1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
// Copyright (c) 2018 Jeremy Davis (jeremydavis519@gmail.com) // // Licensed under the Apache License, Version 2.0 (located at /LICENSE-APACHE // or http://www.apache.org/licenses/LICENSE-2.0), or the MIT license // (located at /LICENSE-MIT or http://opensource.org/licenses/MIT), at your // option. The file may not be copied, modified, or distributed except // according to those terms. // // Unless required by applicable law or agreed to in writing, this software // is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF // ANY KIND, either express or implied. See the applicable license for the // specific language governing permissions and limitations under that license. //! This crate offers a way to emulate the process of procedural macro expansion at run time. //! It is intended for use with code coverage tools like [`tarpaulin`], which can't measure //! the code coverage of anything that happens at compile time. //! //! Currently, `runtime-macros` only works with `functionlike!` procedural macros. Custom //! derive may be supported in the future if there's demand. //! //! [`tarpaulin`]: https://crates.io/crates/cargo-tarpaulin //! //! To use it, add a test case to your procedural macro crate that calls `emulate_macro_expansion` //! on a `.rs` file that calls the macro. Most likely, all the files you'll want to use it on will //! be in your `/tests` directory. Once you've completed this step, any code coverage tool that //! works with your crate's test cases will be able to report on how thoroughly you've tested the //! macro. //! //! See the `/examples` directory in the [repository] for working examples. //! //! [repository]: https://github.com/jeremydavis519/runtime-macros use std::fs; use std::io::Read; use std::panic::{self, AssertUnwindSafe}; /// Parses the given Rust source file, finding functionlike macro expansions using `macro_path`. /// Each time it finds one, it calls `proc_macro_fn`, passing it the inner `TokenStream` just as /// if the macro were being expanded. The only effect is to verify that the macro doesn't panic, /// as the expansion is not actually applied to the AST or the source code. /// /// Note that this parser only handles Rust's syntax, so it cannot resolve paths to see if they /// are equivalent to the given one. The paths used to reference the macro must be exactly equal /// to the one given in order to be expanded by this function. For example, if `macro_path` is /// `"foo"` and the file provided calls the macro using `bar::foo!`, this function will not know /// to expand it, and the macro's code coverage will be underestimated. /// /// Also, this function uses `proc_macro2::TokenStream`, not the standard but partly unstable /// `proc_macro::TokenStream`. You can convert between them using their `into` methods, as shown /// below. /// /// # Returns /// /// `Ok` on success, or an instance of [`Error`] indicating any error that occurred when trying to /// read or parse the file. /// /// [`Error`]: enum.Error.html /// /// # Example /// /// ```ignore /// # // This example doesn't compile because procedural macros can only be made in crates with /// # // type "proc-macro". /// # #![cfg(feature = "proc-macro")] /// # extern crate proc_macro; /// # extern crate proc_macro2; /// #[proc_macro] /// fn remove(_: proc_macro::TokenStream) -> proc_macro::TokenStream { /// // This macro just eats its input and replaces it with nothing. /// proc_macro::TokenStream::empty() /// } /// /// extern crate syn; /// /// #[test] /// fn macro_code_coverage() { /// let file = std::fs::File::open("tests/tests.rs"); /// emulate_macro_expansion(file, "remove", |ts| remove(ts.into()).into()); /// } /// ``` pub fn emulate_macro_expansion_fallible<F>(mut file: fs::File, macro_path: &str, proc_macro_fn: F) -> Result<(), Error> where F: Fn(proc_macro2::TokenStream) -> proc_macro2::TokenStream { struct MacroVisitor<F: Fn(proc_macro2::TokenStream) -> proc_macro2::TokenStream> { macro_path: syn::Path, proc_macro_fn: AssertUnwindSafe<F> } impl<'ast, F> syn::visit::Visit<'ast> for MacroVisitor<F> where F: Fn(proc_macro2::TokenStream) -> proc_macro2::TokenStream { fn visit_macro(&mut self, macro_item: &'ast syn::Macro) { if macro_item.path == self.macro_path { (*self.proc_macro_fn)(macro_item.tokens.clone()); } } } let proc_macro_fn = AssertUnwindSafe(proc_macro_fn); let mut content = String::new(); file.read_to_string(&mut content).map_err(|e| Error::IoError(e))?; let ast = AssertUnwindSafe(syn::parse_file(content.as_str()).map_err(|e| Error::ParseError(e))?); let macro_path: syn::Path = syn::parse_str(macro_path).map_err(|e| Error::ParseError(e))?; panic::catch_unwind(|| { syn::visit::visit_file(&mut MacroVisitor::<F> { macro_path, proc_macro_fn }, &*ast); }).map_err(|_| Error::ParseError(syn::parse::Error::new(proc_macro2::Span::call_site(), "macro expansion panicked")))?; Ok(()) } fn uses_derive(attrs: &[syn::Attribute], derive_name: &syn::Path) -> Result<bool, Error> { for attr in attrs { if attr.path.is_ident("derive") { let meta = attr.parse_meta().map_err(|e| Error::ParseError(e))?; if let syn::Meta::List(ml) = meta { let uses_derive = ml.nested.iter().any(|nested_meta| { *nested_meta == syn::NestedMeta::Meta(syn::Meta::Path(derive_name.clone())) }); if uses_derive { return Ok(true); } } } } Ok(false) } /// Parses the given Rust source file, finding custom drives macro expansions using `macro_path`. /// Each time it finds one, it calls `derive_fn`, passing it a `syn::DeriveInput`. /// /// Note that this parser only handles Rust's syntax, so it cannot resolve paths to see if they /// are equivalent to the given one. The paths used to reference the macro must be exactly equal /// to the one given in order to be expanded by this function. For example, if `macro_path` is /// `"foo"` and the file provided calls the macro using `bar::foo!