1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
use crate::vec::VecResolver;
use crate::{
    ser::{ScratchSpace, Serializer},
    vec::ArchivedVec,
    Archive, Archived, Serialize,
};

#[cfg(not(feature = "std"))]
use ::alloc::{alloc, boxed::Box, vec::Vec};
use core::borrow::{Borrow, BorrowMut};
use core::{
    fmt,
    ops::{Deref, DerefMut, Index, IndexMut},
    ptr::NonNull,
    slice,
};
#[cfg(feature = "std")]
use std::{alloc, io};

/// A vector of bytes that aligns its memory to 16 bytes.
///
/// The alignment also applies to `ArchivedAlignedVec`, which is useful for aligning opaque bytes inside of an archived data
/// type.
///
/// ```
/// # use rkyv::{archived_value, AlignedBytes, AlignedVec, Archive, Serialize};
/// # use rkyv::ser::Serializer;
/// # use rkyv::ser::serializers::CoreSerializer;
/// #
/// #[derive(Archive, Serialize)]
/// struct HasAlignedBytes {
///     pub bytes: AlignedVec,
/// }
///
/// let mut serializer = CoreSerializer::<256, 0>::default();
///
/// // Write a single byte to force re-alignment.
/// serializer.write(&[0]).unwrap();
/// assert_eq!(serializer.pos(), 1);
///
/// let mut bytes = AlignedVec::new();
/// bytes.extend_from_slice(&[1, 2, 3]);
/// let pos = serializer.serialize_value(&HasAlignedBytes { bytes }).unwrap();
///
/// // Make sure we can recover the archived type with the expected alignment.
/// let buf = serializer.into_serializer().into_inner();
/// let archived = unsafe { archived_value::<HasAlignedBytes>(buf.as_ref(), pos) };
/// assert_eq!(archived.bytes.as_slice(), &[1, 2, 3]);
/// assert_eq!(archived.bytes.as_ptr().align_offset(16), 0);
/// ```
pub struct AlignedVec {
    ptr: NonNull<u8>,
    cap: usize,
    len: usize,
}

impl Drop for AlignedVec {
    #[inline]
    fn drop(&mut self) {
        if self.cap != 0 {
            unsafe {
                alloc::dealloc(self.ptr.as_ptr(), self.layout());
            }
        }
    }
}

impl AlignedVec {
    /// The alignment of the vector
    pub const ALIGNMENT: usize = 16;

    /// Maximum capacity of the vector.
    /// Dictated by the requirements of
    /// [`alloc::Layout`](https://doc.rust-lang.org/alloc/alloc/struct.Layout.html).
    /// "`size`, when rounded up to the nearest multiple of `align`, must not overflow `isize`
    /// (i.e. the rounded value must be less than or equal to `isize::MAX`)".
    pub const MAX_CAPACITY: usize = isize::MAX as usize - (Self::ALIGNMENT - 1);

    /// Constructs a new, empty `AlignedVec`.
    ///
    /// The vector will not allocate until elements are pushed into it.
    ///
    /// # Examples
    /// ```
    /// use rkyv::AlignedVec;
    ///
    /// let mut vec = AlignedVec::new();
    /// ```
    #[inline]
    pub fn new() -> Self {
        AlignedVec {
            ptr: NonNull::dangling(),
            cap: 0,
            len: 0,
        }
    }

