crypto/aessafe.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
/*!
The `aessafe` module implements the AES algorithm completely in software without using any table
lookups or other timing dependant mechanisms. This module actually contains two seperate
implementations - an implementation that works on a single block at a time and a second
implementation that processes 8 blocks in parallel. Some block encryption modes really only work if
you are processing a single blocks (CFB, OFB, and CBC encryption for example) while other modes
are trivially parallelizable (CTR and CBC decryption). Processing more blocks at once allows for
greater efficiency, especially when using wide registers, such as the XMM registers available in
x86 processors.
## AES Algorithm
There are lots of places to go to on the internet for an involved description of how AES works. For
the purposes of this description, it sufficies to say that AES is just a block cipher that takes
a key of 16, 24, or 32 bytes and uses that to either encrypt or decrypt a block of 16 bytes. An
encryption or decryption operation consists of a number of rounds which involve some combination of
the following 4 basic operations:
* ShiftRows
* MixColumns
* SubBytes
* AddRoundKey
## Timing problems
Most software implementations of AES use a large set of lookup tables - generally at least the
SubBytes step is implemented via lookup tables; faster implementations generally implement the
MixColumns step this way as well. This is largely a design flaw in the AES implementation as it was
not realized during the NIST standardization process that table lookups can lead to security
problems [1]. The issue is that not all table lookups occur in constant time - an address that was
recently used is looked up much faster than one that hasn't been used in a while. A careful
adversary can measure the amount of time that each AES operation takes and use that information to
help determine the secret key or plain text information. More specifically, its not table lookups
that lead to these types of timing attacks - the issue is table lookups that use secret information
as part of the address to lookup. A table lookup that is performed the exact same way every time
regardless of the key or plaintext doesn't leak any information. This implementation uses no data
dependant table lookups.
## Bit Slicing
Bit Slicing is a technique that is basically a software emulation of hardware implementation
techniques. One of the earliest implementations of this technique was for a DES implementation [4].
In hardware, table lookups do not present the same timing problems as they do in software, however
they present other problems - namely that a 256 byte S-box table takes up a huge amount of space on
a chip. Hardware implementations, thus, tend to avoid table lookups and instead calculate the
contents of the S-Boxes as part of every operation. So, the key to an efficient Bit Sliced software
implementation is to re-arrange all of the bits of data to process into a form that can easily be
applied in much the same way that it would be in hardeware. It is fortunate, that AES was designed
such that these types of hardware implementations could be very efficient - the contents of the
S-boxes are defined by a mathematical formula.
A hardware implementation works on single bits at a time. Unlike adding variables in software,
however, that occur generally one at a time, hardware implementations are extremely parallel and
operate on many, many bits at once. Bit Slicing emulates that by moving all "equivalent" bits into
common registers and then operating on large groups of bits all at once. Calculating the S-box value
for a single bit is extremely expensive, but its much cheaper when you can amortize that cost over
128 bits (as in an XMM register). This implementation follows the same strategy as in [5] and that
is an excellent source for more specific details. However, a short description follows.
The input data is simply a collection of bytes. Each byte is comprised of 8 bits, a low order bit
(bit 0) through a high order bit (bit 7). Bit slicing the input data simply takes all of the low
order bits (bit 0) from the input data, and moves them into a single register (eg: XMM0). Next, all
of them 2nd lowest bits are moved into their own register (eg: XMM1), and so on. After completion,
we're left with 8 variables, each of which contains an equivalent set of bits. The exact order of
those bits is irrevent for the implementation of the SubBytes step, however, it is very important
for the MixColumns step. Again, see [5] for details. Due to the design of AES, its them possible to
execute the entire AES operation using just bitwise exclusive ors and rotates once we have Bit
Sliced the input data. After the completion of the AES operation, we then un-Bit Slice the data
to give us our output. Clearly, the more bits that we can process at once, the faster this will go -
thus, the version that processes 8 blocks at once is roughly 8 times faster than processing just a
single block at a time.
The ShiftRows step is fairly straight-forward to implement on the Bit Sliced state. The MixColumns
and especially the SubBytes steps are more complicated. This implementation draws heavily on the
formulas from [5], [6], and [7] to implement these steps.
## Implementation
Both implementations work basically the same way and share pretty much all of their code. The key
is first processed to create all of the round keys where each round key is just a 16 byte chunk of
data that is combined into the AES state by the AddRoundKey step as part of each encryption or
decryption round. Processing the round key can be expensive, so this is done before encryption or
decryption. Before encrypting or decrypting data, the data to be processed by be Bit Sliced into 8
seperate variables where each variable holds equivalent bytes from the state. This Bit Sliced state
is stored as a Bs8State<T>, where T is the type that stores each set of bits. The first
implementation stores these bits in a u32 which permits up to 8 * 32 = 1024 bits of data to be
processed at once. This implementation only processes a single block at a time, so, in reality, only
512 bits are processed at once and the remaining 512 bits of the variables are unused. The 2nd
implementation uses u32x4s - vectors of 4 u32s. Thus, we can process 8 * 128 = 4096 bits at once,
which corresponds exactly to 8 blocks.
