rs_opw_kinematics/collisions.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683
//! Implements collision detection
use crate::kinematic_traits::{
Joints, Kinematics, Solutions, ENV_START_IDX, J1, J5, J6, J_BASE, J_TOOL,
};
use nalgebra::Isometry3;
use parry3d::shape::TriMesh;
use rayon::prelude::{IntoParallelRefIterator, ParallelIterator};
use std::collections::{HashMap, HashSet};
use parry3d::bounding_volume::{Aabb, BoundingVolume};
use parry3d::math::Point;
/// Optional structure attached to the robot base joint. It has its own global transform
/// that brings the robot to the location. This structure includes two transforms,
/// one bringing us to the base of the stand supporting the robot (and this is the
/// pose of the stand itself), and then another defining the point where J1 rotating part
/// begins.
pub struct BaseBody {
pub mesh: TriMesh,
pub base_pose: Isometry3<f32>,
}
/// Static object against that we check the robot does not collide.
/// Unlike robot joint, it has the global transform allowing to place it
/// where desired.
pub struct CollisionBody {
/// Mesh representing this collision object
pub mesh: TriMesh,
/// Global transform of this collision object.
pub pose: Isometry3<f32>,
}
/// Pre-apply local transform for the mesh if needed. This may be needed
/// for the robot joint if it is defined in URDF with some local transform
pub fn transform_mesh(shape: &TriMesh, local_transform: &Isometry3<f32>) -> TriMesh {
// Apply the local transformation to the shape
TriMesh::new(
shape
.vertices()
.iter()
.map(|v| local_transform.transform_point(v))
.collect(),
shape.indices().to_vec(),
)
}
/// Struct representing a collision task for detecting collisions
/// between two objects with given transforms and shapes.
struct CollisionTask<'a> {
i: u16, // reporting index of the first shape
j: u16, // reporting index of the second shape
transform_i: &'a Isometry3<f32>,
transform_j: &'a Isometry3<f32>,
shape_i: &'a TriMesh,
shape_j: &'a TriMesh,
}
impl CollisionTask<'_> {
fn collides(&self, safety: &SafetyDistances) -> Option<(u16, u16)> {
let r_min = *safety.min_distance(self.i, self.j);
let collides = if r_min <= NEVER_COLLIDES {
false
} else if r_min == TOUCH_ONLY {
parry3d::query::intersection_test(
self.transform_i,
self.shape_i,
self.transform_j,
self.shape_j,
)
.expect(SUPPORTED)
} else {
// Check if the bounding boxe of the object i, enlarged by r_min, touches
// the object j. If not, objects are more than r_min apart.
let (sm_shape, sm_transform, bg_shape, bg_transform) =
if self.shape_i.vertices().len() < self.shape_j.vertices().len() {
(self.shape_i, self.transform_i, self.shape_j, self.transform_j)
} else {
(self.shape_j, self.transform_j, self.shape_i, self.transform_i)
};
// Small shape is simplified to aabb that is then enlarged. Large shape is used
// as is (it probably has a complex shape and would result in many false positives
// if similarly simplified
let am_aaabb = sm_shape.local_aabb().loosened(r_min);
let sm_abb_mesh = build_trimesh_from_aabb(am_aaabb);
if !parry3d::query::intersection_test(
sm_transform,
&sm_abb_mesh,
bg_transform,
bg_shape,
).expect(SUPPORTED) {
false
} else {
parry3d::query::distance(
self.transform_i,
self.shape_i,
self.transform_j,
self.shape_j,
)
.expect(SUPPORTED)
<= r_min
}
};
if collides {
Some((self.i.min(self.j), self.i.max(self.j)))
} else {
None
}
}
}
/// Parry does not support AABB as a "proper" shape so we rewrap it as mesh
fn build_trimesh_from_aabb(aabb: Aabb) -> TriMesh {
let min: Point<f32> = aabb.mins;
let max: Point<f32> = aabb.maxs;
// Define the 8 vertices of the AABB
let vertices = vec![
min, // 0
Point::new(max.x, min.y, min.z), // 1
Point::new(min.x, max.y, min.z), // 2
Point::new(max.x, max.y, min.z), // 3
Point::new(min.x, min.y, max.z), // 4
Point::new(max.x, min.y, max.z), // 5
Point::new(min.x, max.y, max.z), // 6
max, // 7
];
// Define the 12 triangles (2 for each face)
const INDICES: [[u32; 3]; 12] = [
// Bottom face (min.z)
[0, 1, 2],
[2, 1, 3],
// Top face (max.z)
[4, 5, 6],
[6, 5, 7],
// Front face (max.y)
[2, 3, 6],
[6, 3, 7],
// Back face (min.y)
[0, 1, 4],
[4, 1, 5],
// Left face (min.x)
[0, 2, 4],
[4, 2, 6],
// Right face (max.x)
[1, 3, 5],
[5, 3, 7],
];
// Return TriMesh
TriMesh::new(vertices, INDICES.to_vec())
}
/// Struct representing the geometry of a robot, which is composed of exactly 6 joints.
