1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984
use crate::vec::VecResolver;
use crate::{
ser::{ScratchSpace, Serializer},
vec::ArchivedVec,
Archive, Archived, Serialize,
};
#[cfg(not(feature = "std"))]
use ::alloc::{alloc, boxed::Box, vec::Vec};
use core::borrow::{Borrow, BorrowMut};
use core::{
fmt,
ops::{Deref, DerefMut, Index, IndexMut},
ptr::NonNull,
slice,
};
#[cfg(feature = "std")]
use std::{alloc, io};
/// A vector of bytes that aligns its memory to 16 bytes.
///
/// The alignment also applies to `ArchivedAlignedVec`, which is useful for aligning opaque bytes inside of an archived data
/// type.
///
/// ```
/// # use rkyv::{archived_value, AlignedBytes, AlignedVec, Archive, Serialize};
/// # use rkyv::ser::Serializer;
/// # use rkyv::ser::serializers::CoreSerializer;
/// #
/// #[derive(Archive, Serialize)]
/// struct HasAlignedBytes {
/// pub bytes: AlignedVec,
/// }
///
/// let mut serializer = CoreSerializer::<256, 0>::default();
///
/// // Write a single byte to force re-alignment.
/// serializer.write(&[0]).unwrap();
/// assert_eq!(serializer.pos(), 1);
///
/// let mut bytes = AlignedVec::new();
/// bytes.extend_from_slice(&[1, 2, 3]);
/// let pos = serializer.serialize_value(&HasAlignedBytes { bytes }).unwrap();
///
/// // Make sure we can recover the archived type with the expected alignment.
/// let buf = serializer.into_serializer().into_inner();
/// let archived = unsafe { archived_value::<HasAlignedBytes>(buf.as_ref(), pos) };
/// assert_eq!(archived.bytes.as_slice(), &[1, 2, 3]);
/// assert_eq!(archived.bytes.as_ptr().align_offset(16), 0);
/// ```
pub struct AlignedVec {
ptr: NonNull<u8>,
cap: usize,
len: usize,
}
impl Drop for AlignedVec {
#[inline]
fn drop(&mut self) {
if self.cap != 0 {
unsafe {
alloc::dealloc(self.ptr.as_ptr(), self.layout());
}
}
}
}
impl AlignedVec {
/// The alignment of the vector
pub const ALIGNMENT: usize = 16;
/// Maximum capacity of the vector.
/// Dictated by the requirements of
/// [`alloc::Layout`](https://doc.rust-lang.org/alloc/alloc/struct.Layout.html).
/// "`size`, when rounded up to the nearest multiple of `align`, must not overflow `isize`
/// (i.e. the rounded value must be less than or equal to `isize::MAX`)".
pub const MAX_CAPACITY: usize = isize::MAX as usize - (Self::ALIGNMENT - 1);
/// Constructs a new, empty `AlignedVec`.
///
/// The vector will not allocate until elements are pushed into it.
///
/// # Examples
/// ```
/// use rkyv::AlignedVec;
///
/// let mut vec = AlignedVec::new();
/// ```
#[inline]
pub fn new() -> Self {
AlignedVec {
ptr: NonNull::dangling(),
cap: 0,
len: 0,
}
}
/// Constructs a new, empty `AlignedVec` with the specified capacity.
///
/// The vector will be able to hold exactly `capacity` bytes without reallocating. If
/// `capacity` is 0, the vector will not allocate.
///
/// # Examples
/// ```
/// use rkyv::AlignedVec;
///
/// let mut vec = AlignedVec::with_capacity(10);
///
/// // The vector contains no items, even though it has capacity for more
/// assert_eq!(vec.len(), 0);
/// assert_eq!(vec.capacity(), 10);
///
/// // These are all done without reallocating...
