use alloc::vec::Vec;
use core::hash::{Hash, Hasher};
use num_bigint::traits::ModInverse;
use num_bigint::Sign::Plus;
use num_bigint::{BigInt, BigUint};
use num_integer::Integer;
use num_traits::{FromPrimitive, One, ToPrimitive};
use rand_core::CryptoRngCore;
#[cfg(feature = "serde")]
use serde::{Deserialize, Serialize};
use zeroize::{Zeroize, ZeroizeOnDrop};
use crate::algorithms::generate::generate_multi_prime_key_with_exp;
use crate::algorithms::rsa::{
compute_modulus, compute_private_exponent_carmicheal, compute_private_exponent_euler_totient,
recover_primes,
};
use crate::dummy_rng::DummyRng;
use crate::errors::{Error, Result};
use crate::traits::{PaddingScheme, PrivateKeyParts, PublicKeyParts, SignatureScheme};
use crate::CrtValue;
#[derive(Debug, Clone, Hash, PartialEq, Eq)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub struct RsaPublicKey {
n: BigUint,
e: BigUint,
}
#[derive(Debug, Clone)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub struct RsaPrivateKey {
pubkey_components: RsaPublicKey,
pub(crate) d: BigUint,
pub(crate) primes: Vec<BigUint>,
#[cfg_attr(feature = "serde", serde(skip))]
pub(crate) precomputed: Option<PrecomputedValues>,
}
impl Eq for RsaPrivateKey {}
impl PartialEq for RsaPrivateKey {
#[inline]
fn eq(&self, other: &RsaPrivateKey) -> bool {
self.pubkey_components == other.pubkey_components
&& self.d == other.d
&& self.primes == other.primes
}
}
impl AsRef<RsaPublicKey> for RsaPrivateKey {
fn as_ref(&self) -> &RsaPublicKey {
&self.pubkey_components
}
}
impl Hash for RsaPrivateKey {
fn hash<H: Hasher>(&self, state: &mut H) {
state.write(b"RsaPrivateKey");
Hash::hash(&self.pubkey_components, state);
}
}
impl Drop for RsaPrivateKey {
fn drop(&mut self) {
self.d.zeroize();
self.primes.zeroize();
self.precomputed.zeroize();
}
}
impl ZeroizeOnDrop for RsaPrivateKey {}
#[derive(Debug, Clone)]
pub(crate) struct PrecomputedValues {
pub(crate) dp: BigUint,
pub(crate) dq: BigUint,
pub(crate) qinv: BigInt,
pub(crate) crt_values: Vec<CrtValue>,
}
impl Zeroize for PrecomputedValues {
fn zeroize(&mut self) {
self.dp.zeroize();
self.dq.zeroize();
self.qinv.zeroize();
for val in self.crt_values.iter_mut() {
val.zeroize();
}
self.crt_values.clear();
}
}
impl Drop for PrecomputedValues {
fn drop(&mut self) {
self.zeroize();
}
}
impl From<RsaPrivateKey> for RsaPublicKey {
fn from(private_key: RsaPrivateKey) -> Self {
(&private_key).into()
}
}
impl From<&RsaPrivateKey> for RsaPublicKey {
fn from(private_key: &RsaPrivateKey) -> Self {
let n = private_key.n().clone();
let e = private_key.e().clone();
RsaPublicKey { n, e }
}
}
impl PublicKeyParts for RsaPublicKey {
fn n(&self) -> &BigUint {
&self.n
}
fn e(&self) -> &BigUint {
&self.e
}
}
impl RsaPublicKey {
pub fn encrypt<R: CryptoRngCore, P: PaddingScheme>(
&self,
rng: &mut R,
padding: P,
msg: &[u8],
) -> Result<Vec<u8>> {
padding.encrypt(rng, self, msg)
}
pub fn verify<S: SignatureScheme>(&self, scheme: S, hashed: &[u8], sig: &[u8]) -> Result<()> {
scheme.verify(self, hashed, sig)
}
}
impl RsaPublicKey {
pub const MIN_PUB_EXPONENT: u64 = 2;
pub const MAX_PUB_EXPONENT: u64 = (1 << 33) - 1;
pub const MAX_SIZE: usize = 4096;
