1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
use super::*;
const RLE_REPORT_BLOCK_MIN_LENGTH: u16 = 8;
/// ChunkType enumerates the three kinds of chunks described in RFC 3611 section 4.1.
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
pub enum ChunkType {
RunLength = 0,
BitVector = 1,
TerminatingNull = 2,
}
/// Chunk as defined in RFC 3611, section 4.1. These represent information
/// about packet losses and packet duplication. They have three representations:
///
/// Run Length Chunk:
///
/// 0 1
/// 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
/// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
/// |C|R| run length |
/// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
///
/// Bit Vector Chunk:
///
/// 0 1
/// 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
/// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
/// |C| bit vector |
/// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
///
/// Terminating Null Chunk:
///
/// 0 1
/// 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
/// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
/// |0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0|
/// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
#[derive(Debug, Default, PartialEq, Eq, Clone)]
pub struct Chunk(pub u16);
impl fmt::Display for Chunk {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self.chunk_type() {
ChunkType::RunLength => {
let run_type = self.run_type().unwrap_or(0);
write!(f, "[RunLength type={}, length={}]", run_type, self.value())
}
ChunkType::BitVector => write!(f, "[BitVector {:#b}", self.value()),
ChunkType::TerminatingNull => write!(f, "[TerminatingNull]"),
}
}
}
impl Chunk {
/// chunk_type returns the ChunkType that this Chunk represents
pub fn chunk_type(&self) -> ChunkType {
if self.0 == 0 {
ChunkType::TerminatingNull
} else if (self.0 >> 15) == 0 {
ChunkType::RunLength
} else {
ChunkType::BitVector
}
}
/// run_type returns the run_type that this Chunk represents. It is
/// only valid if ChunkType is RunLengthChunkType.
pub fn run_type(&self) -> error::Result<u8> {
if self.chunk_type() != ChunkType::RunLength {
Err(error::Error::WrongChunkType)
} else {
Ok((self.0 >> 14) as u8 & 0x01)
}
}
/// value returns the value represented in this Chunk
pub fn value(&self) -> u16 {
match self.chunk_type() {
ChunkType::RunLength => self.0 & 0x3FFF,
ChunkType::BitVector => self.0 & 0x7FFF,
ChunkType::TerminatingNull => 0,
}
}
}
/// RleReportBlock defines the common structure used by both
/// Loss RLE report blocks (RFC 3611 §4.1) and Duplicate RLE
/// report blocks (RFC 3611 §4.2).
///
/// 0 1 2 3
/// 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
/// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
/// | BT = 1 or 2 | rsvd. | t | block length |
/// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
/// | ssrc of source |
/// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
/// | begin_seq | end_seq |
/// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
/// | chunk 1 | chunk 2 |
/// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
/// : ... :
/// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
/// | chunk n-1 | chunk n |
/// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
#[derive(Debug, Default, PartialEq, Eq, Clone)]
pub struct RLEReportBlock {
//not included in marshal/unmarshal
pub is_loss_rle: bool,
pub t: u8,
//marshal/unmarshal
pub ssrc: u32,
pub begin_seq: u16,
pub end_seq: u16,
pub chunks: Vec<Chunk>,
}
/// LossRLEReportBlock is used to report information about packet
/// losses, as described in RFC 3611, section 4.1
/// make sure to set is_loss_rle = true
pub type LossRLEReportBlock = RLEReportBlock;
/// DuplicateRLEReportBlock is used to report information about packet
/// duplication, as described in RFC 3611, section 4.1
/// make sure to set is_loss_rle = false
pub type DuplicateRLEReportBlock = RLEReportBlock;
impl RLEReportBlock {
pub fn xr_header(&self) -> XRHeader {
XRHeader {
block_type: if self.is_loss_rle {
BlockType::LossRLE
} else {
BlockType::DuplicateRLE
},
type_specific: self.t & 0x0F,
block_length: (self.raw_size() / 4 - 1) as u16,
}
}
}
impl fmt::Display for RLEReportBlock {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "{self:?}")
}
}
impl Packet for RLEReportBlock {
fn header(&self) -> Header {
Header::default()
}
/// destination_ssrc returns an array of ssrc values that this report block refers to.
fn destination_ssrc(&self) -> Vec<u32> {
vec![self.ssrc]
}
fn raw_size(&self) -> usize {
XR_HEADER_LENGTH + RLE_REPORT_BLOCK_MIN_LENGTH as usize + self.chunks.len() * 2
}
fn as_any(&self) -> &(dyn Any + Send + Sync) {
self
}
fn equal(&self, other: &(dyn Packet + Send + Sync)) -> bool {
other
.as_any()
.downcast_ref::<RLEReportBlock>()
.map_or(false, |a| self == a)
}
fn cloned(&self) -> Box<dyn Packet + Send + Sync> {
Box::new(self.clone())
}
}
impl MarshalSize for RLEReportBlock {
fn marshal_size(&self) -> usize {
self.raw_size()
}
}
impl Marshal for RLEReportBlock {
/// marshal_to encodes the RLEReportBlock in binary
fn marshal_to(&self, mut buf: &mut [u8]) -> Result<usize> {
if buf.remaining_mut() < self.marshal_size() {
return Err(error::Error::BufferTooShort.into());
}
let h = self.xr_header();
let n = h.marshal_to(buf)?;
buf = &mut buf[n..];
buf.put_u32(self.ssrc);
buf.put_u16(self.begin_seq);
buf.put_u16(self.end_seq);
for chunk in &self.chunks {
buf.put_u16(chunk.0);
}
Ok(self.marshal_size())
}
}
impl Unmarshal for RLEReportBlock {
/// Unmarshal decodes the RLEReportBlock from binary
fn unmarshal<B>(raw_packet: &mut B) -> Result<Self>
where
Self: Sized,
B: Buf,
{
if raw_packet.remaining() < XR_HEADER_LENGTH {
return Err(error::Error::PacketTooShort.into());
}
let xr_header = XRHeader::unmarshal(raw_packet)?;
let block_length = xr_header.block_length * 4;
if block_length < RLE_REPORT_BLOCK_MIN_LENGTH
|| (block_length - RLE_REPORT_BLOCK_MIN_LENGTH) % 2 != 0
|| raw_packet.remaining() < block_length as usize
{
return Err(error::Error::PacketTooShort.into());
}
let is_loss_rle = xr_header.block_type == BlockType::LossRLE;
let t = xr_header.type_specific & 0x0F;
let ssrc = raw_packet.get_u32();
let begin_seq = raw_packet.get_u16();
let end_seq = raw_packet.get_u16();
let remaining = block_length - RLE_REPORT_BLOCK_MIN_LENGTH;
let mut chunks = vec![];
for _ in 0..remaining / 2 {
chunks.push(Chunk(raw_packet.get_u16()));
}
Ok(RLEReportBlock {
is_loss_rle,
t,
ssrc,
begin_seq,
end_seq,
chunks,
})
}
}