pub struct RobotBody {
/// Joint meshes, one per joint
pub joint_meshes: [TriMesh; 6],
/// Tool meshes, optional if the robot has no tool
pub tool: Option<TriMesh>,
/// Robot base specification
pub base: Option<BaseBody>,
/// Environment objects arround the robot.
pub collision_environment: Vec<CollisionBody>,
/// Defines distances, how far the robot must stay from collision objects.
/// Also specifies if we are interested in first collision only (like for path planning)
/// or we need a detailed overview (like for diagnostics or visualization)
pub safety: SafetyDistances,
}
/// Constant specifying that robot parts never collide so do not need to be checked
/// for collision (so negative value used).
pub const NEVER_COLLIDES: f32 = -1.0;
/// Constant specifying that only interesection test must be done (any non zero distance
/// sufficient).
pub const TOUCH_ONLY: f32 = 0.0;
#[derive(Clone, Copy, Debug, PartialEq)]
pub enum CheckMode {
FirstCollisionOnly,
AllCollsions,
NoCheck,
}
/// Defines tolerance bounds, how far it should be between any part of the robot,
/// or environment object, or any two parts of the robot. As some robot joints
/// may come very close together, they may require specialized distances.
#[derive(Clone, Debug)]
pub struct SafetyDistances {
/// Allowed distance between robot and environment objects.
pub to_environment: f32,
/// Default allowed distance between any two parts of the robot.
pub to_robot_default: f32,
/// Special cases where different (normally shorter) distance is allowed.
/// Some parts of the robot naturally come very close even if not adjacent, and
/// these need the shorter distance to be specified. Specify NEVER_COLLIDES as a distance
/// for parts that cannot collide. Initialize it like this:
///
/// ```
/// use std::collections::HashMap;
/// use rs_opw_kinematics::collisions::{SafetyDistances, NEVER_COLLIDES};
/// use rs_opw_kinematics::kinematic_traits::{J1, J2, J3, J4, J5, J6, J_BASE, J_TOOL};
///
/// // Always specify less numbered joints first, then
/// // the tool, then environment objects.
/// SafetyDistances::distances(&[
/// // Due construction of this robot, these joints are very close, so
/// // special rules are needed for them.
/// ((J2, J_BASE), NEVER_COLLIDES), // base and J2 cannot collide
/// ((J3, J_BASE), NEVER_COLLIDES), // base and J3 cannot collide
/// ((J2, J4), NEVER_COLLIDES),
/// ((J3, J4), NEVER_COLLIDES),
/// ((J4, J_TOOL), 0.02_f32), // reduce distance requirement to 2 cm.
/// ((J4, J6), 0.02_f32), // reduce distance requirement to 2 cm.
/// ]);
/// ```
pub special_distances: HashMap<(u16, u16), f32>,
/// Specifies if either first collision only is required, or all must be checked, or off,
/// or "touch only" mode
pub mode: CheckMode,
}
impl SafetyDistances {
// Converts from usize to much more compact and appropriate u16.
// In Rust, usize is required for indexing.
pub fn distances(pairs: &[((usize, usize), f32)]) -> HashMap<(u16, u16), f32> {
let mut result = HashMap::with_capacity(pairs.len());
for &((a, b), value) in pairs {
// Cast `usize` to `u16` and insert into the HashMap
result.insert((a as u16, b as u16), value);
}
result
}
/// Returns minimal allowed distance by the specified objects.
/// The order of objects is not important.
pub fn min_distance(&self, from: u16, to: u16) -> &f32 {
if let Some(r) = self.special_distances.get(&(from, to)) {
return r;
} else if let Some(r) = self.special_distances.get(&(to, from)) {
return r;
} else if from as usize >= ENV_START_IDX || to as usize >= ENV_START_IDX {
return &self.to_environment;
} else {
return &self.to_robot_default;
}
}
/// Creates the standard instance of safety distances that always uses touch check only
/// (no safety margins) but can also disable collision checks completely if you pass
/// ```CheckMode::NoCheck``` as parameter.
pub fn standard(mode: CheckMode) -> SafetyDistances {
SafetyDistances {
to_environment: TOUCH_ONLY,
to_robot_default: TOUCH_ONLY,
special_distances: HashMap::new(),
mode,
}
}
}
// Public methods
impl RobotBody {
/// Returns detailed information about all collisions detected in the robot's configuration.