`, this function will not know /// to expand it, and the macro's code coverage will be underestimated. /// /// This function follows the standard syn pattern of implementing most of the logic using the /// `proc_macro2` types, leaving only those methods that can only exist for `proc_macro=true` /// crates, such as types from `proc_macro` or `syn::parse_macro_input` in the outer function. /// This allows use of the inner function in tests which is needed to expand it here. /// /// # Returns /// /// `Ok` on success, or an instance of [`Error`] indicating any error that occurred when trying to /// read or parse the file. /// /// [`Error`]: enum.Error.html /// /// # Example /// /// ```ignore /// # // This example doesn't compile because procedural macros can only be made in crates with /// # // type "proc-macro". /// # #![cfg(feature = "proc-macro")] /// # extern crate proc_macro; /// /// use quote::quote; /// use syn::parse_macro_input; /// /// #[proc_macro_derive(Hello)] /// fn hello(input: proc_macro::TokenStream) -> proc_macro::TokenStream { /// hello_internal(parse_macro_input!(input as DeriveInput)).into() /// } /// /// fn hello_internal(input: syn::DeriveInput) -> proc_macro2::TokenStream { /// let ident = input.ident; /// quote! { /// impl #ident { /// fn hello_world() -> String { /// String::from("Hello World") /// } /// } /// } /// } /// /// #[test] /// fn macro_code_coverage() { /// let file = std::fs::File::open("tests/tests.rs"); /// emulate_derive_expansion_fallible(file, "Hello", hello_internal); /// } /// ``` pub fn emulate_derive_expansion_fallible<F>(mut file: fs::File, macro_path: &str, derive_fn: F) -> Result<(), Error> where F: Fn(syn::DeriveInput) -> proc_macro2::TokenStream { struct MacroVisitor<F: Fn(syn::DeriveInput) -> proc_macro2::TokenStream> { macro_path: syn::Path, derive_fn: AssertUnwindSafe<F> } impl<'ast, F> syn::visit::Visit<'ast> for MacroVisitor<F> where F: Fn(syn::DeriveInput) -> proc_macro2::TokenStream { fn visit_item_struct(&mut self, node: &'ast syn::ItemStruct) { match uses_derive(&node.attrs, &self.macro_path) { Ok(uses) => { if uses { (*self.derive_fn)(node.clone().into()); } }, Err(e) => panic!("Failed expanding derive macro for {:?}: {}", self.macro_path, e), } } fn visit_item_enum(&mut self, node: &'ast syn::ItemEnum) { match uses_derive(&node.attrs, &self.macro_path) { Ok(uses) => { if uses { (*self.derive_fn)(node.clone().into()); } }, Err(e) => panic!("Failed expanding derive macro for {:?}: {}", self.macro_path, e), } } } let derive_fn = AssertUnwindSafe(derive_fn); let mut content = String::new(); file.read_to_string(&mut content).map_err(|e| Error::IoError(e))?; let ast = AssertUnwindSafe(syn::parse_file(content.as_str()).map_err(|e| Error::ParseError(e))?); let macro_path: syn::Path = syn::parse_str(macro_path).map_err(|e| Error::ParseError(e))?; panic::catch_unwind(|| { syn::visit::visit_file(&mut MacroVisitor::<F> { macro_path, derive_fn }, &*ast); }).map_err(|_| Error::ParseError(syn::parse::Error::new(proc_macro2::Span::call_site(), "macro expansion panicked")))?; Ok(()) } /// This type is like [`emulate_macro_expansion_fallible`] but automatically unwraps any errors it /// encounters. As such, it's deprecated due to being less flexible. /// /// [`emulate_macro_expansion_fallible`]: fn.emulate_macro_expansion_fallible.html #[deprecated] pub fn emulate_macro_expansion<F>(file: fs::File, macro_path: &str, proc_macro_fn: F) where F: Fn(proc_macro2::TokenStream) -> proc_macro2::TokenStream { emulate_macro_expansion_fallible(file, macro_path, proc_macro_fn).unwrap() } /// The error type for [`emulate_macro_expansion_fallible`]. If anything goes wrong during the file /// loading or macro expansion, this type describes it. /// /// [`emulate_macro_expansion_fallible`]: fn.emulate_macro_expansion_fallible.html #[derive(Debug)] pub enum Error { IoError(std::io::Error), ParseError(syn::parse::Error) } impl std::fmt::Display for Error { fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result { match self { Error::IoError(e) => e.fmt(f), Error::ParseError(e) => e.fmt(f) } } } impl std::error::Error for Error { fn source(&self) -> Option<&(dyn std::error::Error+'static)> { match self { Error::IoError(e) => e.source(), Error::ParseError(e) => e.source() } } } #[cfg(test)] mod tests { extern crate cargo_tarpaulin; use self::cargo_tarpaulin::launch_tarpaulin; use self::cargo_tarpaulin::config::Config; use std::{env, time}; #[test] fn proc_macro_coverage() { let mut config = Config::default(); let test_dir = env::current_dir().unwrap().join("examples").join("custom_assert"); config.manifest = test_dir.join("Cargo.toml"); config.test_timeout = time::Duration::from_secs(60); let (_trace_map, return_code) = launch_tarpaulin(&config).unwrap(); assert_eq!(return_code, 0); } }