pub fn new(n: BigUint, e: BigUint) -> Result<Self> {
Self::new_with_max_size(n, e, Self::MAX_SIZE)
}
pub fn new_with_max_size(n: BigUint, e: BigUint, max_size: usize) -> Result<Self> {
let k = Self { n, e };
check_public_with_max_size(&k, max_size)?;
Ok(k)
}
pub fn new_unchecked(n: BigUint, e: BigUint) -> Self {
Self { n, e }
}
}
impl PublicKeyParts for RsaPrivateKey {
fn n(&self) -> &BigUint {
&self.pubkey_components.n
}
fn e(&self) -> &BigUint {
&self.pubkey_components.e
}
}
impl RsaPrivateKey {
const EXP: u64 = 65537;
pub fn new<R: CryptoRngCore + ?Sized>(rng: &mut R, bit_size: usize) -> Result<RsaPrivateKey> {
let exp = BigUint::from_u64(Self::EXP).expect("invalid static exponent");
Self::new_with_exp(rng, bit_size, &exp)
}
pub fn new_with_exp<R: CryptoRngCore + ?Sized>(
rng: &mut R,
bit_size: usize,
exp: &BigUint,
) -> Result<RsaPrivateKey> {
let components = generate_multi_prime_key_with_exp(rng, 2, bit_size, exp)?;
RsaPrivateKey::from_components(components.n, components.e, components.d, components.primes)
}
pub fn from_components(
n: BigUint,
e: BigUint,
d: BigUint,
mut primes: Vec<BigUint>,
) -> Result<RsaPrivateKey> {
let mut should_validate = false;
if primes.len() < 2 {
if !primes.is_empty() {
return Err(Error::NprimesTooSmall);
}
let (p, q) = recover_primes(&n, &e, &d)?;
primes.push(p);
primes.push(q);
should_validate = true;
}
let mut k = RsaPrivateKey {
pubkey_components: RsaPublicKey { n, e },
d,
primes,
precomputed: None,
};
if should_validate {
k.validate()?;
}
let _ = k.precompute();
Ok(k)
}
pub fn from_p_q(p: BigUint, q: BigUint, public_exponent: BigUint) -> Result<RsaPrivateKey> {
if p == q {
return Err(Error::InvalidPrime);
}
let n = compute_modulus(&[p.clone(), q.clone()]);
let d = compute_private_exponent_carmicheal(&p, &q, &public_exponent)?;
Self::from_components(n, public_exponent, d, vec![p, q])
}
pub fn from_primes(primes: Vec<BigUint>, public_exponent: BigUint) -> Result<RsaPrivateKey> {
if primes.len() < 2 {
return Err(Error::NprimesTooSmall);
}
for (i, prime1) in primes.iter().enumerate() {
for prime2 in primes.iter().take(i) {
if prime1 == prime2 {
return Err(Error::InvalidPrime);
}
}
}
let n = compute_modulus(&primes);
let d = compute_private_exponent_euler_totient(&primes, &public_exponent)?;
Self::from_components(n, public_exponent, d, primes)
}
pub fn to_public_key(&self) -> RsaPublicKey {
self.pubkey_components.clone()
}
pub fn precompute(&mut self) -> Result<()> {
if self.precomputed.is_some() {
return Ok(());
}
let dp = &self.d % (&self.primes[0] - BigUint::one());
let dq = &self.d % (&self.primes[1] - BigUint::one());
let qinv = self.primes[1]
.clone()
.mod_inverse(&self.primes[0])
.ok_or(Error::InvalidPrime)?;
let mut r: BigUint = &self.primes[0] * &self.primes[1];
let crt_values: Vec<CrtValue> = {
let mut values = Vec::with_capacity(self.primes.len() - 2);
for prime in &self.primes[2..] {
let res = CrtValue {
exp: BigInt::from_biguint(Plus, &self.d % (prime - BigUint::one())),
r: BigInt::from_biguint(Plus, r.clone()),
coeff: BigInt::from_biguint(
Plus,
r.clone()
.mod_inverse(prime)
.ok_or(Error::InvalidCoefficient)?