    /// Constructs a new, empty `AlignedVec` with the specified capacity.
    ///
    /// The vector will be able to hold exactly `capacity` bytes without reallocating. If
    /// `capacity` is 0, the vector will not allocate.
    ///
    /// # Examples
    /// ```
    /// use rkyv::AlignedVec;
    ///
    /// let mut vec = AlignedVec::with_capacity(10);
    ///
    /// // The vector contains no items, even though it has capacity for more
    /// assert_eq!(vec.len(), 0);
    /// assert_eq!(vec.capacity(), 10);
    ///
    /// // These are all done without reallocating...
    /// for i in 0..10 {
    ///     vec.push(i);
    /// }
    /// assert_eq!(vec.len(), 10);
    /// assert_eq!(vec.capacity(), 10);
    ///
    /// // ...but this may make the vector reallocate
    /// vec.push(11);
    /// assert_eq!(vec.len(), 11);
    /// assert!(vec.capacity() >= 11);
    /// ```
    #[inline]
    pub fn with_capacity(capacity: usize) -> Self {
        if capacity == 0 {
            Self::new()
        } else {
            assert!(
                capacity <= Self::MAX_CAPACITY,
                "`capacity` cannot exceed isize::MAX - 15"
            );
            let ptr = unsafe {
                let layout = alloc::Layout::from_size_align_unchecked(capacity, Self::ALIGNMENT);
                let ptr = alloc::alloc(layout);
                if ptr.is_null() {
                    alloc::handle_alloc_error(layout);
                }
                NonNull::new_unchecked(ptr)
            };
            Self {
                ptr,
                cap: capacity,
                len: 0,
            }
        }
    }

    #[inline]
    fn layout(&self) -> alloc::Layout {
        unsafe { alloc::Layout::from_size_align_unchecked(self.cap, Self::ALIGNMENT) }
    }

    /// Clears the vector, removing all values.
    ///
    /// Note that this method has no effect on the allocated capacity of the vector.
    ///
    /// # Examples
    /// ```
    /// use rkyv::AlignedVec;
    ///
    /// let mut v = AlignedVec::new();
    /// v.extend_from_slice(&[1, 2, 3, 4]);
    ///
    /// v.clear();
    ///
    /// assert!(v.is_empty());
    /// ```
    #[inline]
    pub fn clear(&mut self) {
        self.len = 0;
    }

    /// Change capacity of vector.
    ///
    /// Will set capacity to exactly `new_cap`.
    /// Can be used to either grow or shrink capacity.
    /// Backing memory will be reallocated.
    ///
    /// Usually the safe methods `reserve` or `reserve_exact` are a better choice.
    /// This method only exists as a micro-optimization for very performance-sensitive
    /// code where where the calculation of capacity required has already been
    /// performed, and you want to avoid doing it again, or if you want to implement
    /// a different growth strategy.
    ///
    /// # Safety
    ///
    /// - `new_cap` must be less than or equal to [`MAX_CAPACITY`](AlignedVec::MAX_CAPACITY)
    /// - `new_cap` must be greater than or equal to [`len()`](AlignedVec::len)
    #[inline]
    pub unsafe fn change_capacity(&mut self, new_cap: usize) {
        debug_assert!(new_cap <= Self::MAX_CAPACITY);
        debug_assert!(new_cap >= self.len);

        if new_cap > 0 {
            let new_ptr = if self.cap > 0 {
                let new_ptr = alloc::realloc(self.ptr.as_ptr(), self.layout(), new_cap);
                if new_ptr.is_null() {
                    alloc::handle_alloc_error(alloc::Layout::from_size_align_unchecked(
                        new_cap,
                        Self::ALIGNMENT,
                    ));
                }
                new_ptr
            } else {
                let layout = alloc::Layout::from_size_align_unchecked(new_cap, Self::ALIGNMENT);
                let new_ptr = alloc::alloc(layout);
                if new_ptr.is_null() {
                    alloc::handle_alloc_error(layout);
                }
                new_ptr
            };
            self.ptr = NonNull::new_unchecked(new_ptr);
            self.cap = new_cap;
        } else if self.cap > 0 {
            alloc::dealloc(self.ptr.as_ptr(), self.layout());
            self.ptr = NonNull::dangling();
            self.cap = 0;
        }
    }

    /// Shrinks the capacity of the vector as much as possible.
    ///
    /// It will drop down as close as possible to the length but the allocator may still inform the
    /// vector that there is space for a few more elements.
    ///
    /// # Examples
    /// ```
    /// use rkyv::AlignedVec;
    ///
    /// let mut vec = AlignedVec::with_capacity(10);
    /// vec.extend_from_slice(&[1, 2, 3]);
    /// assert_eq!(vec.capacity(), 10);
    /// vec.shrink_to_fit();
    /// assert!(vec.capacity() >= 3);
    ///
    /// vec.clear();
    /// vec.shrink_to_fit();
    /// assert!(vec.capacity() == 0);
    /// ```
    #[inline]
    pub fn shrink_to_fit(&mut self) {
        if self.cap != self.len {
            // New capacity cannot exceed max as it's shrinking
            unsafe { self.change_capacity(self.len) };
        }
    }