/// for i in 0..10 {
/// vec.push(i);
/// }
/// assert_eq!(vec.len(), 10);
/// assert_eq!(vec.capacity(), 10);
///
/// // ...but this may make the vector reallocate
/// vec.push(11);
/// assert_eq!(vec.len(), 11);
/// assert!(vec.capacity() >= 11);
/// ```
#[inline]
pub fn with_capacity(capacity: usize) -> Self {
if capacity == 0 {
Self::new()
} else {
assert!(
capacity <= Self::MAX_CAPACITY,
"`capacity` cannot exceed isize::MAX - 15"
);
let ptr = unsafe {
let layout = alloc::Layout::from_size_align_unchecked(capacity, Self::ALIGNMENT);
let ptr = alloc::alloc(layout);
if ptr.is_null() {
alloc::handle_alloc_error(layout);
}
NonNull::new_unchecked(ptr)
};
Self {
ptr,
cap: capacity,
len: 0,
}
}
}
#[inline]
fn layout(&self) -> alloc::Layout {
unsafe { alloc::Layout::from_size_align_unchecked(self.cap, Self::ALIGNMENT) }
}
/// Clears the vector, removing all values.
///
/// Note that this method has no effect on the allocated capacity of the vector.
///
/// # Examples
/// ```
/// use rkyv::AlignedVec;
///
/// let mut v = AlignedVec::new();
/// v.extend_from_slice(&[1, 2, 3, 4]);
///
/// v.clear();
///
/// assert!(v.is_empty());
/// ```
#[inline]
pub fn clear(&mut self) {
self.len = 0;
}
/// Change capacity of vector.
///
/// Will set capacity to exactly `new_cap`.
/// Can be used to either grow or shrink capacity.
/// Backing memory will be reallocated.
///
/// Usually the safe methods `reserve` or `reserve_exact` are a better choice.
/// This method only exists as a micro-optimization for very performance-sensitive
/// code where where the calculation of capacity required has already been
/// performed, and you want to avoid doing it again, or if you want to implement
/// a different growth strategy.
///
/// # Safety
///
/// - `new_cap` must be less than or equal to [`MAX_CAPACITY`](AlignedVec::MAX_CAPACITY)
/// - `new_cap` must be greater than or equal to [`len()`](AlignedVec::len)
#[inline]
pub unsafe fn change_capacity(&mut self, new_cap: usize) {
debug_assert!(new_cap <= Self::MAX_CAPACITY);
debug_assert!(new_cap >= self.len);
if new_cap > 0 {
let new_ptr = if self.cap > 0 {
let new_ptr = alloc::realloc(self.ptr.as_ptr(), self.layout(), new_cap);
if new_ptr.is_null() {
alloc::handle_alloc_error(alloc::Layout::from_size_align_unchecked(
new_cap,
Self::ALIGNMENT,
));
}
new_ptr
} else {
let layout = alloc::Layout::from_size_align_unchecked(new_cap, Self::ALIGNMENT);
let new_ptr = alloc::alloc(layout);
if new_ptr.is_null() {
alloc::handle_alloc_error(layout);
}
new_ptr
};
self.ptr = NonNull::new_unchecked(new_ptr);
self.cap = new_cap;
} else if self.cap > 0 {
alloc::dealloc(self.ptr.as_ptr(), self.layout());
self.ptr = NonNull::dangling();
self.cap = 0;
}
}
/// Shrinks the capacity of the vector as much as possible.
///
/// It will drop down as close as possible to the length but the allocator may still inform the
/// vector that there is space for a few more elements.
///
/// # Examples
/// ```
/// use rkyv::AlignedVec;
///
/// let mut vec = AlignedVec::with_capacity(10);
/// vec.extend_from_slice(&[1, 2, 3]);
/// assert_eq!(vec.capacity(), 10);
/// vec.shrink_to_fit();
/// assert!(vec.capacity() >= 3);
///
/// vec.clear();
/// vec.shrink_to_fit();
/// assert!(vec.capacity() == 0);
/// ```
#[inline]
pub fn shrink_to_fit(&mut self) {
if self.cap != self.len {
// New capacity cannot exceed max as it's shrinking
unsafe { self.change_capacity(self.len) };
}
}
/// Returns an unsafe mutable pointer to the vector's buffer.
///
/// The caller must ensure that the vector outlives the pointer this function returns, or else
/// it will end up pointing to garbage. Modifying the vector may cause its buffer to be
/// reallocated, which would also make any pointers to it invalid.
///
/// # Examples
/// ```
/// use rkyv::AlignedVec;
///
/// // Allocate vecotr big enough for 4 bytes.
/// let size = 4;
/// let mut x = AlignedVec::with_capacity(size);
/// let x_ptr = x.as_mut_ptr();
///
/// // Initialize elements via raw pointer writes, then set length.