.to_biguint()
.unwrap(),
),
};
r *= prime;
values.push(res);
}
values
};
self.precomputed = Some(PrecomputedValues {
dp,
dq,
qinv,
crt_values,
});
Ok(())
}
pub fn clear_precomputed(&mut self) {
self.precomputed = None;
}
pub fn crt_coefficient(&self) -> Option<BigUint> {
(&self.primes[1]).mod_inverse(&self.primes[0])?.to_biguint()
}
pub fn validate(&self) -> Result<()> {
check_public(self)?;
let mut m = BigUint::one();
for prime in &self.primes {
if *prime < BigUint::one() {
return Err(Error::InvalidPrime);
}
m *= prime;
}
if m != self.pubkey_components.n {
return Err(Error::InvalidModulus);
}
let mut de = self.e().clone();
de *= self.d.clone();
for prime in &self.primes {
let congruence: BigUint = &de % (prime - BigUint::one());
if !congruence.is_one() {
return Err(Error::InvalidExponent);
}
}
Ok(())
}
pub fn decrypt<P: PaddingScheme>(&self, padding: P, ciphertext: &[u8]) -> Result<Vec<u8>> {
padding.decrypt(Option::<&mut DummyRng>::None, self, ciphertext)
}
pub fn decrypt_blinded<R: CryptoRngCore, P: PaddingScheme>(
&self,
rng: &mut R,
padding: P,
ciphertext: &[u8],
) -> Result<Vec<u8>> {
padding.decrypt(Some(rng), self, ciphertext)
}
pub fn sign<S: SignatureScheme>(&self, padding: S, digest_in: &[u8]) -> Result<Vec<u8>> {
padding.sign(Option::<&mut DummyRng>::None, self, digest_in)
}
pub fn sign_with_rng<R: CryptoRngCore, S: SignatureScheme>(
&self,
rng: &mut R,
padding: S,
digest_in: &[u8],
) -> Result<Vec<u8>> {
padding.sign(Some(rng), self, digest_in)
}
}
impl PrivateKeyParts for RsaPrivateKey {
fn d(&self) -> &BigUint {
&self.d
}
fn primes(&self) -> &[BigUint] {
&self.primes
}
fn dp(&self) -> Option<&BigUint> {
self.precomputed.as_ref().map(|p| &p.dp)
}
fn dq(&self) -> Option<&BigUint> {
self.precomputed.as_ref().map(|p| &p.dq)
}
fn qinv(&self) -> Option<&BigInt> {
self.precomputed.as_ref().map(|p| &p.qinv)
}
fn crt_values(&self) -> Option<&[CrtValue]> {
if let Some(p) = &self.precomputed {
Some(p.crt_values.as_slice())
} else {
None
}
}
}
#[inline]
pub fn check_public(public_key: &impl PublicKeyParts) -> Result<()> {
check_public_with_max_size(public_key, RsaPublicKey::MAX_SIZE)
}
#[inline]
fn check_public_with_max_size(public_key: &impl PublicKeyParts, max_size: usize) -> Result<()> {
if public_key.n().bits() > max_size {
return Err(Error::ModulusTooLarge);
}
let e = public_key
.e()