    /// Returns an unsafe mutable pointer to the vector's buffer.
    ///
    /// The caller must ensure that the vector outlives the pointer this function returns, or else
    /// it will end up pointing to garbage. Modifying the vector may cause its buffer to be
    /// reallocated, which would also make any pointers to it invalid.
    ///
    /// # Examples
    /// ```
    /// use rkyv::AlignedVec;
    ///
    /// // Allocate vecotr big enough for 4 bytes.
    /// let size = 4;
    /// let mut x = AlignedVec::with_capacity(size);
    /// let x_ptr = x.as_mut_ptr();
    ///
    /// // Initialize elements via raw pointer writes, then set length.
    /// unsafe {
    ///     for i in 0..size {
    ///         *x_ptr.add(i) = i as u8;
    ///     }
    ///     x.set_len(size);
    /// }
    /// assert_eq!(&*x, &[0, 1, 2, 3]);
    /// ```
    #[inline]
    pub fn as_mut_ptr(&mut self) -> *mut u8 {
        self.ptr.as_ptr()
    }

    /// Extracts a mutable slice of the entire vector.
    ///
    /// Equivalent to `&mut s[..]`.
    ///
    /// # Examples
    /// ```
    /// use rkyv::AlignedVec;
    ///
    /// let mut vec = AlignedVec::new();
    /// vec.extend_from_slice(&[1, 2, 3, 4, 5]);
    /// assert_eq!(vec.as_mut_slice().len(), 5);
    /// for i in 0..5 {
    ///     assert_eq!(vec.as_mut_slice()[i], i as u8 + 1);
    ///     vec.as_mut_slice()[i] = i as u8;
    ///     assert_eq!(vec.as_mut_slice()[i], i as u8);
    /// }
    /// ```
    #[inline]
    pub fn as_mut_slice(&mut self) -> &mut [u8] {
        unsafe { slice::from_raw_parts_mut(self.ptr.as_ptr(), self.len) }
    }

    /// Returns a raw pointer to the vector's buffer.
    ///
    /// The caller must ensure that the vector outlives the pointer this function returns, or else
    /// it will end up pointing to garbage. Modifying the vector may cause its buffer to be
    /// reallocated, which would also make any pointers to it invalid.
    ///
    /// The caller must also ensure that the memory the pointer (non-transitively) points to is
    /// never written to (except inside an `UnsafeCell`) using this pointer or any pointer derived
    /// from it. If you need to mutate the contents of the slice, use
    /// [`as_mut_ptr`](AlignedVec::as_mut_ptr).
    ///
    /// # Examples
    /// ```
    /// use rkyv::AlignedVec;
    ///
    /// let mut x = AlignedVec::new();
    /// x.extend_from_slice(&[1, 2, 4]);
    /// let x_ptr = x.as_ptr();
    ///
    /// unsafe {
    ///     for i in 0..x.len() {
    ///         assert_eq!(*x_ptr.add(i), 1 << i);
    ///     }
    /// }
    /// ```
    #[inline]
    pub fn as_ptr(&self) -> *const u8 {
        self.ptr.as_ptr()
    }

    /// Extracts a slice containing the entire vector.
    ///
    /// Equivalent to `&s[..]`.
    ///
    /// # Examples
    /// ```
    /// use rkyv::AlignedVec;
    ///
    /// let mut vec = AlignedVec::new();
    /// vec.extend_from_slice(&[1, 2, 3, 4, 5]);
    /// assert_eq!(vec.as_slice().len(), 5);
    /// for i in 0..5 {
    ///     assert_eq!(vec.as_slice()[i], i as u8 + 1);
    /// }
    /// ```
    #[inline]
    pub fn as_slice(&self) -> &[u8] {
        unsafe { slice::from_raw_parts(self.ptr.as_ptr(), self.len) }
    }

