rs_opw_kinematics/constraints.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
//! Joint limit support
use std::f64::consts::PI;
use std::f64::INFINITY;
use std::ops::RangeInclusive;
use rand::Rng;
use crate::kinematic_traits::{Joints, JOINTS_AT_ZERO};
use crate::utils::deg;
#[derive(Clone, Debug, Copy)]
pub struct Constraints {
/// Normalized lower limit. If more than upper limit, the range wraps-around through 0
pub from: [f64; 6],
/// Normalized upper limit. If less than lower limit, the range wraps-around through 0
pub to: [f64; 6],
// Constraint centers. Used in distance from constraints based sorting.
pub centers: [f64; 6],
// How far from the center the value could be
pub tolerances: [f64; 6],
/// Used when sorting the solutions by both middle values of the constraints and the previous
/// values of the joints. 1.0 gives the absolute priority to constraints, 0.0. gives
/// absolute priority for joints.
pub sorting_weight: f64,
}
/// When sorting solutions, give absolute priority to constraints (the closer to the midrange
/// of constraints, the better)
pub const BY_CONSTRAINS: f64 = 1.0;
/// When sorting solutions, give absolute priority to previous joints values (the closer to the
/// previous value, the better).
pub const BY_PREV: f64 = 0.0;
const TWO_PI: f64 = 2.0 * PI;
impl Constraints {
/// Create constraints that restrict the joint rotations between 'from' to 'to' values.
/// Wrapping arround is supported so order is important. For instance,
/// from = 0.1 and to = 0.2 (radians) means the joint
/// is allowed to rotate to 0.11, 0.12 ... 1.99, 0.2.
/// from = 0.2 ant to = 0.1 is also valid but means the joint is allowed to rotate
/// to 0.21, 0.22, 0.99, 2 * PI or 0.0 (wrapping around), then to 0.09 and finally 0.1,
/// so the other side of the circle. The sorting_weight parameter influences sorting of the
/// results: 0.0 (or BY_PREV) gives absolute priority to the previous values of the joints,
/// 1.0 (or BY_CONSTRAINTS) gives absolute priority to the middle values of constraints.
/// Intermediate values like 0.5 provide the weighted compromise.
pub fn new(from: Joints, to: Joints, sorting_weight: f64) -> Self {
let (centers, tolerances) = Self::compute_centers(from, to);
Constraints {
from: from,
to: to,
centers: centers,
tolerances: tolerances,
sorting_weight: sorting_weight,
}
}
/// Initializes `Constraints` from an array of 6 ranges (`RangeInclusive<f64>`),
/// where each range specifies the `from` (start) and `to` (end) values for each joint.
/// This is convenience method, where VALUES MUST BE GIVEN IN DEGREES.
///
/// # Parameters
/// - `ranges`: An array of 6 `RangeInclusive<f64>` values, each representing a range for one joint.
/// - The start of each range is taken as the `from` bound.
/// - The end of each range is taken as the `to` bound.
/// - `sorting_weight`: A `f64` value representing the sorting weight for the constraint.
///
/// # Returns
/// A new instance of `Constraints` with `from`, `to`, `centers`, and `tolerances` calculated
/// based on the specified ranges.
///
/// # Example
/// ```
/// use rs_opw_kinematics::constraints::{Constraints, BY_PREV};
/// let constraints = Constraints::from_degrees(
/// [0.0..=90.0, 45.0..=135.0, -90.0..=90.0, 0.0..=180.0, -45.0..=45.0, -180.0..=180.0],
/// BY_PREV);
/// ```
pub fn from_degrees(ranges: [RangeInclusive<f64>; 6], sorting_weight: f64) -> Self {
let from: Joints = [
ranges[0].start().to_radians(),
ranges[1].start().to_radians(),
ranges[2].start().to_radians(),
ranges[3].start().to_radians(),
ranges[4].start().to_radians(),
ranges[5].start().to_radians(),
];
let to: Joints = [
ranges[0].end().to_radians(),
ranges[1].end().to_radians(),
ranges[2].end().to_radians(),
ranges[3].end().to_radians(),
ranges[4].end().to_radians(),
ranges[5].end().to_radians(),
];
let (centers, tolerances) = Self::compute_centers(from, to);
Constraints {
from,
to,
centers,
tolerances,
sorting_weight,
}
}
fn compute_centers(from: Joints, to: Joints) -> (Joints, Joints) {
let mut centers: Joints = JOINTS_AT_ZERO;
let mut tolerances: Joints = JOINTS_AT_ZERO;
for j_idx in 0..6 {
let a = from[j_idx];
let mut b = to[j_idx];
if a == b {
tolerances[j_idx] = INFINITY; // No constraint, not checked
} else if a < b {
// Values do not wrap arround
centers[j_idx] = (a + b) / 2.0;
tolerances[j_idx] = (b - a) / 2.0;
} else {
// Values wrap arround. Move b forward by period till it gets ahead.