.to_u64()
.ok_or(Error::PublicExponentTooLarge)?;
if public_key.e() >= public_key.n() || public_key.n().is_even() {
return Err(Error::InvalidModulus);
}
if public_key.e().is_even() {
return Err(Error::InvalidExponent);
}
if e < RsaPublicKey::MIN_PUB_EXPONENT {
return Err(Error::PublicExponentTooSmall);
}
if e > RsaPublicKey::MAX_PUB_EXPONENT {
return Err(Error::PublicExponentTooLarge);
}
Ok(())
}
#[cfg(test)]
mod tests {
use super::*;
use crate::algorithms::rsa::{rsa_decrypt_and_check, rsa_encrypt};
use hex_literal::hex;
use num_traits::{FromPrimitive, ToPrimitive};
use pkcs8::DecodePrivateKey;
use rand_chacha::{rand_core::SeedableRng, ChaCha8Rng};
#[test]
fn test_from_into() {
let private_key = RsaPrivateKey {
pubkey_components: RsaPublicKey {
n: BigUint::from_u64(100).unwrap(),
e: BigUint::from_u64(200).unwrap(),
},
d: BigUint::from_u64(123).unwrap(),
primes: vec![],
precomputed: None,
};
let public_key: RsaPublicKey = private_key.into();
assert_eq!(public_key.n().to_u64(), Some(100));
assert_eq!(public_key.e().to_u64(), Some(200));
}
fn test_key_basics(private_key: &RsaPrivateKey) {
private_key.validate().expect("invalid private key");
assert!(
private_key.d() < private_key.n(),
"private exponent too large"
);
let pub_key: RsaPublicKey = private_key.clone().into();
let m = BigUint::from_u64(42).expect("invalid 42");
let c = rsa_encrypt(&pub_key, &m).expect("encryption successfull");
let m2 = rsa_decrypt_and_check::<ChaCha8Rng>(private_key, None, &c)
.expect("unable to decrypt without blinding");
assert_eq!(m, m2);
let mut rng = ChaCha8Rng::from_seed([42; 32]);
let m3 = rsa_decrypt_and_check(private_key, Some(&mut rng), &c)
.expect("unable to decrypt with blinding");
assert_eq!(m, m3);
}
macro_rules! key_generation {
($name:ident, $multi:expr, $size:expr) => {
#[test]
fn $name() {
let mut rng = ChaCha8Rng::from_seed([42; 32]);
let exp = BigUint::from_u64(RsaPrivateKey::EXP).expect("invalid static exponent");
for _ in 0..10 {
let components =
generate_multi_prime_key_with_exp(&mut rng, $multi, $size, &exp).unwrap();
let private_key = RsaPrivateKey::from_components(
components.n,
components.e,
components.d,
components.primes,
)
.unwrap();
assert_eq!(private_key.n().bits(), $size);
test_key_basics(&private_key);
}
}
};
}
key_generation!(key_generation_128, 2, 128);
key_generation!(key_generation_1024, 2, 1024);