    /// Returns the number of elements the vector can hold without reallocating.
    ///
    /// # Examples
    /// ```
    /// use rkyv::AlignedVec;
    ///
    /// let vec = AlignedVec::with_capacity(10);
    /// assert_eq!(vec.capacity(), 10);
    /// ```
    #[inline]
    pub fn capacity(&self) -> usize {
        self.cap
    }

    /// Reserves capacity for at least `additional` more bytes to be inserted into the given
    /// `AlignedVec`. The collection may reserve more space to avoid frequent reallocations. After
    /// calling `reserve`, capacity will be greater than or equal to `self.len() + additional`. Does
    /// nothing if capacity is already sufficient.
    ///
    /// # Panics
    ///
    /// Panics if the new capacity exceeds `isize::MAX - 15` bytes.
    ///
    /// # Examples
    /// ```
    /// use rkyv::AlignedVec;
    ///
    /// let mut vec = AlignedVec::new();
    /// vec.push(1);
    /// vec.reserve(10);
    /// assert!(vec.capacity() >= 11);
    /// ```
    #[inline]
    pub fn reserve(&mut self, additional: usize) {
        // Cannot wrap because capacity always exceeds len,
        // but avoids having to handle potential overflow here
        let remaining = self.cap.wrapping_sub(self.len);
        if additional > remaining {
            self.do_reserve(additional);
        }
    }

    /// Extend capacity after `reserve` has found it's necessary.
    ///
    /// Actually performing the extension is in this separate function marked
    /// `#[cold]` to hint to compiler that this branch is not often taken.
    /// This keeps the path for common case where capacity is already sufficient
    /// as fast as possible, and makes `reserve` more likely to be inlined.
    /// This is the same trick that Rust's `Vec::reserve` uses.
    #[cold]
    fn do_reserve(&mut self, additional: usize) {
        let new_cap = self
            .len
            .checked_add(additional)
            .expect("cannot reserve a larger AlignedVec");
        unsafe { self.grow_capacity_to(new_cap) };
    }

    /// Grows total capacity of vector to `new_cap` or more.
    ///
    /// Capacity after this call will be `new_cap` rounded up to next power of 2,
    /// unless that would exceed maximum capacity, in which case capacity
    /// is capped at the maximum.
    ///
    /// This is same growth strategy used by `reserve`, `push` and `extend_from_slice`.
    ///
    /// Usually the safe methods `reserve` or `reserve_exact` are a better choice.
    /// This method only exists as a micro-optimization for very performance-sensitive
    /// code where where the calculation of capacity required has already been
    /// performed, and you want to avoid doing it again.
    ///
    /// Maximum capacity is `isize::MAX - 15` bytes.
    ///
    /// # Panics
    ///
    /// Panics if `new_cap` exceeds `isize::MAX - 15` bytes.
    ///
    /// # Safety
    ///
    /// - `new_cap` must be greater than current [`capacity()`](AlignedVec::capacity)
    ///
    /// # Examples
    /// ```
    /// use rkyv::AlignedVec;
    ///
    /// let mut vec = AlignedVec::new();
    /// vec.push(1);
    /// unsafe { vec.grow_capacity_to(50) };
    /// assert_eq!(vec.len(), 1);
    /// assert_eq!(vec.capacity(), 64);
    /// ```
    #[inline]
    pub unsafe fn grow_capacity_to(&mut self, new_cap: usize) {
        debug_assert!(new_cap > self.cap);

        let new_cap = if new_cap > (isize::MAX as usize + 1) >> 1 {
            // Rounding up to next power of 2 would result in `isize::MAX + 1` or higher,
            // which exceeds max capacity. So cap at max instead.
            assert!(
                new_cap <= Self::MAX_CAPACITY,
                "cannot reserve a larger AlignedVec"
            );
            Self::MAX_CAPACITY
        } else {
            // Cannot overflow due to check above
            new_cap.next_power_of_two()
        };
        self.change_capacity(new_cap);
    }