The Bs8State struct implements the AesOps trait, which contains methods for each of the 4 main steps
of the AES algorithm. The types, T, each implement the AesBitValueOps trait, which containts methods
necessary for processing a collection or bit values and the AesOps trait relies heavily on this
trait to perform its operations.
The Bs4State and Bs2State struct implement operations of various subfields of the full GF(2^8)
finite field which allows for efficient computation of the AES S-Boxes. See [7] for details.
## References
[1] - "Cache-Collision Timing Attacks Against AES". Joseph Bonneau and Ilya Mironov.
http://www.jbonneau.com/doc/BM06-CHES-aes_cache_timing.pdf
[2] - "Software mitigations to hedge AES against cache-based software side channel vulnerabilities".
Ernie Brickell, et al. http://eprint.iacr.org/2006/052.pdf.
[3] - "Cache Attacks and Countermeasures: the Case of AES (Extended Version)".
Dag Arne Osvik, et al. tau.ac.il/~tromer/papers/cache.pdf.
[4] - "A Fast New DES Implementation in Software". Eli Biham.
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.52.5429&rep=rep1&type=pdf.
[5] - "Faster and Timing-Attack Resistant AES-GCM". Emilia K ̈asper and Peter Schwabe.
http://www.chesworkshop.org/ches2009/presentations/01_Session_1/CHES2009_ekasper.pdf.
[6] - "FAST AES DECRYPTION". Vinit Azad. http://webcache.googleusercontent.com/
search?q=cache:ld_f8pSgURcJ:csusdspace.calstate.edu/bitstream/handle/10211.9/1224/
Vinit_Azad_MS_Report.doc%3Fsequence%3D2+&cd=4&hl=en&ct=clnk&gl=us&client=ubuntu.
[7] - "A Very Compact Rijndael S-box". D. Canright.
http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA434781.
*/
use std::ops::{BitAnd, BitXor, Not};
use std::default::Default;
use cryptoutil::{read_u32v_le, write_u32_le};
use simd::u32x4;
use step_by::RangeExt;
use symmetriccipher::{BlockEncryptor, BlockEncryptorX8, BlockDecryptor, BlockDecryptorX8};
const U32X4_0: u32x4 = u32x4(0, 0, 0, 0);
const U32X4_1: u32x4 = u32x4(0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff);
macro_rules! define_aes_struct(
(
$name:ident,
$rounds:expr
) => (
#[derive(Clone, Copy)]
pub struct $name {
sk: [Bs8State<u16>; ($rounds + 1)]
}
)
);
macro_rules! define_aes_impl(
(
$name:ident,
$mode:ident,
$rounds:expr,
$key_size:expr
) => (
impl $name {
pub fn new(key: &[u8]) -> $name {
let mut a = $name {
sk: [Bs8State(0, 0, 0, 0, 0, 0, 0, 0); ($rounds + 1)]
};
let mut tmp = [[0u32; 4]; ($rounds + 1)];
create_round_keys(key, KeyType::$mode, &mut tmp);
for i in 0..$rounds + 1 {
a.sk[i] = bit_slice_4x4_with_u16(tmp[i][0], tmp[i][1], tmp[i][2], tmp[i][3]);
}
a
}
}
)
);
macro_rules! define_aes_enc(
(
$name:ident,
$rounds:expr
) => (
impl BlockEncryptor for $name {
fn block_size(&self) -> usize { 16 }
fn encrypt_block(&self, input: &[u8], output: &mut [u8]) {
let mut bs = bit_slice_1x16_with_u16(input);
bs = encrypt_core(&bs, &self.sk);
un_bit_slice_1x16_with_u16(&bs, output);
}
}
)
);
macro_rules! define_aes_dec(
(
$name:ident,
$rounds:expr
) => (
impl BlockDecryptor for $name {
fn block_size(&self) -> usize { 16 }
fn decrypt_block(&self, input: &[u8], output: &mut [u8]) {
let mut bs = bit_slice_1x16_with_u16(input);
bs = decrypt_core(&bs, &self.sk);
un_bit_slice_1x16_with_u16(&bs, output);
}
}
)
);
define_aes_struct!(AesSafe128Encryptor, 10);
define_aes_struct!(AesSafe128Decryptor, 10);
define_aes_impl!(AesSafe128Encryptor, Encryption, 10, 16);
define_aes_impl!(AesSafe128Decryptor, Decryption, 10, 16);
define_aes_enc!(AesSafe128Encryptor, 10);
define_aes_dec!(AesSafe128Decryptor, 10);
define_aes_struct!(AesSafe192Encryptor, 12);
define_aes_struct!(AesSafe192Decryptor, 12);
define_aes_impl!(AesSafe192Encryptor, Encryption, 12, 24);
define_aes_impl!(AesSafe192Decryptor, Decryption, 12, 24);
define_aes_enc!(AesSafe192Encryptor, 12);