/// This method uses default distance limits specified at creation.
/// Use ```near``` if you need to change limits frequently as the part of your algorithm.
pub fn collision_details(
&self,
qs: &Joints,
kinematics: &dyn Kinematics,
) -> Vec<(usize, usize)> {
let joint_poses = kinematics.forward_with_joint_poses(qs);
let joint_poses_f32: [Isometry3<f32>; 6] = joint_poses.map(|pose| pose.cast::<f32>());
self.detect_collisions(&joint_poses_f32, &self.safety, None)
}
/// Returns true if any collision is detected in the robot's configuration.
/// This method uses default distance limits specified at creation.
/// Use ```near``` if you need to change limits frequently as the part of your algorithm.
pub fn collides(&self, qs: &Joints, kinematics: &dyn Kinematics) -> bool {
if self.safety.mode == CheckMode::NoCheck {
return false;
}
let joint_poses = kinematics.forward_with_joint_poses(qs);
let joint_poses_f32: [Isometry3<f32>; 6] = joint_poses.map(|pose| pose.cast::<f32>());
let safety = &self.safety;
let override_mode = Some(CheckMode::FirstCollisionOnly);
let empty_set: HashSet<usize> = HashSet::with_capacity(0);
!self
.detect_collisions_with_skips(&joint_poses_f32, &safety, &override_mode, &empty_set)
.is_empty()
}
/// Returns detailed information about all collisions detected in the robot's configuration.
/// This method only checks for literally touching objects that limits its application.
/// Use ```near``` to check if there are no objects closer than the given distance.
pub fn near(
&self,
qs: &Joints,
kinematics: &dyn Kinematics,
safety_distances: &SafetyDistances,
) -> Vec<(usize, usize)> {
let joint_poses = kinematics.forward_with_joint_poses(qs);
let joint_poses_f32: [Isometry3<f32>; 6] = joint_poses.map(|pose| pose.cast::<f32>());
self.detect_collisions(&joint_poses_f32, &safety_distances, None)
}
/// Return non colliding offsets, tweaking each joint plus minus either side, either into
/// 'to' or into 'from'. This is required for planning algorithms like A*. We can do
/// less collision checks as we only need to check the joint branch of the robot we moved.
/// Offset generation is accelerated via Rayon.
pub fn non_colliding_offsets(
&self,
initial: &Joints,
from: &Joints,
to: &Joints,
kinematics: &dyn Kinematics,
) -> Solutions {
// Generate 12 tasks by tweaking each joint in either direction
let mut tasks = Vec::with_capacity(12);
for joint_index in 0..6 {
for &target in &[from, to] {
tasks.push((joint_index, target));
}
}
// Process each task in parallel, filtering out colliding or out of constraints configurations
tasks
.par_iter()
.filter_map(|&(joint_index, target)| {
let mut new_joints = *initial;
new_joints[joint_index] = target[joint_index];
// Discard perturbations that go out of constraints.
if let Some(constraints) = kinematics.constraints() {
if !constraints.compliant(&new_joints) {
return None;
}
}
// Generate the full joint poses for collision checking
let joint_poses = kinematics.forward_with_joint_poses(&new_joints);
let joint_poses_f32: [Isometry3<f32>; 6] =
joint_poses.map(|pose| pose.cast::<f32>());
// Determine joints that do not require collision checks
let skip_indices: HashSet<usize> = (0..joint_index).collect();
// Detect collisions, skipping specified indices
if self
.detect_collisions_with_skips(
&joint_poses_f32,
&self.safety,
&Some(CheckMode::FirstCollisionOnly),
&skip_indices,
)
.is_empty()
{
return Some(new_joints); // Return non-colliding configuration
} else {
return None;
}
})
.collect() // Collect non-colliding configurations into Solutions
}
}
const SUPPORTED: &'static str = "Mesh intersection should be supported by Parry3d";
impl RobotBody {
/// Parallel version with Rayon
fn process_collision_tasks(
tasks: Vec<CollisionTask>,
safety: &SafetyDistances,
override_mode: &Option<CheckMode>,
) -> Vec<(u16, u16)> {
let mode = override_mode.unwrap_or(safety.mode);
if mode == CheckMode::NoCheck {
Vec::new()
} else if mode == CheckMode::FirstCollisionOnly {
// Exit as soon as any collision is found
tasks
.par_iter()
.find_map_any(|task| task.collides(&safety))
.into_iter() // Converts the Option result to an iterator
.collect()
} else {
// Collect all collisions
tasks
.par_iter()
.filter_map(|task| task.collides(&safety))
.collect()
}
}
// Count exact number of tasks so we do not need to reallocate the vector.
