rstar/object.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
use crate::aabb::AABB;
use crate::envelope::Envelope;
use crate::point::{Point, PointExt};
/// An object that can be inserted into an r-tree.
///
/// This trait must be implemented for any object to be inserted into an r-tree.
/// Some simple objects that already implement this trait can be found in the
/// [crate::primitives] module.
///
/// The only property required of such an object is its [crate::Envelope].
/// Most simply, this method should return the [axis aligned bounding box](AABB)
/// of the object. Other envelope types may be supported in the future.
///
/// *Note*: It is a logic error if an object's envelope changes after insertion into
/// an r-tree.
///
/// # Type parameters
/// `Envelope`: The object's envelope type. At the moment, only [AABB] is
/// available.
///
/// # Example implementation
/// ```
/// use rstar::{RTreeObject, AABB};
///
/// struct Player
/// {
/// name: String,
/// x_coordinate: f64,
/// y_coordinate: f64
/// }
///
/// impl RTreeObject for Player
/// {
/// type Envelope = AABB<[f64; 2]>;
///
/// fn envelope(&self) -> Self::Envelope
/// {
/// AABB::from_point([self.x_coordinate, self.y_coordinate])
/// }
/// }
///
/// use rstar::RTree;
///
/// let mut tree = RTree::new();
///
/// // Insert a few players...
/// tree.insert(Player {
/// name: "Forlorn Freeman".into(),
/// x_coordinate: 1.,
/// y_coordinate: 0.
/// });
/// tree.insert(Player {
/// name: "Sarah Croft".into(),
/// x_coordinate: 0.5,
/// y_coordinate: 0.5,
/// });
/// tree.insert(Player {
/// name: "Geralt of Trivia".into(),
/// x_coordinate: 0.,
/// y_coordinate: 2.,
/// });
///
/// // Now we are ready to ask some questions!
/// let envelope = AABB::from_point([0.5, 0.5]);
/// let likely_sarah_croft = tree.locate_in_envelope(&envelope).next();
/// println!("Found {:?} lurking around at (0.5, 0.5)!", likely_sarah_croft.unwrap().name);
/// # assert!(likely_sarah_croft.is_some());
///
/// let unit_square = AABB::from_corners([-1.0, -1.0], [1., 1.]);
/// for player in tree.locate_in_envelope(&unit_square) {
/// println!("And here is {:?} spelunking in the unit square.", player.name);
/// }
/// # assert_eq!(tree.locate_in_envelope(&unit_square).count(), 2);
/// ```
pub trait RTreeObject {
/// The object's envelope type. Usually, [AABB] will be the right choice.
/// This type also defines the object's dimensionality.
type Envelope: Envelope;
/// Returns the object's envelope.
///
/// Usually, this will return the object's [axis aligned bounding box](AABB).
fn envelope(&self) -> Self::Envelope;
}
/// Defines objects which can calculate their minimal distance to a point.
///
/// This trait is most notably necessary for support of [nearest_neighbor](struct.RTree#method.nearest_neighbor)
/// queries.
///
/// # Example
/// ```
/// use rstar::{RTreeObject, PointDistance, AABB};
///
/// struct Circle
/// {
/// origin: [f32; 2],
/// radius: f32,
/// }
///
/// impl RTreeObject for Circle {
/// type Envelope = AABB<[f32; 2]>;
///
/// fn envelope(&self) -> Self::Envelope {
/// let corner_1 = [self.origin[0] - self.radius, self.origin[1] - self.radius];
/// let corner_2 = [self.origin[0] + self.radius, self.origin[1] + self.radius];
/// AABB::from_corners(corner_1, corner_2)
/// }
/// }
///
/// impl PointDistance for Circle
/// {
/// fn distance_2(&self, point: &[f32; 2]) -> f32
/// {
/// let d_x = self.origin[0] - point[0];
/// let d_y = self.origin[1] - point[1];
/// let distance_to_origin = (d_x * d_x + d_y * d_y).sqrt();
/// let distance_to_ring = distance_to_origin - self.radius;
/// let distance_to_circle = f32::max(0.0, distance_to_ring);
/// // We must return the squared distance!