define_aes_dec!(AesSafe192Decryptor, 12);
define_aes_struct!(AesSafe256Encryptor, 14);
define_aes_struct!(AesSafe256Decryptor, 14);
define_aes_impl!(AesSafe256Encryptor, Encryption, 14, 32);
define_aes_impl!(AesSafe256Decryptor, Decryption, 14, 32);
define_aes_enc!(AesSafe256Encryptor, 14);
define_aes_dec!(AesSafe256Decryptor, 14);
macro_rules! define_aes_struct_x8(
(
$name:ident,
$rounds:expr
) => (
#[derive(Clone, Copy)]
pub struct $name {
sk: [Bs8State<u32x4>; ($rounds + 1)]
}
)
);
macro_rules! define_aes_impl_x8(
(
$name:ident,
$mode:ident,
$rounds:expr,
$key_size:expr
) => (
impl $name {
pub fn new(key: &[u8]) -> $name {
let mut a = $name {
sk: [
Bs8State(
U32X4_0,
U32X4_0,
U32X4_0,
U32X4_0,
U32X4_0,
U32X4_0,
U32X4_0,
U32X4_0);
($rounds + 1)]
};
let mut tmp = [[0u32; 4]; ($rounds + 1)];
create_round_keys(key, KeyType::$mode, &mut tmp);
for i in 0..$rounds + 1 {
a.sk[i] = bit_slice_fill_4x4_with_u32x4(
tmp[i][0],
tmp[i][1],
tmp[i][2],
tmp[i][3]);
}
a
}
}
)
);
macro_rules! define_aes_enc_x8(
(
$name:ident,
$rounds:expr
) => (
impl BlockEncryptorX8 for $name {
fn block_size(&self) -> usize { 16 }
fn encrypt_block_x8(&self, input: &[u8], output: &mut [u8]) {
let bs = bit_slice_1x128_with_u32x4(input);
let bs2 = encrypt_core(&bs, &self.sk);
un_bit_slice_1x128_with_u32x4(bs2, output);
}
}
)
);
macro_rules! define_aes_dec_x8(
(
$name:ident,
$rounds:expr
) => (
impl BlockDecryptorX8 for $name {
fn block_size(&self) -> usize { 16 }
fn decrypt_block_x8(&self, input: &[u8], output: &mut [u8]) {
let bs = bit_slice_1x128_with_u32x4(input);
let bs2 = decrypt_core(&bs, &self.sk);
un_bit_slice_1x128_with_u32x4(bs2, output);
}
}
)
);
define_aes_struct_x8!(AesSafe128EncryptorX8, 10);
define_aes_struct_x8!(AesSafe128DecryptorX8, 10);
define_aes_impl_x8!(AesSafe128EncryptorX8, Encryption, 10, 16);
define_aes_impl_x8!(AesSafe128DecryptorX8, Decryption, 10, 16);
define_aes_enc_x8!(AesSafe128EncryptorX8, 10);
define_aes_dec_x8!(AesSafe128DecryptorX8, 10);
define_aes_struct_x8!(AesSafe192EncryptorX8, 12);
define_aes_struct_x8!(AesSafe192DecryptorX8, 12);
define_aes_impl_x8!(AesSafe192EncryptorX8, Encryption, 12, 24);
define_aes_impl_x8!(AesSafe192DecryptorX8, Decryption, 12, 24);
define_aes_enc_x8!(AesSafe192EncryptorX8, 12);
define_aes_dec_x8!(AesSafe192DecryptorX8, 12);
define_aes_struct_x8!(AesSafe256EncryptorX8, 14);
define_aes_struct_x8!(AesSafe256DecryptorX8, 14);
define_aes_impl_x8!(AesSafe256EncryptorX8, Encryption, 14, 32);
define_aes_impl_x8!(AesSafe256DecryptorX8, Decryption, 14, 32);
define_aes_enc_x8!(AesSafe256EncryptorX8, 14);
define_aes_dec_x8!(AesSafe256DecryptorX8, 14);
fn ffmulx(x: u32) -> u32 {
let m1: u32 = 0x80808080;
let m2: u32 = 0x7f7f7f7f;
let m3: u32 = 0x0000001b;
((x & m2) << 1) ^ (((x & m1) >> 7) * m3)
}
fn inv_mcol(x: u32) -> u32 {
let f2 = ffmulx(x);
let f4 = ffmulx(f2);
let f8 = ffmulx(f4);
let f9 = x ^ f8;
f2 ^ f4 ^ f8 ^ (f2 ^ f9).rotate_right(8) ^ (f4 ^ f9).rotate_right(16) ^ f9.rotate_right(24)
}
fn sub_word(x: u32) -> u32 {
let bs = bit_slice_4x1_with_u16(x).sub_bytes();
un_bit_slice_4x1_with_u16(&bs)
}
enum KeyType {
Encryption,
Decryption
}
// This array is not accessed in any key-dependant way, so there are no timing problems inherent in
// using it.
static RCON: [u32; 10] = [0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36];
// The round keys are created without bit-slicing the key data. The individual implementations bit
// slice the round keys returned from this function. This function, and the few functions above, are
// derived from the BouncyCastle AES implementation.
fn create_round_keys(key: &[u8], key_type: KeyType, round_keys: &mut [[u32; 4]]) {
let (key_words, rounds) = match key.len() {
16 => (4, 10),
24 => (6, 12),
32 => (8, 14),
_ => panic!("Invalid AES key size.")