while b < a {
b = b + TWO_PI;
}
centers[j_idx] = (a + b) / 2.0;
tolerances[j_idx] = (b - a) / 2.0;
}
}
(centers, tolerances)
}
pub fn update_range(&mut self, from: Joints, to: Joints) {
let (centers, tolerances) = Self::compute_centers(from, to);
self.from = from;
self.to = to;
self.centers = centers;
self.tolerances = tolerances;
// This method does not change the sorting weight.
}
fn inside_bounds(angle1: f64, angle2: f64, tolerance: f64) -> bool {
if tolerance.is_infinite() {
return false;
}
let mut difference = (angle1 - angle2).abs();
difference = difference % TWO_PI;
if difference > PI {
difference = TWO_PI - difference;
}
difference <= tolerance
}
/// Checks if all values in the given vector or angles satisfy these constraints.
pub fn compliant(&self, angles: &[f64; 6]) -> bool {
let ok = angles.iter().enumerate().all(|(i, &angle)| {
// '!' is used to negate the condition from 'out_of_bounds' directly in the 'all' call.
Self::inside_bounds(angle, self.centers[i], self.tolerances[i])
});
ok
}
/// Return new vector of angle arrays, removing all that have members not satisfying these
/// constraints.
pub fn filter(&self, angles: &Vec<[f64; 6]>) -> Vec<[f64; 6]> {
angles.into_iter()
.filter(|angle_array| self.compliant(&angle_array))
.cloned()
.collect()
}
pub fn to_yaml(&self) -> String {
format!(
"constraints:\n \
from: [{}]\n \
to: [{}]\n",
self.from.iter().map(|x| deg(x))
.collect::<Vec<_>>().join(", "),
self.to.iter().map(|x| deg(x))
.collect::<Vec<_>>().join(", ")
)
}
/// Generate a random valid angle within the defined constraints for each joint.
pub fn random_angles(&self) -> Joints {
fn random_angle(from: f64, to: f64) -> f64 {
let mut rng = rand::thread_rng();
let random_angle = if from < to {
// Direct generation when `from` is less than `to`
from + rng.gen_range(0.0..(to - from))
} else {
// Wrap-around case: generate an angle based on two segments
let range_length = (2.0 * PI - (from - to)).abs();
let segment = rng.gen_range(0.0..range_length);
// Determine which segment to take (before or after the wrap)
if segment < (2.0 * PI - from) {
from + segment // Within the forward wrap
} else {
to + (segment - (2.0 * PI - from)) // After the wrap
}
};
random_angle
}
[
random_angle(self.from[0], self.to[0]),
random_angle(self.from[1], self.to[1]),
random_angle(self.from[2], self.to[2]),
random_angle(self.from[3], self.to[3]),
random_angle(self.from[4], self.to[4]),
random_angle(self.from[5], self.to[5]),
]
}
}
#[cfg(test)]
mod tests {
use crate::kinematic_traits::Solutions;
use crate::utils::{as_radians};
use super::*;
#[test]
fn test_historical_failure_1() {
let from = as_radians([9, 18, 28, 38, -5, 55]);
let angles = as_radians([10, 20, 30, 40, 0, 60]);
let to = as_radians([11, 22, 33, 44, 5, 65]);
let limits = Constraints::new(from, to, BY_CONSTRAINS);
let sols: Solutions = vec![angles];
assert_eq!(limits.filter(&sols).len(), 1);
assert!(limits.compliant(&angles));
}
#[test]
fn test_no_wrap_around() {
let angles = [0.1 * PI, 0.2 * PI, 0.3 * PI, 0.4 * PI, 0.5 * PI, 0.6 * PI];