/// unsafe {
/// for i in 0..size {
/// *x_ptr.add(i) = i as u8;
/// }
/// x.set_len(size);
/// }
/// assert_eq!(&*x, &[0, 1, 2, 3]);
/// ```
#[inline]
pub fn as_mut_ptr(&mut self) -> *mut u8 {
self.ptr.as_ptr()
}
/// Extracts a mutable slice of the entire vector.
///
/// Equivalent to `&mut s[..]`.
///
/// # Examples
/// ```
/// use rkyv::AlignedVec;
///
/// let mut vec = AlignedVec::new();
/// vec.extend_from_slice(&[1, 2, 3, 4, 5]);
/// assert_eq!(vec.as_mut_slice().len(), 5);
/// for i in 0..5 {
/// assert_eq!(vec.as_mut_slice()[i], i as u8 + 1);
/// vec.as_mut_slice()[i] = i as u8;
/// assert_eq!(vec.as_mut_slice()[i], i as u8);
/// }
/// ```
#[inline]
pub fn as_mut_slice(&mut self) -> &mut [u8] {
unsafe { slice::from_raw_parts_mut(self.ptr.as_ptr(), self.len) }
}
/// Returns a raw pointer to the vector's buffer.
///
/// The caller must ensure that the vector outlives the pointer this function returns, or else
/// it will end up pointing to garbage. Modifying the vector may cause its buffer to be
/// reallocated, which would also make any pointers to it invalid.
///
/// The caller must also ensure that the memory the pointer (non-transitively) points to is
/// never written to (except inside an `UnsafeCell`) using this pointer or any pointer derived
/// from it. If you need to mutate the contents of the slice, use
/// [`as_mut_ptr`](AlignedVec::as_mut_ptr).
///
/// # Examples
/// ```
/// use rkyv::AlignedVec;
///
/// let mut x = AlignedVec::new();
/// x.extend_from_slice(&[1, 2, 4]);
/// let x_ptr = x.as_ptr();
///
/// unsafe {
/// for i in 0..x.len() {
/// assert_eq!(*x_ptr.add(i), 1 << i);
/// }
/// }
/// ```
#[inline]
pub fn as_ptr(&self) -> *const u8 {
self.ptr.as_ptr()
}
/// Extracts a slice containing the entire vector.
///
/// Equivalent to `&s[..]`.
///
/// # Examples
/// ```
/// use rkyv::AlignedVec;
///
/// let mut vec = AlignedVec::new();
/// vec.extend_from_slice(&[1, 2, 3, 4, 5]);
/// assert_eq!(vec.as_slice().len(), 5);
/// for i in 0..5 {
/// assert_eq!(vec.as_slice()[i], i as u8 + 1);
/// }
/// ```
#[inline]
pub fn as_slice(&self) -> &[u8] {
unsafe { slice::from_raw_parts(self.ptr.as_ptr(), self.len) }
}
/// Returns the number of elements the vector can hold without reallocating.
///
/// # Examples
/// ```
/// use rkyv::AlignedVec;
///
/// let vec = AlignedVec::with_capacity(10);
/// assert_eq!(vec.capacity(), 10);
/// ```
#[inline]
pub fn capacity(&self) -> usize {
self.cap
}
/// Reserves capacity for at least `additional` more bytes to be inserted into the given
/// `AlignedVec`. The collection may reserve more space to avoid frequent reallocations. After
/// calling `reserve`, capacity will be greater than or equal to `self.len() + additional`. Does
/// nothing if capacity is already sufficient.
///
/// # Panics
///
/// Panics if the new capacity exceeds `isize::MAX - 15` bytes.
///
/// # Examples
/// ```
/// use rkyv::AlignedVec;
///
/// let mut vec = AlignedVec::new();
/// vec.push(1);
/// vec.reserve(10);
/// assert!(vec.capacity() >= 11);
/// ```
#[inline]
pub fn reserve(&mut self, additional: usize) {
// Cannot wrap because capacity always exceeds len,
// but avoids having to handle potential overflow here
let remaining = self.cap.wrapping_sub(self.len);
if additional > remaining {
self.do_reserve(additional);
}
}
/// Extend capacity after `reserve` has found it's necessary.