};
// The key is copied directly into the first few round keys
let mut j = 0;
for i in (0..key.len()).step_up(4) {
round_keys[j / 4][j % 4] =
(key[i] as u32) |
((key[i+1] as u32) << 8) |
((key[i+2] as u32) << 16) |
((key[i+3] as u32) << 24);
j += 1;
};
// Calculate the rest of the round keys
for i in key_words..(rounds + 1) * 4 {
let mut tmp = round_keys[(i - 1) / 4][(i - 1) % 4];
if (i % key_words) == 0 {
tmp = sub_word(tmp.rotate_right(8)) ^ RCON[(i / key_words) - 1];
} else if (key_words == 8) && ((i % key_words) == 4) {
// This is only necessary for AES-256 keys
tmp = sub_word(tmp);
}
round_keys[i / 4][i % 4] = round_keys[(i - key_words) / 4][(i - key_words) % 4] ^ tmp;
}
// Decryption round keys require extra processing
match key_type {
KeyType::Decryption => {
for j in 1..rounds {
for i in 0..4 {
round_keys[j][i] = inv_mcol(round_keys[j][i]);
}
}
},
KeyType::Encryption => { }
}
}
// This trait defines all of the operations needed for a type to be processed as part of an AES
// encryption or decryption operation.
trait AesOps {
fn sub_bytes(self) -> Self;
fn inv_sub_bytes(self) -> Self;
fn shift_rows(self) -> Self;
fn inv_shift_rows(self) -> Self;
fn mix_columns(self) -> Self;
fn inv_mix_columns(self) -> Self;
fn add_round_key(self, rk: &Self) -> Self;
}
fn encrypt_core<S: AesOps + Copy>(state: &S, sk: &[S]) -> S {
// Round 0 - add round key
let mut tmp = state.add_round_key(&sk[0]);
// Remaining rounds (except last round)
for i in 1..sk.len() - 1 {
tmp = tmp.sub_bytes();
tmp = tmp.shift_rows();
tmp = tmp.mix_columns();
tmp = tmp.add_round_key(&sk[i]);
}
// Last round
tmp = tmp.sub_bytes();
tmp = tmp.shift_rows();
tmp = tmp.add_round_key(&sk[sk.len() - 1]);
tmp
}
fn decrypt_core<S: AesOps + Copy>(state: &S, sk: &[S]) -> S {
// Round 0 - add round key
let mut tmp = state.add_round_key(&sk[sk.len() - 1]);
// Remaining rounds (except last round)
for i in 1..sk.len() - 1 {
tmp = tmp.inv_sub_bytes();
tmp = tmp.inv_shift_rows();
tmp = tmp.inv_mix_columns();
tmp = tmp.add_round_key(&sk[sk.len() - 1 - i]);
}
// Last round
tmp = tmp.inv_sub_bytes();
tmp = tmp.inv_shift_rows();
tmp = tmp.add_round_key(&sk[0]);
tmp
}
#[derive(Clone, Copy)]
struct Bs8State<T>(T, T, T, T, T, T, T, T);
impl <T: Copy> Bs8State<T> {
fn split(self) -> (Bs4State<T>, Bs4State<T>) {
let Bs8State(x0, x1, x2, x3, x4, x5, x6, x7) = self;
(Bs4State(x0, x1, x2, x3), Bs4State(x4, x5, x6, x7))
}
}
impl <T: BitXor<Output = T> + Copy> Bs8State<T> {
fn xor(self, rhs: Bs8State<T>) -> Bs8State<T> {
let Bs8State(a0, a1, a2, a3, a4, a5, a6, a7) = self;
let Bs8State(b0, b1, b2, b3, b4, b5, b6, b7) = rhs;
Bs8State(a0 ^ b0, a1 ^ b1, a2 ^ b2, a3 ^ b3, a4 ^ b4, a5 ^ b5, a6 ^ b6, a7 ^ b7)
}
// We need to be able to convert a Bs8State to and from a polynomial basis and a normal
// basis. That transformation could be done via pseudocode that roughly looks like the
// following:
//
// for x in 0..8 {
// for y in 0..8 {
// result.x ^= input.y & MATRIX[7 - y][x]
// }
// }
//
// Where the MATRIX is one of the following depending on the conversion being done.