    /// Resizes the Vec in-place so that len is equal to new_len.
    ///
    /// If new_len is greater than len, the Vec is extended by the difference, with each additional slot filled with value. If new_len is less than len, the Vec is simply truncated.
    ///
    /// # Panics
    ///
    /// Panics if the new length exceeds `isize::MAX - 15` bytes.
    ///
    /// # Examples
    /// ```
    /// use rkyv::AlignedVec;
    ///
    /// let mut vec = AlignedVec::new();
    /// vec.push(3);
    /// vec.resize(3, 2);
    /// assert_eq!(vec.as_slice(), &[3, 2, 2]);
    ///
    /// let mut vec = AlignedVec::new();
    /// vec.extend_from_slice(&[1, 2, 3, 4]);
    /// vec.resize(2, 0);
    /// assert_eq!(vec.as_slice(), &[1, 2]);
    /// ```
    #[inline]
    pub fn resize(&mut self, new_len: usize, value: u8) {
        if new_len > self.len {
            let additional = new_len - self.len;
            self.reserve(additional);
            unsafe {
                core::ptr::write_bytes(self.ptr.as_ptr().add(self.len), value, additional);
            }
        }
        unsafe {
            self.set_len(new_len);
        }
    }

    /// Returns `true` if the vector contains no elements.
    ///
    /// # Examples
    /// ```
    /// use rkyv::AlignedVec;
    ///
    /// let mut v = Vec::new();
    /// assert!(v.is_empty());
    ///
    /// v.push(1);
    /// assert!(!v.is_empty());
    /// ```
    #[inline]
    pub fn is_empty(&self) -> bool {
        self.len == 0
    }

    /// Returns the number of elements in the vector, also referred to as its 'length'.
    ///
    /// # Examples
    /// ```
    /// use rkyv::AlignedVec;
    ///
    /// let mut a = AlignedVec::new();
    /// a.extend_from_slice(&[1, 2, 3]);
    /// assert_eq!(a.len(), 3);
    /// ```
    #[inline]
    pub fn len(&self) -> usize {
        self.len
    }

    /// Copies and appends all bytes in a slice to the `AlignedVec`.
    ///
    /// The elements of the slice are appended in-order.
    ///
    /// # Examples
    /// ```
    /// use rkyv::AlignedVec;
    ///
    /// let mut vec = AlignedVec::new();
    /// vec.push(1);
    /// vec.extend_from_slice(&[2, 3, 4]);
    /// assert_eq!(vec.as_slice(), &[1, 2, 3, 4]);
    /// ```
    #[inline]
    pub fn extend_from_slice(&mut self, other: &[u8]) {
        if !other.is_empty() {
            self.reserve(other.len());
            unsafe {
                core::ptr::copy_nonoverlapping(
                    other.as_ptr(),
                    self.as_mut_ptr().add(self.len()),
                    other.len(),
                );
            }
            self.len += other.len();
        }
    }

    /// Removes the last element from a vector and returns it, or `None` if it is empty.
    ///
    /// # Examples
    /// ```
    /// use rkyv::AlignedVec;
    ///
    /// let mut vec = AlignedVec::new();
    /// vec.extend_from_slice(&[1, 2, 3]);
    /// assert_eq!(vec.pop(), Some(3));
    /// assert_eq!(vec.as_slice(), &[1, 2]);
    /// ```
    #[inline]
    pub fn pop(&mut self) -> Option<u8> {
        if self.len == 0 {
            None
        } else {
            let result = self[self.len - 1];
            self.len -= 1;
            Some(result)
        }
    }

    /// Appends an element to the back of a collection.
    ///
    /// # Panics
    ///
    /// Panics if the new capacity exceeds `isize::MAX - 15` bytes.
    ///
    /// # Examples
    /// ```
    /// use rkyv::AlignedVec;
    ///
    /// let mut vec = AlignedVec::new();
    /// vec.extend_from_slice(&[1, 2]);
    /// vec.push(3);
    /// assert_eq!(vec.as_slice(), &[1, 2, 3]);
    /// ```
    #[inline]
    pub fn push(&mut self, value: u8) {
        if self.len == self.cap {
            self.reserve_for_push();
        }

        unsafe {
            self.as_mut_ptr().add(self.len).write(value);
            self.len += 1;
        }
    }