// This may return slightly larger number if skips are active.
fn count_tasks(&self, skip: &HashSet<usize>) -> usize {
if skip.len() >= 6 {
panic!(
"At most 5 joints can be skipped, but {} were passed: {:?}",
skip.len(),
skip
);
}
let tool_env_tasks = if self.tool.is_some() {
self.collision_environment.len()
} else {
0
};
let joint_joint_tasks = 10; // Fixed number for 6 joints excluding adjacent pairs
let joint_env_tasks = (6 - skip.len()) * self.collision_environment.len();
let joint_tool_tasks = if self.tool.is_some() {
4 // Only 4 tasks for joints (excluding J5 and J6) with the tool
} else {
0
};
let joint_base_tasks = if self.base.is_some() {
5 // Only 5 tasks for joints (excluding J1) with the base
} else {
0
};
let tool_base_task = if self.tool.is_some() && self.base.is_some() {
1 // Only 1 task for tool vs base if both are present
} else {
0
};
// Sum all tasks
tool_env_tasks
+ joint_joint_tasks
+ joint_env_tasks
+ joint_tool_tasks
+ joint_base_tasks
+ tool_base_task
}
fn detect_collisions(
&self,
joint_poses: &[Isometry3<f32>; 6],
safety: &SafetyDistances,
override_mode: Option<CheckMode>,
) -> Vec<(usize, usize)> {
let empty_set: HashSet<usize> = HashSet::with_capacity(0);
// Convert to usize
self.detect_collisions_with_skips(joint_poses, &safety, &override_mode, &empty_set)
.iter()
.map(|&col_pair| (col_pair.0 as usize, col_pair.1 as usize))
.collect()
}
fn detect_collisions_with_skips(
&self,
joint_poses: &[Isometry3<f32>; 6],
safety_distances: &SafetyDistances,
override_mode: &Option<CheckMode>,
skip: &HashSet<usize>,
) -> Vec<(u16, u16)> {
let mut tasks = Vec::with_capacity(self.count_tasks(&skip));
// Check if the tool does not hit anything in the environment
let check_tool = !skip.contains(&J_TOOL);
if check_tool {
if let Some(tool) = &self.tool {
for (env_idx, env_obj) in self.collision_environment.iter().enumerate() {
if self.check_required(J_TOOL, (ENV_START_IDX + env_idx) as usize, &skip) {
tasks.push(CollisionTask {
i: J_TOOL as u16,
j: (ENV_START_IDX + env_idx) as u16,
transform_i: &joint_poses[J6],
transform_j: &env_obj.pose,
shape_i: &tool,
shape_j: &env_obj.mesh,
});
}
}
}
}
for i in 0..6 {
for j in ((i + 1)..6).rev() {
// If both joints did not move, we do not need to check
if j - i > 1 && self.check_required(i, j, &skip) {
tasks.push(CollisionTask {
i: i as u16,
j: j as u16,
transform_i: &joint_poses[i],
transform_j: &joint_poses[j],
shape_i: &self.joint_meshes[i],
shape_j: &self.joint_meshes[j],
});
}
}
// Check if the joint does not hit anything in the environment
for (env_idx, env_obj) in self.collision_environment.iter().enumerate() {
// Joints we do not move we do not need to check for collision against objects
// that also not move.
if self.check_required(i, ENV_START_IDX + env_idx, &skip) {
tasks.push(CollisionTask {
i: i as u16,
j: (ENV_START_IDX + env_idx) as u16,
transform_i: &joint_poses[i],
transform_j: &env_obj.pose,
shape_i: &self.joint_meshes[i],
shape_j: &env_obj.mesh,
});
}
}
// Check if there is no collision between joint and tool
if check_tool && i != J6 && i != J5 && self.check_required(i, J_TOOL, &skip) {
if let Some(tool) = &self.tool {
let accessory_pose = &joint_poses[J6];
tasks.push(CollisionTask {
i: i as u16,
j: J_TOOL as u16,
transform_i: &joint_poses[i],
transform_j: accessory_pose,
shape_i: &self.joint_meshes[i],
shape_j: &tool,
});
}
}
// Base does not move, we do not need to check for collision against the joint
// that also did not.