// (The affine transformation step is included in all of these matrices):
//
// A2X = [
// [ 0, 0, 0, -1, -1, 0, 0, -1],
// [-1, -1, 0, 0, -1, -1, -1, -1],
// [ 0, -1, 0, 0, -1, -1, -1, -1],
// [ 0, 0, 0, -1, 0, 0, -1, 0],
// [-1, 0, 0, -1, 0, 0, 0, 0],
// [-1, 0, 0, 0, 0, 0, 0, -1],
// [-1, 0, 0, -1, 0, -1, 0, -1],
// [-1, -1, -1, -1, -1, -1, -1, -1]
// ];
//
// X2A = [
// [ 0, 0, -1, 0, 0, -1, -1, 0],
// [ 0, 0, 0, -1, -1, -1, -1, 0],
// [ 0, -1, -1, -1, 0, -1, -1, 0],
// [ 0, 0, -1, -1, 0, 0, 0, -1],
// [ 0, 0, 0, -1, 0, -1, -1, 0],
// [-1, 0, 0, -1, 0, -1, 0, 0],
// [ 0, -1, -1, -1, -1, 0, -1, -1],
// [ 0, 0, 0, 0, 0, -1, -1, 0],
// ];
//
// X2S = [
// [ 0, 0, 0, -1, -1, 0, -1, 0],
// [-1, 0, -1, -1, 0, -1, 0, 0],
// [ 0, -1, -1, -1, -1, 0, 0, -1],
// [-1, -1, 0, -1, 0, 0, 0, 0],
// [ 0, 0, -1, -1, -1, 0, -1, -1],
// [ 0, 0, -1, 0, 0, 0, 0, 0],
// [-1, -1, 0, 0, 0, 0, 0, 0],
// [ 0, 0, -1, 0, 0, -1, 0, 0],
// ];
//
// S2X = [
// [ 0, 0, -1, -1, 0, 0, 0, -1],
// [-1, 0, 0, -1, -1, -1, -1, 0],
// [-1, 0, -1, 0, 0, 0, 0, 0],
// [-1, -1, 0, -1, 0, -1, -1, -1],
// [ 0, -1, 0, 0, -1, 0, 0, 0],
// [ 0, 0, -1, 0, 0, 0, 0, 0],
// [-1, 0, 0, 0, -1, 0, -1, 0],
// [-1, -1, 0, 0, -1, 0, -1, 0],
// ];
//
// Looking at the pseudocode implementation, we see that there is no point
// in processing any of the elements in those matrices that have zero values
// since a logical AND with 0 will produce 0 which will have no effect when it
// is XORed into the result.
//
// LLVM doesn't appear to be able to fully unroll the loops in the pseudocode
// above and to eliminate processing of the 0 elements. So, each transformation is
// implemented independently directly in fully unrolled form with the 0 elements
// removed.
//
// As an optimization, elements that are XORed together multiple times are
// XORed just once and then used multiple times. I wrote a simple program that
// greedily looked for terms to combine to create the implementations below.
// It is likely that this could be optimized more.
fn change_basis_a2x(&self) -> Bs8State<T> {
let t06 = self.6 ^ self.0;
let t056 = self.5 ^ t06;
let t0156 = t056 ^ self.1;
let t13 = self.1 ^ self.3;
let x0 = self.2 ^ t06 ^ t13;
let x1 = t056;
let x2 = self.0;
let x3 = self.0 ^ self.4 ^ self.7 ^ t13;
let x4 = self.7 ^ t056;
let x5 = t0156;
let x6 = self.4 ^ t056;
let x7 = self.2 ^ self.7 ^ t0156;
Bs8State(x0, x1, x2, x3, x4, x5, x6, x7)
}
fn change_basis_x2s(&self) -> Bs8State<T> {
let t46 = self.4 ^ self.6;
let t35 = self.3 ^ self.5;
let t06 = self.0 ^ self.6;
let t357 = t35 ^ self.7;
let x0 = self.1 ^ t46;
let x1 = self.1 ^ self.4 ^ self.5;
let x2 = self.2 ^ t35 ^ t06;
let x3 = t46 ^ t357;
let x4 = t357;
let x5 = t06;
let x6 = self.3 ^ self.7;
let x7 = t35;
Bs8State(x0, x1, x2, x3, x4, x5, x6, x7)
}
fn change_basis_x2a(&self) -> Bs8State<T> {
let t15 = self.1 ^ self.5;
let t36 = self.3 ^ self.6;
let t1356 = t15 ^ t36;
let t07 = self.0 ^ self.7;
let x0 = self.2;
let x1 = t15;
let x2 = self.4 ^ self.7 ^ t15;
let x3 = self.2 ^ self.4 ^ t1356;
let x4 = self.1 ^ self.6;
let x5 = self.2 ^ self.5 ^ t36 ^ t07;
let x6 = t1356 ^ t07;
let x7 = self.1 ^ self.4;
Bs8State(x0, x1, x2, x3, x4, x5, x6, x7)
}
fn change_basis_s2x(&self) -> Bs8State<T> {
let t46 = self.4 ^ self.6;
let t01 = self.0 ^ self.1;
let t0146 = t01 ^ t46;
let x0 = self.5 ^ t0146;
let x1 = self.0 ^ self.3 ^ self.4;
let x2 = self.2 ^ self.5 ^ self.7;
let x3 = self.7 ^ t46;
let x4 = self.3 ^ self.6 ^ t01;
let x5 = t46;
let x6 = t0146;
let x7 = self.4 ^ self.7;
Bs8State(x0, x1, x2, x3, x4, x5, x6, x7)
}
}
impl <T: Not<Output = T> + Copy> Bs8State<T> {
// The special value "x63" is used as part of the sub_bytes and inv_sub_bytes
// steps. It is conceptually a Bs8State value where the 0th, 1st, 5th, and 6th
// elements are all 1s and the other elements are all 0s. The only thing that
// we do with the "x63" value is to XOR a Bs8State with it. We optimize that XOR
// below into just inverting 4 of the elements and leaving the other 4 elements
// untouched.
