
impl<B> RbRef for Rc<B> {
type Rb = B;
}
#[cfg(feature = "alloc")]
impl<B> RbRef for Arc<B> {
type Rb = B;
}