rsa/traits/keys.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
//! Traits related to the key components
use num_bigint::{BigInt, BigUint};
use zeroize::Zeroize;
/// Components of an RSA public key.
pub trait PublicKeyParts {
/// Returns the modulus of the key.
fn n(&self) -> &BigUint;
/// Returns the public exponent of the key.
fn e(&self) -> &BigUint;
/// Returns the modulus size in bytes. Raw signatures and ciphertexts for
/// or by this public key will have the same size.
fn size(&self) -> usize {
(self.n().bits() + 7) / 8
}
}
/// Components of an RSA private key.
pub trait PrivateKeyParts: PublicKeyParts {
/// Returns the private exponent of the key.
fn d(&self) -> &BigUint;
/// Returns the prime factors.
fn primes(&self) -> &[BigUint];
/// Returns the precomputed dp value, D mod (P-1)
fn dp(&self) -> Option<&BigUint>;
/// Returns the precomputed dq value, D mod (Q-1)
fn dq(&self) -> Option<&BigUint>;
/// Returns the precomputed qinv value, Q^-1 mod P
fn qinv(&self) -> Option<&BigInt>;
/// Returns an iterator over the CRT Values
fn crt_values(&self) -> Option<&[CrtValue]>;
}
/// Contains the precomputed Chinese remainder theorem values.
#[derive(Debug, Clone)]
pub struct CrtValue {
/// D mod (prime - 1)
pub(crate) exp: BigInt,
/// R·Coeff ≡ 1 mod Prime.
pub(crate) coeff: BigInt,
/// product of primes prior to this (inc p and q)
pub(crate) r: BigInt,
}
impl Zeroize for CrtValue {
fn zeroize(&mut self) {
self.exp.zeroize();
self.coeff.zeroize();
self.r.zeroize();
}
}
impl Drop for CrtValue {
fn drop(&mut self) {
self.zeroize();
}
}