fn xor_x63(self) -> Bs8State<T> {
Bs8State (
!self.0,
!self.1,
self.2,
self.3,
self.4,
!self.5,
!self.6,
self.7)
}
}
#[derive(Clone, Copy)]
struct Bs4State<T>(T, T, T, T);
impl <T: Copy> Bs4State<T> {
fn split(self) -> (Bs2State<T>, Bs2State<T>) {
let Bs4State(x0, x1, x2, x3) = self;
(Bs2State(x0, x1), Bs2State(x2, x3))
}
fn join(self, rhs: Bs4State<T>) -> Bs8State<T> {
let Bs4State(a0, a1, a2, a3) = self;
let Bs4State(b0, b1, b2, b3) = rhs;
Bs8State(a0, a1, a2, a3, b0, b1, b2, b3)
}
}
impl <T: BitXor<Output = T> + Copy> Bs4State<T> {
fn xor(self, rhs: Bs4State<T>) -> Bs4State<T> {
let Bs4State(a0, a1, a2, a3) = self;
let Bs4State(b0, b1, b2, b3) = rhs;
Bs4State(a0 ^ b0, a1 ^ b1, a2 ^ b2, a3 ^ b3)
}
}
#[derive(Clone, Copy)]
struct Bs2State<T>(T, T);
impl <T> Bs2State<T> {
fn split(self) -> (T, T) {
let Bs2State(x0, x1) = self;
(x0, x1)
}
fn join(self, rhs: Bs2State<T>) -> Bs4State<T> {
let Bs2State(a0, a1) = self;
let Bs2State(b0, b1) = rhs;
Bs4State(a0, a1, b0, b1)
}
}
impl <T: BitXor<Output = T> + Copy> Bs2State<T> {
fn xor(self, rhs: Bs2State<T>) -> Bs2State<T> {
let Bs2State(a0, a1) = self;
let Bs2State(b0, b1) = rhs;
Bs2State(a0 ^ b0, a1 ^ b1)
}
}
// Bit Slice data in the form of 4 u32s in column-major order
fn bit_slice_4x4_with_u16(a: u32, b: u32, c: u32, d: u32) -> Bs8State<u16> {
fn pb(x: u32, bit: u32, shift: u32) -> u16 {
(((x >> bit) & 1) as u16) << shift
}
fn construct(a: u32, b: u32, c: u32, d: u32, bit: u32) -> u16 {
pb(a, bit, 0) | pb(b, bit, 1) | pb(c, bit, 2) | pb(d, bit, 3) |
pb(a, bit + 8, 4) | pb(b, bit + 8, 5) | pb(c, bit + 8, 6) | pb(d, bit + 8, 7) |
pb(a, bit + 16, 8) | pb(b, bit + 16, 9) | pb(c, bit + 16, 10) | pb(d, bit + 16, 11) |
pb(a, bit + 24, 12) | pb(b, bit + 24, 13) | pb(c, bit + 24, 14) | pb(d, bit + 24, 15)
}
let x0 = construct(a, b, c, d, 0);
let x1 = construct(a, b, c, d, 1);
let x2 = construct(a, b, c, d, 2);
let x3 = construct(a, b, c, d, 3);
let x4 = construct(a, b, c, d, 4);
let x5 = construct(a, b, c, d, 5);
let x6 = construct(a, b, c, d, 6);
let x7 = construct(a, b, c, d, 7);
Bs8State(x0, x1, x2, x3, x4, x5, x6, x7)
}
// Bit slice a single u32 value - this is used to calculate the SubBytes step when creating the
// round keys.