let from = [0.0, 0.15 * PI, 0.25 * PI, 0.35 * PI, 0.45 * PI, 0.55 * PI];
let to = [0.2 * PI, 0.3 * PI, 0.4 * PI, 0.5 * PI, 0.6 * PI, 0.7 * PI];
let limits = Constraints::new(from, to, BY_CONSTRAINS);
assert!(limits.compliant(&angles));
}
#[test]
fn test_with_wrap_around() {
let angles = [0.9 * PI, 1.9 * PI, 0.05 * PI, 1.05 * PI, 1.95 * PI, 0.95 * PI];
let from = [0.8 * PI, 1.8 * PI, 0.0, 1.0 * PI, 1.9 * PI, 0.9 * PI];
let to = [0.1 * PI, 1.1 * PI, 0.2 * PI, 1.2 * PI, 0.0, 1.0 * PI];
let limits = Constraints::new(from, to, BY_CONSTRAINS);
assert!(limits.compliant(&angles));
}
#[test]
fn test_full_circle() {
let angles = [0.0, 1.0 * PI, 0.5 * PI, 1.5 * PI, 0.25 * PI, 0.75 * PI];
let from = [0.0; 6];
let to = [2.0 * PI; 6];
let limits = Constraints::new(from, to, BY_CONSTRAINS);
assert!(limits.compliant(&angles));
}
#[test]
fn test_invalid_angles_no_wrap_around() {
let angles = [0.15 * PI, 0.25 * PI, 0.55 * PI, 0.65 * PI, 0.75 * PI, 0.85 * PI];
let from = [0.2 * PI, 0.3 * PI, 0.6 * PI, 0.7 * PI, 0.8 * PI, 0.9 * PI];
let to = [0.1 * PI, 0.2 * PI, 0.5 * PI, 0.6 * PI, 0.7 * PI, 0.8 * PI];
let limits = Constraints::new(from, to, BY_CONSTRAINS);
assert!(!limits.compliant(&angles));
}
#[test]
fn test_invalid_angles_with_wrap_around() {
let angles = [0.8 * PI, 1.8 * PI, 1.0 * PI, 0.0, 2.1 * PI, 1.1 * PI];
let from = [0.9 * PI, 2.0 * PI, 0.1 * PI, 0.2 * PI, 2.2 * PI, 1.2 * PI];
let to = [0.0, 1.0 * PI, 0.05 * PI, 0.1 * PI, 2.0 * PI, 1.0 * PI];
let limits = Constraints::new(from, to, BY_CONSTRAINS);
assert!(!limits.compliant(&angles));
}
#[test]
fn test_filter_angles() {
let from = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0];
let to = [PI / 2.0, PI / 2.0, PI / 2.0, PI / 2.0, PI / 2.0, PI / 2.0];
let angles = vec![
[PI / 3.0, PI / 4.0, PI / 6.0, PI / 3.0, PI / 4.0, PI / 6.0], // Should be retained
[PI, 2.0 * PI, PI, PI, PI, PI], // Should be removed
];
let limits = Constraints::new(from, to, BY_CONSTRAINS);
let filtered_angles = limits.filter(&angles);
assert_eq!(filtered_angles.len(), 1);
assert_eq!(filtered_angles[0], [PI / 3.0, PI / 4.0, PI / 6.0, PI / 3.0, PI / 4.0, PI / 6.0]);
}
#[test]
fn test_random_angles_compliance_non_wrapping() {
// Define non-wrapping constraints
let from = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0];
let to = [PI / 2.0, PI / 2.0, PI / 2.0, PI / 2.0, PI / 2.0, PI / 2.0];
let constraints = Constraints::new(from, to, BY_CONSTRAINS);
let total_samples = 360;
for _ in 0..total_samples {
let random_angles = constraints.random_angles();
assert!(constraints.compliant(&random_angles));
}
}
#[test]
fn test_random_angles_compliance_wrapping() {
// Define wrapping constraints
let from = [PI / 2.0, 0.0, -PI / 2.0, 0.0, -PI, -PI];
let to = [0.0, PI / 2.0, PI / 2.0, PI, PI / 2.0, 0.0];
let constraints = Constraints::new(from, to, BY_CONSTRAINS);
let total_samples = 360;
for _ in 0..total_samples {
let random_angles = constraints.random_angles();
assert!(constraints.compliant(&random_angles));
}
}
}