    /// Extend capacity by at least 1 byte after `push` has found it's necessary.
    ///
    /// Actually performing the extension is in this separate function marked
    /// `#[cold]` to hint to compiler that this branch is not often taken.
    /// This keeps the path for common case where capacity is already sufficient
    /// as fast as possible, and makes `push` more likely to be inlined.
    /// This is the same trick that Rust's `Vec::push` uses.
    #[cold]
    fn reserve_for_push(&mut self) {
        // `len` is always less than `isize::MAX`, so no possibility of overflow here
        let new_cap = self.len + 1;
        unsafe { self.grow_capacity_to(new_cap) };
    }

    /// Reserves the minimum capacity for exactly `additional` more elements to be inserted in the
    /// given `AlignedVec`. After calling `reserve_exact`, capacity will be greater than or equal
    /// to `self.len() + additional`. Does nothing if the capacity is already sufficient.
    ///
    /// Note that the allocator may give the collection more space than it requests. Therefore,
    /// capacity can not be relied upon to be precisely minimal. Prefer reserve if future insertions
    /// are expected.
    ///
    /// # Panics
    ///
    /// Panics if the new capacity overflows `isize::MAX - 15`.
    ///
    /// # Examples
    /// ```
    /// use rkyv::AlignedVec;
    ///
    /// let mut vec = AlignedVec::new();
    /// vec.push(1);
    /// vec.reserve_exact(10);
    /// assert!(vec.capacity() >= 11);
    /// ```
    #[inline]
    pub fn reserve_exact(&mut self, additional: usize) {
        // This function does not use the hot/cold paths trick that `reserve`
        // and `push` do, on assumption that user probably knows this will require
        // an increase in capacity. Otherwise, they'd likely use `reserve`.
        let new_cap = self
            .len
            .checked_add(additional)
            .expect("cannot reserve a larger AlignedVec");
        if new_cap > self.cap {
            assert!(
                new_cap <= Self::MAX_CAPACITY,
                "cannot reserve a larger AlignedVec"
            );
            unsafe { self.change_capacity(new_cap) };
        }
    }

    /// Forces the length of the vector to `new_len`.
    ///
    /// This is a low-level operation that maintains none of the normal invariants of the type.
    ///
    /// # Safety
    ///
    /// - `new_len` must be less than or equal to [`capacity()`](AlignedVec::capacity)
    /// - The elements at `old_len..new_len` must be initialized
    ///
    /// # Examples
    /// ```
    /// use rkyv::AlignedVec;
    ///
    /// let mut vec = AlignedVec::with_capacity(3);
    /// vec.extend_from_slice(&[1, 2, 3]);
    ///
    /// // SAFETY:
    /// // 1. `old_len..0` is empty to no elements need to be initialized.
    /// // 2. `0 <= capacity` always holds whatever capacity is.
    /// unsafe {
    ///     vec.set_len(0);
    /// }
    /// ```
    #[inline]
    pub unsafe fn set_len(&mut self, new_len: usize) {
        debug_assert!(new_len <= self.capacity());

        self.len = new_len;
    }

    /// Converts the vector into `Box<[u8]>`.
    ///
    /// This method reallocates and copies the underlying bytes. Any excess capacity is dropped.
    ///
    /// # Examples
    /// ```
    /// use rkyv::AlignedVec;
    ///
    /// let mut v = AlignedVec::new();
    /// v.extend_from_slice(&[1, 2, 3]);
    ///
    /// let slice = v.into_boxed_slice();
    /// ```
    ///
    /// Any excess capacity is removed:
    ///
    /// ```
    /// use rkyv::AlignedVec;
    ///
    /// let mut vec = AlignedVec::with_capacity(10);
    /// vec.extend_from_slice(&[1, 2, 3]);
    ///
    /// assert_eq!(vec.capacity(), 10);
    /// let slice = vec.into_boxed_slice();
    /// assert_eq!(slice.len(), 3);
    /// ```
    #[inline]
    pub fn into_boxed_slice(self) -> Box<[u8]> {
        self.into_vec().into_boxed_slice()
    }