fn bit_slice_4x1_with_u16(a: u32) -> Bs8State<u16> {
bit_slice_4x4_with_u16(a, 0, 0, 0)
}
// Bit slice a 16 byte array in column major order
fn bit_slice_1x16_with_u16(data: &[u8]) -> Bs8State<u16> {
let mut n = [0u32; 4];
read_u32v_le(&mut n, data);
let a = n[0];
let b = n[1];
let c = n[2];
let d = n[3];
bit_slice_4x4_with_u16(a, b, c, d)
}
// Un Bit Slice into a set of 4 u32s
fn un_bit_slice_4x4_with_u16(bs: &Bs8State<u16>) -> (u32, u32, u32, u32) {
fn pb(x: u16, bit: u32, shift: u32) -> u32 {
(((x >> bit) & 1) as u32) << shift
}
fn deconstruct(bs: &Bs8State<u16>, bit: u32) -> u32 {
let Bs8State(x0, x1, x2, x3, x4, x5, x6, x7) = *bs;
pb(x0, bit, 0) | pb(x1, bit, 1) | pb(x2, bit, 2) | pb(x3, bit, 3) |
pb(x4, bit, 4) | pb(x5, bit, 5) | pb(x6, bit, 6) | pb(x7, bit, 7) |
pb(x0, bit + 4, 8) | pb(x1, bit + 4, 9) | pb(x2, bit + 4, 10) | pb(x3, bit + 4, 11) |
pb(x4, bit + 4, 12) | pb(x5, bit + 4, 13) | pb(x6, bit + 4, 14) | pb(x7, bit + 4, 15) |
pb(x0, bit + 8, 16) | pb(x1, bit + 8, 17) | pb(x2, bit + 8, 18) | pb(x3, bit + 8, 19) |
pb(x4, bit + 8, 20) | pb(x5, bit + 8, 21) | pb(x6, bit + 8, 22) | pb(x7, bit + 8, 23) |
pb(x0, bit + 12, 24) | pb(x1, bit + 12, 25) | pb(x2, bit + 12, 26) | pb(x3, bit + 12, 27) |
pb(x4, bit + 12, 28) | pb(x5, bit + 12, 29) | pb(x6, bit + 12, 30) | pb(x7, bit + 12, 31)
}
let a = deconstruct(bs, 0);
let b = deconstruct(bs, 1);
let c = deconstruct(bs, 2);
let d = deconstruct(bs, 3);
(a, b, c, d)
}
// Un Bit Slice into a single u32. This is used when creating the round keys.
fn un_bit_slice_4x1_with_u16(bs: &Bs8State<u16>) -> u32 {
let (a, _, _, _) = un_bit_slice_4x4_with_u16(bs);
a
}
// Un Bit Slice into a 16 byte array
fn un_bit_slice_1x16_with_u16(bs: &Bs8State<u16>, output: &mut [u8]) {
let (a, b, c, d) = un_bit_slice_4x4_with_u16(bs);
write_u32_le(&mut output[0..4], a);
write_u32_le(&mut output[4..8], b);
write_u32_le(&mut output[8..12], c);
write_u32_le(&mut output[12..16], d);
}
// Bit Slice a 128 byte array of eight 16 byte blocks. Each block is in column major order.
fn bit_slice_1x128_with_u32x4(data: &[u8]) -> Bs8State<u32x4> {
let bit0 = u32x4(0x01010101, 0x01010101, 0x01010101, 0x01010101);
let bit1 = u32x4(0x02020202, 0x02020202, 0x02020202, 0x02020202);
let bit2 = u32x4(0x04040404, 0x04040404, 0x04040404, 0x04040404);
let bit3 = u32x4(0x08080808, 0x08080808, 0x08080808, 0x08080808);
let bit4 = u32x4(0x10101010, 0x10101010, 0x10101010, 0x10101010);
let bit5 = u32x4(0x20202020, 0x20202020, 0x20202020, 0x20202020);
let bit6 = u32x4(0x40404040, 0x40404040, 0x40404040, 0x40404040);
let bit7 = u32x4(0x80808080, 0x80808080, 0x80808080, 0x80808080);
fn read_row_major(data: &[u8]) -> u32x4 {
u32x4(
(data[0] as u32) |
((data[4] as u32) << 8) |
((data[8] as u32) << 16) |
((data[12] as u32) << 24),
(data[1] as u32) |
((data[5] as u32) << 8) |
((data[9] as u32) << 16) |
((data[13] as u32) << 24),
(data[2] as u32) |
((data[6] as u32) << 8) |
((data[10] as u32) << 16) |
((data[14] as u32) << 24),
(data[3] as u32) |
((data[7] as u32) << 8) |
((data[11] as u32) << 16) |
((data[15] as u32) << 24))
}
let t0 = read_row_major(&data[0..16]);
let t1 = read_row_major(&data[16..32]);
let t2 = read_row_major(&data[32..48]);
let t3 = read_row_major(&data[48..64]);
let t4 = read_row_major(&data[64..80]);
let t5 = read_row_major(&data[80..96]);
let t6 = read_row_major(&data[96..112]);
let t7 = read_row_major(&data[112..128]);