key_generation!(key_generation_multi_3_256, 3, 256);
key_generation!(key_generation_multi_4_64, 4, 64);
key_generation!(key_generation_multi_5_64, 5, 64);
key_generation!(key_generation_multi_8_576, 8, 576);
key_generation!(key_generation_multi_16_1024, 16, 1024);
#[test]
fn test_negative_decryption_value() {
let private_key = RsaPrivateKey::from_components(
BigUint::from_bytes_le(&[
99, 192, 208, 179, 0, 220, 7, 29, 49, 151, 75, 107, 75, 73, 200, 180,
]),
BigUint::from_bytes_le(&[1, 0, 1]),
BigUint::from_bytes_le(&[
81, 163, 254, 144, 171, 159, 144, 42, 244, 133, 51, 249, 28, 12, 63, 65,
]),
vec![
BigUint::from_bytes_le(&[105, 101, 60, 173, 19, 153, 3, 192]),
BigUint::from_bytes_le(&[235, 65, 160, 134, 32, 136, 6, 241]),
],
)
.unwrap();
for _ in 0..1000 {
test_key_basics(&private_key);
}
}
#[test]
#[cfg(feature = "serde")]
fn test_serde() {
use rand_chacha::{rand_core::SeedableRng, ChaCha8Rng};
use serde_test::{assert_tokens, Token};
let mut rng = ChaCha8Rng::from_seed([42; 32]);
let priv_key = RsaPrivateKey::new(&mut rng, 64).expect("failed to generate key");
let priv_tokens = [
Token::Struct {
name: "RsaPrivateKey",
len: 3,
},
Token::Str("pubkey_components"),
Token::Struct {
name: "RsaPublicKey",
len: 2,
},
Token::Str("n"),
Token::Seq { len: Some(2) },
Token::U32(3814409919),
Token::U32(3429654832),
Token::SeqEnd,
Token::Str("e"),
Token::Seq { len: Some(1) },
Token::U32(65537),
Token::SeqEnd,
Token::StructEnd,
Token::Str("d"),
Token::Seq { len: Some(2) },
Token::U32(1482162201),
Token::U32(1675500232),
Token::SeqEnd,
Token::Str("primes"),
Token::Seq { len: Some(2) },
Token::Seq { len: Some(1) },
Token::U32(4133289821),
Token::SeqEnd,
Token::Seq { len: Some(1) },
Token::U32(3563808971),
Token::SeqEnd,
Token::SeqEnd,
Token::StructEnd,
];
assert_tokens(&priv_key, &priv_tokens);
let priv_tokens = [
Token::Struct {
name: "RsaPublicKey",
len: 2,
},
Token::Str("n"),
Token::Seq { len: Some(2) },
Token::U32(3814409919),
Token::U32(3429654832),
Token::SeqEnd,
Token::Str("e"),
Token::Seq { len: Some(1) },
Token::U32(65537),
Token::SeqEnd,
Token::StructEnd,
];
assert_tokens(&RsaPublicKey::from(priv_key), &priv_tokens);
}
#[test]
fn invalid_coeff_private_key_regression() {
use base64ct::{Base64, Encoding};