///
/// Actually performing the extension is in this separate function marked
/// `#[cold]` to hint to compiler that this branch is not often taken.
/// This keeps the path for common case where capacity is already sufficient
/// as fast as possible, and makes `reserve` more likely to be inlined.
/// This is the same trick that Rust's `Vec::reserve` uses.
#[cold]
fn do_reserve(&mut self, additional: usize) {
let new_cap = self
.len
.checked_add(additional)
.expect("cannot reserve a larger AlignedVec");
unsafe { self.grow_capacity_to(new_cap) };
}
/// Grows total capacity of vector to `new_cap` or more.
///
/// Capacity after this call will be `new_cap` rounded up to next power of 2,
/// unless that would exceed maximum capacity, in which case capacity
/// is capped at the maximum.
///
/// This is same growth strategy used by `reserve`, `push` and `extend_from_slice`.
///
/// Usually the safe methods `reserve` or `reserve_exact` are a better choice.
/// This method only exists as a micro-optimization for very performance-sensitive
/// code where where the calculation of capacity required has already been
/// performed, and you want to avoid doing it again.
///
/// Maximum capacity is `isize::MAX - 15` bytes.
///
/// # Panics
///
/// Panics if `new_cap` exceeds `isize::MAX - 15` bytes.
///
/// # Safety
///
/// - `new_cap` must be greater than current [`capacity()`](AlignedVec::capacity)
///
/// # Examples
/// ```
/// use rkyv::AlignedVec;
///
/// let mut vec = AlignedVec::new();
/// vec.push(1);
/// unsafe { vec.grow_capacity_to(50) };
/// assert_eq!(vec.len(), 1);
/// assert_eq!(vec.capacity(), 64);
/// ```
#[inline]
pub unsafe fn grow_capacity_to(&mut self, new_cap: usize) {
debug_assert!(new_cap > self.cap);
let new_cap = if new_cap > (isize::MAX as usize + 1) >> 1 {
// Rounding up to next power of 2 would result in `isize::MAX + 1` or higher,
// which exceeds max capacity. So cap at max instead.
assert!(
new_cap <= Self::MAX_CAPACITY,
"cannot reserve a larger AlignedVec"
);
Self::MAX_CAPACITY
} else {
// Cannot overflow due to check above
new_cap.next_power_of_two()
};
self.change_capacity(new_cap);
}
/// Resizes the Vec in-place so that len is equal to new_len.
///
/// If new_len is greater than len, the Vec is extended by the difference, with each additional slot filled with value. If new_len is less than len, the Vec is simply truncated.
///
/// # Panics
///
/// Panics if the new length exceeds `isize::MAX - 15` bytes.
///
/// # Examples
/// ```
/// use rkyv::AlignedVec;
///
/// let mut vec = AlignedVec::new();
/// vec.push(3);
/// vec.resize(3, 2);
/// assert_eq!(vec.as_slice(), &[3, 2, 2]);
///
/// let mut vec = AlignedVec::new();
/// vec.extend_from_slice(&[1, 2, 3, 4]);
/// vec.resize(2, 0);
/// assert_eq!(vec.as_slice(), &[1, 2]);
/// ```
#[inline]
pub fn resize(&mut self, new_len: usize, value: u8) {
if new_len > self.len {
let additional = new_len - self.len;
self.reserve(additional);
unsafe {
core::ptr::write_bytes(self.ptr.as_ptr().add(self.len), value, additional);
}
}
unsafe {
self.set_len(new_len);
}
}
/// Returns `true` if the vector contains no elements.
///
/// # Examples
/// ```
/// use rkyv::AlignedVec;
///
/// let mut v = Vec::new();
/// assert!(v.is_empty());
///
/// v.push(1);
/// assert!(!v.is_empty());
/// ```
#[inline]
pub fn is_empty(&self) -> bool {
self.len == 0
}
/// Returns the number of elements in the vector, also referred to as its 'length'.
///
/// # Examples
/// ```
/// use rkyv::AlignedVec;
///
/// let mut a = AlignedVec::new();
/// a.extend_from_slice(&[1, 2, 3]);
/// assert_eq!(a.len(), 3);
/// ```
#[inline]
pub fn len(&self) -> usize {
self.len
}
/// Copies and appends all bytes in a slice to the `AlignedVec`.
///
/// The elements of the slice are appended in-order.