    /// Converts the vector into `Vec<u8>`.
    ///
    /// This method reallocates and copies the underlying bytes. Any excess capacity is dropped.
    ///
    /// # Examples
    /// ```
    /// use rkyv::AlignedVec;
    ///
    /// let mut v = AlignedVec::new();
    /// v.extend_from_slice(&[1, 2, 3]);
    ///
    /// let vec = v.into_vec();
    /// assert_eq!(vec.len(), 3);
    /// assert_eq!(vec.as_slice(), &[1, 2, 3]);
    /// ```
    #[inline]
    pub fn into_vec(self) -> Vec<u8> {
        Vec::from(self.as_ref())
    }
}

#[cfg(feature = "std")]
const _: () = {
    use std::io::{ErrorKind, Read};

    impl AlignedVec {
        /// Reads all bytes until EOF from `r` and appends them to this `AlignedVec`.
        ///
        /// If successful, this function will return the total number of bytes read.
        ///
        /// # Examples
        /// ```
        /// use rkyv::AlignedVec;
        ///
        /// let source = (0..4096).map(|x| (x % 256) as u8).collect::<Vec<_>>();
        /// let mut bytes = AlignedVec::new();
        /// bytes.extend_from_reader(&mut source.as_slice()).unwrap();
        ///
        /// assert_eq!(bytes.len(), 4096);
        /// assert_eq!(bytes[0], 0);
        /// assert_eq!(bytes[100], 100);
        /// assert_eq!(bytes[2945], 129);
        /// ```
        pub fn extend_from_reader<R: Read + ?Sized>(
            &mut self,
            r: &mut R,
        ) -> std::io::Result<usize> {
            let start_len = self.len();
            let start_cap = self.capacity();

            // Extra initialized bytes from previous loop iteration.
            let mut initialized = 0;
            loop {
                if self.len() == self.capacity() {
                    // No available capacity, reserve some space.
                    self.reserve(32);
                }

                let read_buf_start = unsafe { self.as_mut_ptr().add(self.len) };
                let read_buf_len = self.capacity() - self.len();

                // Initialize the uninitialized portion of the available space.
                unsafe {
                    // The first `initialized` bytes don't need to be zeroed.
                    // This leaves us `read_buf_len - initialized` bytes to zero
                    // starting at `initialized`.
                    core::ptr::write_bytes(
                        read_buf_start.add(initialized),
                        0,
                        read_buf_len - initialized,
                    );
                }

                // The entire read buffer is now initialized, so we can create a
                // mutable slice of it.
                let read_buf =
                    unsafe { core::slice::from_raw_parts_mut(read_buf_start, read_buf_len) };

                match r.read(read_buf) {
                    Ok(read) => {
                        // We filled `read` additional bytes.
                        unsafe {
                            self.set_len(self.len() + read);
                        }
                        initialized = read_buf_len - read;

                        if read == 0 {
                            return Ok(self.len() - start_len);
                        }
                    }
                    Err(e) if e.kind() == ErrorKind::Interrupted => continue,
                    Err(e) => return Err(e),
                }

                if self.len() == self.capacity() && self.capacity() == start_cap {
                    // The buffer might be an exact fit. Let's read into a probe buffer
                    // and see if it returns `Ok(0)`. If so, we've avoided an
                    // unnecessary doubling of the capacity. But if not, append the
                    // probe buffer to the primary buffer and let its capacity grow.
                    let mut probe = [0u8; 32];

                    loop {
                        match r.read(&mut probe) {
                            Ok(0) => return Ok(self.len() - start_len),
                            Ok(n) => {
                                self.extend_from_slice(&probe[..n]);
                                break;
                            }
                            Err(ref e) if e.kind() == ErrorKind::Interrupted => continue,
                            Err(e) => return Err(e),
                        }
                    }
                }
            }
        }
    }
};

impl From<AlignedVec> for Vec<u8> {
    #[inline]
    fn from(aligned: AlignedVec) -> Self {
        aligned.to_vec()
    }
}

impl Archive for AlignedVec {
    type Archived = ArchivedVec<u8>;
    type Resolver = VecResolver;