let n = Base64::decode_vec("wC8GyQvTCZOK+iiBR5fGQCmzRCTWX9TQ3aRG5gGFk0wB6EFoLMAyEEqeG3gS8xhAm2rSWYx9kKufvNat3iWlbSRVqkcbpVAYlj2vTrpqDpJl+6u+zxFYoUEBevlJJkAhl8EuCccOA30fVpcfRvXPTtvRd3yFT9E9EwZljtgSI02w7gZwg7VIxaGeajh5Euz6ZVQZ+qNRKgXrRC7gPRqVyI6Dt0Jc+Su5KBGNn0QcPDzOahWha1ieaeMkFisZ9mdpsJoZ4tw5eicLaUomKzALHXQVt+/rcZSrCd6/7uUo11B/CYBM4UfSpwXaL88J9AE6A5++no9hmJzaF2LLp+Qwx4yY3j9TDutxSAjsraxxJOGZ3XyA9nG++Ybt3cxZ5fP7ROjxCfROBmVv5dYn0O9OBIqYeCH6QraNpZMadlLNIhyMv8Y+P3r5l/PaK4VJaEi5pPosnEPawp0W0yZDzmjk2z1LthaRx0aZVrAjlH0Rb/6goLUQ9qu1xsDtQVVpN4A89ZUmtTWORnnJr0+595eHHxssd2gpzqf4bPjNITdAEuOCCtpvyi4ls23zwuzryUYjcUOEnsXNQ+DrZpLKxdtsD/qNV/j1hfeyBoPllC3cV+6bcGOFcVGbjYqb+Kw1b0+jL69RSKQqgmS+qYqr8c48nDRxyq3QXhR8qtzUwBFSLVk=").unwrap();
let e = Base64::decode_vec("AQAB").unwrap();
let d = Base64::decode_vec("qQazSQ+FRN7nVK1bRsROMRB8AmsDwLVEHivlz1V3Td2Dr+oW3YUMgxedhztML1IdQJPq/ad6qErJ6yRFNySVIjDaxzBTOEoB1eHa1btOnBJWb8rVvvjaorixvJ6Tn3i4EuhsvVy9DoR1k4rGj3qSIiFjUVvLRDAbLyhpGgEfsr0Z577yJmTC5E8JLRMOKX8Tmxsk3jPVpsgd65Hu1s8S/ZmabwuHCf9SkdMeY/1bd/9i7BqqJeeDLE4B5x1xcC3z3scqDUTzqGO+vZPhjgprPDRlBamVwgenhr7KwCn8iaLamFinRVwOAag8BeBqOJj7lURiOsKQa9FIX1kdFUS1QMQxgtPycLjkbvCJjriqT7zWKsmJ7l8YLs6Wmm9/+QJRwNCEVdMTXKfCP1cJjudaiskEQThfUldtgu8gUDNYbQ/Filb2eKfiX4h1TiMxZqUZHVZyb9nShbQoXJ3vj/MGVF0QM8TxhXM8r2Lv9gDYU5t9nQlUMLhs0jVjai48jHABbFNyH3sEcOmJOIwJrCXw1dzG7AotwyaEVUHOmL04TffmwCFfnyrLjbFgnyOeoyIIBYjcY7QFRm/9nupXMTH5hZ2qrHfCJIp0KK4tNBdQqmnHapFl5l6Le1s4qBS5bEIzjitobLvAFm9abPlDGfxmY6mlrMK4+nytwF9Ct7wc1AE=").unwrap();
let primes = vec![
Base64::decode_vec("9kQWEAzsbzOcdPa+s5wFfw4XDd7bB1q9foZ31b1+TNjGNxbSBCFlDF1q98vwpV6nM8bWDh/wtbNoETSQDgpEnYOQ26LWEw6YY1+q1Q2GGEFceYUf+Myk8/vTc8TN6Zw0bKZBWy10Qo8h7xk4JpzuI7NcxvjJYTkS9aErFxi3vVH0aiZC0tmfaCqr8a2rJxyVwqreRpOjwAWrotMsf2wGsF4ofx5ScoFy5GB5fJkkdOrW1LyTvZAUCX3cstPr19+TNC5zZOk7WzZatnCkN5H5WzalWtZuu0oVL205KPOa3R8V2yv5e6fm0v5fTmqSuvjmaMJLXCN4QJkmIzojO99ckQ==").unwrap(),
Base64::decode_vec("x8exdMjVA2CiI+Thx7loHtVcevoeE2sZ7btRVAvmBqo+lkHwxb7FHRnWvuj6eJSlD2f0T50EewIhhiW3R9BmktCk7hXjbSCnC1u9Oxc1IAUm/7azRqyfCMx43XhLxpD+xkBCpWkKDLxGczsRwTuaP3lKS3bSdBrNlGmdblubvVBIq4YZ2vXVlnYtza0cS+dgCK7BGTqUsrCUd/ZbIvwcwZkZtpkhj1KQfto9X/0OMurBzAqbkeq1cyRHXHkOfN/qbUIIRqr9Ii7Eswf9Vk8xp2O1Nt8nzcYS9PFD12M5eyaeFEkEYfpNMNGuTzp/31oqVjbpoCxS6vuWAZyADxhISQ==").unwrap(),