///
/// # Examples
/// ```
/// use rkyv::AlignedVec;
///
/// let mut vec = AlignedVec::new();
/// vec.push(1);
/// vec.extend_from_slice(&[2, 3, 4]);
/// assert_eq!(vec.as_slice(), &[1, 2, 3, 4]);
/// ```
#[inline]
pub fn extend_from_slice(&mut self, other: &[u8]) {
if !other.is_empty() {
self.reserve(other.len());
unsafe {
core::ptr::copy_nonoverlapping(
other.as_ptr(),
self.as_mut_ptr().add(self.len()),
other.len(),
);
}
self.len += other.len();
}
}
/// Removes the last element from a vector and returns it, or `None` if it is empty.
///
/// # Examples
/// ```
/// use rkyv::AlignedVec;
///
/// let mut vec = AlignedVec::new();
/// vec.extend_from_slice(&[1, 2, 3]);
/// assert_eq!(vec.pop(), Some(3));
/// assert_eq!(vec.as_slice(), &[1, 2]);
/// ```
#[inline]
pub fn pop(&mut self) -> Option<u8> {
if self.len == 0 {
None
} else {
let result = self[self.len - 1];
self.len -= 1;
Some(result)
}
}
/// Appends an element to the back of a collection.
///
/// # Panics
///
/// Panics if the new capacity exceeds `isize::MAX - 15` bytes.
///
/// # Examples
/// ```
/// use rkyv::AlignedVec;
///
/// let mut vec = AlignedVec::new();
/// vec.extend_from_slice(&[1, 2]);
/// vec.push(3);
/// assert_eq!(vec.as_slice(), &[1, 2, 3]);
/// ```
#[inline]
pub fn push(&mut self, value: u8) {
if self.len == self.cap {
self.reserve_for_push();
}
unsafe {
self.as_mut_ptr().add(self.len).write(value);
self.len += 1;
}
}
/// Extend capacity by at least 1 byte after `push` has found it's necessary.
///
/// Actually performing the extension is in this separate function marked
/// `#[cold]` to hint to compiler that this branch is not often taken.
/// This keeps the path for common case where capacity is already sufficient
/// as fast as possible, and makes `push` more likely to be inlined.
/// This is the same trick that Rust's `Vec::push` uses.
#[cold]
fn reserve_for_push(&mut self) {
// `len` is always less than `isize::MAX`, so no possibility of overflow here
let new_cap = self.len + 1;
unsafe { self.grow_capacity_to(new_cap) };
}
/// Reserves the minimum capacity for exactly `additional` more elements to be inserted in the
/// given `AlignedVec`. After calling `reserve_exact`, capacity will be greater than or equal
/// to `self.len() + additional`. Does nothing if the capacity is already sufficient.
///
/// Note that the allocator may give the collection more space than it requests. Therefore,
/// capacity can not be relied upon to be precisely minimal. Prefer reserve if future insertions
/// are expected.
///
/// # Panics
///
/// Panics if the new capacity overflows `isize::MAX - 15`.
///
/// # Examples
/// ```
/// use rkyv::AlignedVec;
///
/// let mut vec = AlignedVec::new();
/// vec.push(1);
/// vec.reserve_exact(10);
/// assert!(vec.capacity() >= 11);
/// ```
#[inline]
pub fn reserve_exact(&mut self, additional: usize) {
// This function does not use the hot/cold paths trick that `reserve`
// and `push` do, on assumption that user probably knows this will require
// an increase in capacity. Otherwise, they'd likely use `reserve`.
let new_cap = self
.len
.checked_add(additional)
.expect("cannot reserve a larger AlignedVec");
if new_cap > self.cap {
assert!(
new_cap <= Self::MAX_CAPACITY,
"cannot reserve a larger AlignedVec"
);
unsafe { self.change_capacity(new_cap) };
}
}
/// Forces the length of the vector to `new_len`.
///
/// This is a low-level operation that maintains none of the normal invariants of the type.
///
/// # Safety
///
/// - `new_len` must be less than or equal to [`capacity()`](AlignedVec::capacity)
/// - The elements at `old_len..new_len` must be initialized
///
/// # Examples
/// ```
/// use rkyv::AlignedVec;
///
/// let mut vec = AlignedVec::with_capacity(3);
/// vec.extend_from_slice(&[1, 2, 3]);
///
/// // SAFETY:
/// // 1. `old_len..0` is empty to no elements need to be initialized.