    #[inline]
    unsafe fn resolve(&self, pos: usize, resolver: Self::Resolver, out: *mut Self::Archived) {
        ArchivedVec::resolve_from_slice(self.as_slice(), pos, resolver, out);
    }
}

impl AsMut<[u8]> for AlignedVec {
    #[inline]
    fn as_mut(&mut self) -> &mut [u8] {
        self.as_mut_slice()
    }
}

impl AsRef<[u8]> for AlignedVec {
    #[inline]
    fn as_ref(&self) -> &[u8] {
        self.as_slice()
    }
}

impl Borrow<[u8]> for AlignedVec {
    #[inline]
    fn borrow(&self) -> &[u8] {
        self.as_slice()
    }
}

impl BorrowMut<[u8]> for AlignedVec {
    #[inline]
    fn borrow_mut(&mut self) -> &mut [u8] {
        self.as_mut_slice()
    }
}

impl Clone for AlignedVec {
    #[inline]
    fn clone(&self) -> Self {
        unsafe {
            let mut result = AlignedVec::with_capacity(self.len);
            result.len = self.len;
            core::ptr::copy_nonoverlapping(self.as_ptr(), result.as_mut_ptr(), self.len);
            result
        }
    }
}

impl fmt::Debug for AlignedVec {
    #[inline]
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        self.as_slice().fmt(f)
    }
}

impl Default for AlignedVec {
    #[inline]
    fn default() -> Self {
        Self::new()
    }
}

impl Deref for AlignedVec {
    type Target = [u8];

    #[inline]
    fn deref(&self) -> &Self::Target {
        self.as_slice()
    }
}

impl DerefMut for AlignedVec {
    #[inline]
    fn deref_mut(&mut self) -> &mut Self::Target {
        self.as_mut_slice()
    }
}

impl<I: slice::SliceIndex<[u8]>> Index<I> for AlignedVec {
    type Output = <I as slice::SliceIndex<[u8]>>::Output;

    #[inline]
    fn index(&self, index: I) -> &Self::Output {
        &self.as_slice()[index]
    }
}

impl<I: slice::SliceIndex<[u8]>> IndexMut<I> for AlignedVec {
    #[inline]
    fn index_mut(&mut self, index: I) -> &mut Self::Output {
        &mut self.as_mut_slice()[index]
    }
}

#[cfg(feature = "std")]
impl io::Write for AlignedVec {
    #[inline]
    fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
        self.extend_from_slice(buf);
        Ok(buf.len())
    }

    #[inline]
    fn write_vectored(&mut self, bufs: &[io::IoSlice<'_>]) -> io::Result<usize> {
        let len = bufs.iter().map(|b| b.len()).sum();
        self.reserve(len);
        for buf in bufs {
            self.extend_from_slice(buf);
        }
        Ok(len)
    }

    #[inline]
    fn write_all(&mut self, buf: &[u8]) -> io::Result<()> {
        self.extend_from_slice(buf);
        Ok(())
    }

    fn flush(&mut self) -> io::Result<()> {
        Ok(())
    }
}

// SAFETY: AlignedVec is safe to send to another thread
unsafe impl Send for AlignedVec {}

impl<S: ScratchSpace + Serializer + ?Sized> Serialize<S> for AlignedVec {
    #[inline]
    fn serialize(&self, serializer: &mut S) -> Result<Self::Resolver, S::Error> {
        serializer.align(Self::ALIGNMENT)?;
        ArchivedVec::<Archived<u8>>::serialize_from_slice(self.as_slice(), serializer)
    }
}

// SAFETY: AlignedVec is safe to share between threads
unsafe impl Sync for AlignedVec {}

impl Unpin for AlignedVec {}