if i != J1 && !skip.contains(&i) && self.check_required(i, J1, &skip) {
if let Some(base) = &self.base {
let accessory = &base.mesh;
let accessory_pose = &base.base_pose;
tasks.push(CollisionTask {
i: i as u16,
j: J_BASE as u16,
transform_i: &joint_poses[i],
transform_j: accessory_pose,
shape_i: &self.joint_meshes[i],
shape_j: &accessory,
});
}
}
}
// Check tool-base collision if necessary
if check_tool || self.check_required(J_TOOL, J_BASE, &skip) {
if let (Some(tool), Some(base)) = (&self.tool, &self.base) {
tasks.push(CollisionTask {
i: J_TOOL as u16,
j: J_BASE as u16,
transform_i: &joint_poses[J6],
transform_j: &base.base_pose,
shape_i: &tool,
shape_j: &base.mesh,
});
}
}
Self::process_collision_tasks(tasks, safety_distances, override_mode)
}
fn check_required(&self, i: usize, j: usize, skip: &HashSet<usize>) -> bool {
!skip.contains(&i) && !skip.contains(&j) &&
self.safety.min_distance(i as u16, j as u16) > &NEVER_COLLIDES
}
}
#[cfg(test)]
mod tests {
use super::*;
use nalgebra::Point3;
use parry3d::shape::TriMesh;
fn create_trimesh(x: f32, y: f32, z: f32) -> TriMesh {
// Define vertices and triangle indices for a triangular pyramid.
TriMesh::new(
vec![
Point3::new(z, y, z),
Point3::new(x + 1.0, y, z),
Point3::new(x, y + 1.0, z),
Point3::new(x, y, z + 1.0),
],
vec![[0, 1, 2], [0, 1, 3], [0, 2, 3], [1, 2, 3]],
)
}
#[test]
fn test_collision_detection() {
// Create joints with attached shapes and corresponding translations
// There are 4 collisions between these joints
let identity = Isometry3::identity();
let joints: [TriMesh; 6] = [
create_trimesh(0.0, 0.0, 0.0),
create_trimesh(0.01, 0.01, 0.01),
create_trimesh(0.1, 0.1, 0.1),
// Use local transform at places to be sure it works. This joint must be far away.
transform_mesh(
&create_trimesh(0.0, 0.0, 0.0),
&Isometry3::translation(20.0, 20.0, 20.0),
),
create_trimesh(30.0, 30.0, 30.0),
// Place Joint 6 close to joint 1
transform_mesh(
&create_trimesh(0.0, 0.0, 0.0),
&Isometry3::translation(0.02, 0.02, 0.02),
),
];
let robot = RobotBody {
joint_meshes: joints,
tool: None,
base: None,
collision_environment: vec![],
safety: SafetyDistances::standard(CheckMode::AllCollsions),
};
let collisions = robot.detect_collisions(&[identity; 6], &robot.safety, None);
assert!(
!collisions.is_empty(),
"Expected at least one collision, but none were detected."
);
// Now expect 4 collisions due to the placement of joint 6
assert_eq!(collisions.len(), 4, "Expected exactly 4 collisions.");
// Ensure that specific collisions are occurring, including the close ones
let mut expected_collisions = vec![
(0usize, 2usize),
(0usize, 5usize),
(1usize, 5usize),
(2usize, 5usize),
];
// Normalize the order of expected collisions (sort them)
for collision in &mut expected_collisions {
let (a, b) = *collision;
if a > b {
*collision = (b, a); // Ensure smaller index comes first
}
}
for (shape_a, shape_b) in &collisions {
let mut collision_names = (*shape_a, *shape_b);
if collision_names.0 > collision_names.1 {
collision_names = (collision_names.1, collision_names.0); // Ensure smaller index comes first
}
assert!(
expected_collisions.contains(&collision_names),
"Unexpected collision between [{}] and [{}]",
shape_a,
shape_b
);
}
// Ensure that shape 3 is NOT involved in collisions
for (shape_a, shape_b) in &collisions {
assert_ne!(
*shape_a, 3,
"Shape [3] should not be involved in any collision."
);
assert_ne!(
*shape_b, 3,
"Shape [3] should not be involved in any collision."
);
}
}
}