/// // 2. `0 <= capacity` always holds whatever capacity is.
/// unsafe {
/// vec.set_len(0);
/// }
/// ```
#[inline]
pub unsafe fn set_len(&mut self, new_len: usize) {
debug_assert!(new_len <= self.capacity());
self.len = new_len;
}
/// Converts the vector into `Box<[u8]>`.
///
/// This method reallocates and copies the underlying bytes. Any excess capacity is dropped.
///
/// # Examples
/// ```
/// use rkyv::AlignedVec;
///
/// let mut v = AlignedVec::new();
/// v.extend_from_slice(&[1, 2, 3]);
///
/// let slice = v.into_boxed_slice();
/// ```
///
/// Any excess capacity is removed:
///
/// ```
/// use rkyv::AlignedVec;
///
/// let mut vec = AlignedVec::with_capacity(10);
/// vec.extend_from_slice(&[1, 2, 3]);
///
/// assert_eq!(vec.capacity(), 10);
/// let slice = vec.into_boxed_slice();
/// assert_eq!(slice.len(), 3);
/// ```
#[inline]
pub fn into_boxed_slice(self) -> Box<[u8]> {
self.into_vec().into_boxed_slice()
}
/// Converts the vector into `Vec<u8>`.
///
/// This method reallocates and copies the underlying bytes. Any excess capacity is dropped.
///
/// # Examples
/// ```
/// use rkyv::AlignedVec;
///
/// let mut v = AlignedVec::new();
/// v.extend_from_slice(&[1, 2, 3]);
///
/// let vec = v.into_vec();
/// assert_eq!(vec.len(), 3);
/// assert_eq!(vec.as_slice(), &[1, 2, 3]);
/// ```
#[inline]
pub fn into_vec(self) -> Vec<u8> {
Vec::from(self.as_ref())
}
}
#[cfg(feature = "std")]
const _: () = {
use std::io::{ErrorKind, Read};
impl AlignedVec {
/// Reads all bytes until EOF from `r` and appends them to this `AlignedVec`.
///
/// If successful, this function will return the total number of bytes read.
///
/// # Examples
/// ```
/// use rkyv::AlignedVec;
///
/// let source = (0..4096).map(|x| (x % 256) as u8).collect::<Vec<_>>();
/// let mut bytes = AlignedVec::new();
/// bytes.extend_from_reader(&mut source.as_slice()).unwrap();
///
/// assert_eq!(bytes.len(), 4096);
/// assert_eq!(bytes[0], 0);
/// assert_eq!(bytes[100], 100);
/// assert_eq!(bytes[2945], 129);
/// ```
pub fn extend_from_reader<R: Read + ?Sized>(
&mut self,
r: &mut R,
) -> std::io::Result<usize> {
let start_len = self.len();
let start_cap = self.capacity();
// Extra initialized bytes from previous loop iteration.
let mut initialized = 0;
loop {
if self.len() == self.capacity() {
// No available capacity, reserve some space.
self.reserve(32);
}
let read_buf_start = unsafe { self.as_mut_ptr().add(self.len) };
let read_buf_len = self.capacity() - self.len();
// Initialize the uninitialized portion of the available space.
unsafe {
// The first `initialized` bytes don't need to be zeroed.
// This leaves us `read_buf_len - initialized` bytes to zero
// starting at `initialized`.
core::ptr::write_bytes(
read_buf_start.add(initialized),
0,
read_buf_len - initialized,
);
}
// The entire read buffer is now initialized, so we can create a
// mutable slice of it.
let read_buf =
unsafe { core::slice::from_raw_parts_mut(read_buf_start, read_buf_len) };
match r.read(read_buf) {
Ok(read) => {
// We filled `read` additional bytes.
unsafe {
self.set_len(self.len() + read);
}
initialized = read_buf_len - read;
if read == 0 {
return Ok(self.len() - start_len);
}
}
Err(e) if e.kind() == ErrorKind::Interrupted => continue,
Err(e) => return Err(e),
}
if self.len() == self.capacity() && self.capacity() == start_cap {
// The buffer might be an exact fit. Let's read into a probe buffer
// and see if it returns `Ok(0)`. If so, we've avoided an
// unnecessary doubling of the capacity. But if not, append the
// probe buffer to the primary buffer and let its capacity grow.