Base64::decode_vec("is7d0LY4HoXszlC2NO7gejkq7XqL4p1W6hZJPYTNx+r37t1CC2n3Vvzg6kNdpRixDhIpXVTLjN9O7UO/XuqSumYKJIKoP52eb4Tg+a3hw5Iz2Zsb5lUTNSLgkQSBPAf71LHxbL82JL4g1nBUog8ae60BwnVArThKY4EwlJguGNw09BAU4lwf6csDl/nX2vfVwiAloYpeZkHL+L8m+bueGZM5KE2jEz+7ztZCI+T+E5i69rZEYDjx0lfLKlEhQlCW3HbCPELqXgNJJkRfi6MP9kXa9lSfnZmoT081RMvqonB/FUa4HOcKyCrw9XZEtnbNCIdbitfDVEX+pSSD7596wQ==").unwrap(),
Base64::decode_vec("GPs0injugfycacaeIP5jMa/WX55VEnKLDHom4k6WlfDF4L4gIGoJdekcPEUfxOI5faKvHyFwRP1wObkPoRBDM0qZxRfBl4zEtpvjHrd5MibSyJkM8+J0BIKk/nSjbRIGeb3hV5O56PvGB3S0dKhCUnuVObiC+ne7izplsD4OTG70l1Yud33UFntyoMxrxGYLUSqhBMmZfHquJg4NOWOzKNY/K+EcHDLj1Kjvkcgv9Vf7ocsVxvpFdD9uGPceQ6kwRDdEl6mb+6FDgWuXVyqR9+904oanEIkbJ7vfkthagLbEf57dyG6nJlqh5FBZWxGIR72YGypPuAh7qnnqXXjY2Q==").unwrap(),
Base64::decode_vec("CUWC+hRWOT421kwRllgVjy6FYv6jQUcgDNHeAiYZnf5HjS9iK2ki7v8G5dL/0f+Yf+NhE/4q8w4m8go51hACrVpP1p8GJDjiT09+RsOzITsHwl+ceEKoe56ZW6iDHBLlrNw5/MtcYhKpjNU9KJ2udm5J/c9iislcjgckrZG2IB8ADgXHMEByZ5DgaMl4AKZ1Gx8/q6KftTvmOT5rNTMLi76VN5KWQcDWK/DqXiOiZHM7Nr4dX4me3XeRgABJyNR8Fqxj3N1+HrYLe/zs7LOaK0++F9Ul3tLelhrhsvLxei3oCZkF9A/foD3on3luYA+1cRcxWpSY3h2J4/22+yo4+Q==").unwrap(),
];
RsaPrivateKey::from_components(
BigUint::from_bytes_be(&n),
BigUint::from_bytes_be(&e),
BigUint::from_bytes_be(&d),
primes.iter().map(|p| BigUint::from_bytes_be(p)).collect(),
)
.unwrap();
}
#[test]
fn reject_oversized_private_key() {
let n = BigUint::from_bytes_be(&hex!(
"
90c06207caac3555c0b0947a5e8b681f5af6aed665ff1cd42b6b487f2f7d68f1
38f3dbbee6d2f10908507fe6bcf75e7cbd20e9af6ff1c202bcc3dbb45e9bb69b
b5d12a354c4b463a50820d16879373ceeb5574fdd9272be3b90d55c1a64855de
cf80520e94be2caa56c1737ed0042ef9c99c7ddb6cc76f3ada211ba90beae0fc
0a19024e74e474ca5747f0ee327892bf6eebc83974478dbfbebed40d0ffc626c
518071df5626abda386eed72585b676efb99b3ba111fb2f4b8fb0323bccb0c9b
5aa35e1da54f1cccac3e14fb1d4588d7b9b9f62d4ea6e570c049efcc34101147
fd7798549a42d86f9a90cee7fa0dd9f1ff4e10242280824872afd09782757abc
46773cab6989c08747193b7aa4c49a0065830a87e6f7e54455758b2c10317267
b9187358e41a5e5fef6fcbf81c8bc5e136ad1192aa7f3a5bc9270b22261b3c40
211d729d64c776cd8f219126e27227de3c0a40666b8da40c71243673a6187baf
8943eadf0c3d3fd150076dad97e286a68185db8523a61e548cba7a6834e4ce98
5af954c9eafb9d819a3d14b526a0f8d2fef13ad99ee48f10c3a00f8853d7853a
812b7a1c72bed38066f75779690bc12af9eb0d1eb8e2f7c4757c84e415725629
d15c4d68c18213f18a86d4ccc08552b3c80c97165de073ac0440af253e8578c4
8857f396e5eba6cd01ed1250feb2c32d77939f8be8bd47874151daed87e8c963
32f697ea7950bee7a2c12bb484200bcbd08de5aeae6f22ff9922e38075b56026