/// distance_to_circle * distance_to_circle
/// }
///
/// // This implementation is not required but more efficient since it
/// // omits the calculation of a square root
/// fn contains_point(&self, point: &[f32; 2]) -> bool
/// {
/// let d_x = self.origin[0] - point[0];
/// let d_y = self.origin[1] - point[1];
/// let distance_to_origin_2 = (d_x * d_x + d_y * d_y);
/// let radius_2 = self.radius * self.radius;
/// distance_to_origin_2 <= radius_2
/// }
/// }
///
///
/// let circle = Circle {
/// origin: [1.0, 0.0],
/// radius: 1.0,
/// };
///
/// assert_eq!(circle.distance_2(&[-1.0, 0.0]), 1.0);
/// assert_eq!(circle.distance_2(&[-2.0, 0.0]), 4.0);
/// assert!(circle.contains_point(&[1.0, 0.0]));
/// ```
pub trait PointDistance: RTreeObject {
/// Returns the squared distance between an object and a point.
///
/// # Notes
/// - While euclidean distance will be the correct choice for most use cases, any distance metric
/// fulfilling the [usual axioms](https://en.wikipedia.org/wiki/Metric_space)
/// can be used when implementing this method
/// - Implementers **must** ensure that the distance metric used matches that of [crate::Envelope::distance_2]
fn distance_2(
&self,
point: &<Self::Envelope as Envelope>::Point,
) -> <<Self::Envelope as Envelope>::Point as Point>::Scalar;
/// Returns `true` if a point is contained within this object.
///
/// By default, any point returning a `distance_2` less than or equal to zero is considered to be
/// contained within `self`. Changing this default behavior is advised if calculating the squared distance
/// is more computationally expensive than a point containment check.
fn contains_point(&self, point: &<Self::Envelope as Envelope>::Point) -> bool {
self.distance_2(point) <= num_traits::zero()
}
/// Returns the squared distance to this object, or `None` if the distance
/// is larger than a given maximum value.
///
/// Some algorithms only need to know an object's distance
/// if it is less than or equal to a maximum value. In these cases, it may be
/// faster to calculate a lower bound of the distance first and returning
/// early if the object cannot be closer than the given maximum.
///
/// The provided default implementation will use the distance to the object's
/// envelope as a lower bound.
///
/// If performance is critical and the object's distance calculation is fast,
/// it may be beneficial to overwrite this implementation.
fn distance_2_if_less_or_equal(
&self,
point: &<Self::Envelope as Envelope>::Point,
max_distance_2: <<Self::Envelope as Envelope>::Point as Point>::Scalar,
) -> Option<<<Self::Envelope as Envelope>::Point as Point>::Scalar> {
let envelope_distance = self.envelope().distance_2(point);
if envelope_distance <= max_distance_2 {
let distance_2 = self.distance_2(point);
if distance_2 <= max_distance_2 {
return Some(distance_2);
}
}
None
}
}
impl<P> RTreeObject for P
where
P: Point,
{
type Envelope = AABB<P>;
fn envelope(&self) -> AABB<P> {
AABB::from_point(self.clone())
}
}
impl<P> PointDistance for P
where
P: Point,
{
fn distance_2(&self, point: &P) -> P::Scalar {
<Self as PointExt>::distance_2(self, point)
}
fn contains_point(&self, point: &<Self::Envelope as Envelope>::Point) -> bool {
self == point
}
fn distance_2_if_less_or_equal(
&self,
point: &<Self::Envelope as Envelope>::Point,
max_distance_2: <<Self::Envelope as Envelope>::Point as Point>::Scalar,
) -> Option<P::Scalar> {
let distance_2 = <Self as PointExt>::distance_2(self, point);
if distance_2 <= max_distance_2 {
Some(distance_2)
} else {
None
}
}
}