let mut probe = [0u8; 32];
loop {
match r.read(&mut probe) {
Ok(0) => return Ok(self.len() - start_len),
Ok(n) => {
self.extend_from_slice(&probe[..n]);
break;
}
Err(ref e) if e.kind() == ErrorKind::Interrupted => continue,
Err(e) => return Err(e),
}
}
}
}
}
}
};
impl From<AlignedVec> for Vec<u8> {
#[inline]
fn from(aligned: AlignedVec) -> Self {
aligned.to_vec()
}
}
impl Archive for AlignedVec {
type Archived = ArchivedVec<u8>;
type Resolver = VecResolver;
#[inline]
unsafe fn resolve(&self, pos: usize, resolver: Self::Resolver, out: *mut Self::Archived) {
ArchivedVec::resolve_from_slice(self.as_slice(), pos, resolver, out);
}
}
impl AsMut<[u8]> for AlignedVec {
#[inline]
fn as_mut(&mut self) -> &mut [u8] {
self.as_mut_slice()
}
}
impl AsRef<[u8]> for AlignedVec {
#[inline]
fn as_ref(&self) -> &[u8] {
self.as_slice()
}
}
impl Borrow<[u8]> for AlignedVec {
#[inline]
fn borrow(&self) -> &[u8] {
self.as_slice()
}
}
impl BorrowMut<[u8]> for AlignedVec {
#[inline]
fn borrow_mut(&mut self) -> &mut [u8] {
self.as_mut_slice()
}
}
impl Clone for AlignedVec {
#[inline]
fn clone(&self) -> Self {
unsafe {
let mut result = AlignedVec::with_capacity(self.len);
result.len = self.len;
core::ptr::copy_nonoverlapping(self.as_ptr(), result.as_mut_ptr(), self.len);
result
}
}
}
impl fmt::Debug for AlignedVec {
#[inline]
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
self.as_slice().fmt(f)
}
}
impl Default for AlignedVec {
#[inline]
fn default() -> Self {
Self::new()
}
}
impl Deref for AlignedVec {
type Target = [u8];
#[inline]
fn deref(&self) -> &Self::Target {
self.as_slice()
}
}
impl DerefMut for AlignedVec {
#[inline]
fn deref_mut(&mut self) -> &mut Self::Target {
self.as_mut_slice()
}
}
impl<I: slice::SliceIndex<[u8]>> Index<I> for AlignedVec {
type Output = <I as slice::SliceIndex<[u8]>>::Output;
#[inline]
fn index(&self, index: I) -> &Self::Output {
&self.as_slice()[index]
}
}
impl<I: slice::SliceIndex<[u8]>> IndexMut<I> for AlignedVec {
#[inline]
fn index_mut(&mut self, index: I) -> &mut Self::Output {
&mut self.as_mut_slice()[index]
}
}
#[cfg(feature = "std")]
impl io::Write for AlignedVec {
#[inline]
fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
self.extend_from_slice(buf);
Ok(buf.len())
}
#[inline]
fn write_vectored(&mut self, bufs: &[io::IoSlice<'_>]) -> io::Result<usize> {
let len = bufs.iter().map(|b| b.len()).sum();
self.reserve(len);
for buf in bufs {
self.extend_from_slice(buf);
}
Ok(len)
}
#[inline]
fn write_all(&mut self, buf: &[u8]) -> io::Result<()> {
self.extend_from_slice(buf);
Ok(())
}
fn flush(&mut self) -> io::Result<()> {
Ok(())
}
}
// SAFETY: AlignedVec is safe to send to another thread
unsafe impl Send for AlignedVec {}
impl<S: ScratchSpace + Serializer + ?Sized> Serialize<S> for AlignedVec {
#[inline]
fn serialize(&self, serializer: &mut S) -> Result<Self::Resolver, S::Error> {
serializer.align(Self::ALIGNMENT)?;
ArchivedVec::<Archived<u8>>::serialize_from_slice(self.as_slice(), serializer)
}
}
// SAFETY: AlignedVec is safe to share between threads
unsafe impl Sync for AlignedVec {}
impl Unpin for AlignedVec {}