2472f039de08e9362cfdd19c0f0cd0749ebd85bddc3882fb887f9789ed8e388e
7e2eb2455399f166d5c9767ff378f8ebea465a0be2d2e3326fe6ed80e5e3050b
fb6c6a9dc8731ce4baa4e5b17b131113c79d6f290318095e37e7571a4ba697ab
5ea56190131e06d300310064776ba0330907e1cc41acdef4eeaa53964ef30c71
023c3cf71af2d1d9e83900ffc80e07ec2442a3dbd50e957686a22f1d8f512364
fb71e936f24990a4abcdbef2bea2f98cd77f1d1ca5625942c79347c146dee6e3
043eb622f63e627f4ebf20d6056133a4bd0f55dd13dcf429e0e73830969f543c
b31d86d9a878ca79d841444359cc0e31c0283fa6dd27b702b7ee05dad12c30f7
f84bf1309678efb8da108efcedc423da8587bd127ca082d417c8726f7889fb80
326c3fa6fddd507ac7841b2f2e5c8780d486a0d68229ee2957a8ec24e00e4ab4
de3fc811a4b5047c2b7920d071e9f2f9b61638dc15fb84cca46cad28e1ef539d
bcf249876f2647757b9a5e4f0b2ea6e7aabdf47dae826e9e259428bdb07e5a2a
68b98f141f5537be7a590cb3ba15b0bb15824652e8da8f70eb847240058a336a
1b6db7f88268aaf89f0b33b905d72c25338b13e61a51873c2d427021a3f29207
179ad32f423793f0c090dda025ce41df0e94afbc80ab5eda9b1a268aa2553a99"
));
let e = BigUint::from_u64(65537).unwrap();
assert_eq!(
RsaPublicKey::new(n, e).err().unwrap(),
Error::ModulusTooLarge
);
}
#[test]
fn build_key_from_primes() {
const RSA_2048_PRIV_DER: &[u8] = include_bytes!("../tests/examples/pkcs8/rsa2048-priv.der");
let ref_key = RsaPrivateKey::from_pkcs8_der(RSA_2048_PRIV_DER).unwrap();
assert_eq!(ref_key.validate(), Ok(()));
let primes = ref_key.primes().to_vec();
let exp = ref_key.e().clone();
let key =
RsaPrivateKey::from_primes(primes, exp).expect("failed to import key from primes");
assert_eq!(key.validate(), Ok(()));
assert_eq!(key.n(), ref_key.n());
assert_eq!(key.dp(), ref_key.dp());
assert_eq!(key.dq(), ref_key.dq());
assert_eq!(key.d(), ref_key.d());
}
#[test]
fn build_key_from_p_q() {
const RSA_2048_SP800_PRIV_DER: &[u8] =
include_bytes!("../tests/examples/pkcs8/rsa2048-sp800-56b-priv.der");
let ref_key = RsaPrivateKey::from_pkcs8_der(RSA_2048_SP800_PRIV_DER).unwrap();
assert_eq!(ref_key.validate(), Ok(()));
let primes = ref_key.primes().to_vec();
let exp = ref_key.e().clone();
let key = RsaPrivateKey::from_p_q(primes[0].clone(), primes[1].clone(), exp)
.expect("failed to import key from primes");
assert_eq!(key.validate(), Ok(()));
assert_eq!(key.n(), ref_key.n());
assert_eq!(key.dp(), ref_key.dp());
assert_eq!(key.dq(), ref_key.dq());
assert_eq!(key.d(), ref_key.d());
}
}