let x0 = (t0 & bit0) | (t1.lsh(1) & bit1) | (t2.lsh(2) & bit2) | (t3.lsh(3) & bit3) |
(t4.lsh(4) & bit4) | (t5.lsh(5) & bit5) | (t6.lsh(6) & bit6) | (t7.lsh(7) & bit7);
let x1 = (t0.rsh(1) & bit0) | (t1 & bit1) | (t2.lsh(1) & bit2) | (t3.lsh(2) & bit3) |
(t4.lsh(3) & bit4) | (t5.lsh(4) & bit5) | (t6.lsh(5) & bit6) | (t7.lsh(6) & bit7);
let x2 = (t0.rsh(2) & bit0) | (t1.rsh(1) & bit1) | (t2 & bit2) | (t3.lsh(1) & bit3) |
(t4.lsh(2) & bit4) | (t5.lsh(3) & bit5) | (t6.lsh(4) & bit6) | (t7.lsh(5) & bit7);
let x3 = (t0.rsh(3) & bit0) | (t1.rsh(2) & bit1) | (t2.rsh(1) & bit2) | (t3 & bit3) |
(t4.lsh(1) & bit4) | (t5.lsh(2) & bit5) | (t6.lsh(3) & bit6) | (t7.lsh(4) & bit7);
let x4 = (t0.rsh(4) & bit0) | (t1.rsh(3) & bit1) | (t2.rsh(2) & bit2) | (t3.rsh(1) & bit3) |
(t4 & bit4) | (t5.lsh(1) & bit5) | (t6.lsh(2) & bit6) | (t7.lsh(3) & bit7);
let x5 = (t0.rsh(5) & bit0) | (t1.rsh(4) & bit1) | (t2.rsh(3) & bit2) | (t3.rsh(2) & bit3) |
(t4.rsh(1) & bit4) | (t5 & bit5) | (t6.lsh(1) & bit6) | (t7.lsh(2) & bit7);
let x6 = (t0.rsh(6) & bit0) | (t1.rsh(5) & bit1) | (t2.rsh(4) & bit2) | (t3.rsh(3) & bit3) |
(t4.rsh(2) & bit4) | (t5.rsh(1) & bit5) | (t6 & bit6) | (t7.lsh(1) & bit7);
let x7 = (t0.rsh(7) & bit0) | (t1.rsh(6) & bit1) | (t2.rsh(5) & bit2) | (t3.rsh(4) & bit3) |
(t4.rsh(3) & bit4) | (t5.rsh(2) & bit5) | (t6.rsh(1) & bit6) | (t7 & bit7);
Bs8State(x0, x1, x2, x3, x4, x5, x6, x7)
}
// Bit slice a set of 4 u32s by filling a full 128 byte data block with those repeated values. This
// is used as part of bit slicing the round keys.
fn bit_slice_fill_4x4_with_u32x4(a: u32, b: u32, c: u32, d: u32) -> Bs8State<u32x4> {
let mut tmp = [0u8; 128];
for i in 0..8 {
write_u32_le(&mut tmp[i * 16..i * 16 + 4], a);
write_u32_le(&mut tmp[i * 16 + 4..i * 16 + 8], b);
write_u32_le(&mut tmp[i * 16 + 8..i * 16 + 12], c);
write_u32_le(&mut tmp[i * 16 + 12..i * 16 + 16], d);
}
bit_slice_1x128_with_u32x4(&tmp)
}
// Un bit slice into a 128 byte buffer.
fn un_bit_slice_1x128_with_u32x4(bs: Bs8State<u32x4>, output: &mut [u8]) {
let Bs8State(t0, t1, t2, t3, t4, t5, t6, t7) = bs;
let bit0 = u32x4(0x01010101, 0x01010101, 0x01010101, 0x01010101);
let bit1 = u32x4(0x02020202, 0x02020202, 0x02020202, 0x02020202);
let bit2 = u32x4(0x04040404, 0x04040404, 0x04040404, 0x04040404);
let bit3 = u32x4(0x08080808, 0x08080808, 0x08080808, 0x08080808);
let bit4 = u32x4(0x10101010, 0x10101010, 0x10101010, 0x10101010);
let bit5 = u32x4(0x20202020, 0x20202020, 0x20202020, 0x20202020);
let bit6 = u32x4(0x40404040, 0x40404040, 0x40404040, 0x40404040);
let bit7 = u32x4(0x80808080, 0x80808080, 0x80808080, 0x80808080);
// decode the individual blocks, in row-major order
// TODO: this is identical to the same block in bit_slice_1x128_with_u32x4
let x0 = (t0 & bit0) | (t1.lsh(1) & bit1) | (t2.lsh(2) & bit2) | (t3.lsh(3) & bit3) |
(t4.lsh(4) & bit4) | (t5.lsh(5) & bit5) | (t6.lsh(6) & bit6) | (t7.lsh(7) & bit7);
let x1 = (t0.rsh(1) & bit0) | (t1 & bit1) | (t2.lsh(1) & bit2) | (t3.lsh(2) & bit3) |
(t4.lsh(3) & bit4) | (t5.lsh(4) & bit5) | (t6.lsh(5) & bit6) | (t7.lsh(6) & bit7);
let x2 = (t0.rsh(2) & bit0) | (t1.rsh(1) & bit1) | (t2 & bit2) | (t3.lsh(1) & bit3) |
(t4.lsh(2) & bit4) | (t5.lsh(3) & bit5) | (t6.lsh(4) & bit6) | (t7.lsh(5) & bit7);
let x3 = (t0.rsh(3) & bit0) | (t1.rsh(2) & bit1) | (t2.rsh(1) & bit2) | (t3 & bit3) |
(t4.lsh(1) & bit4) | (t5.lsh(2) & bit5) | (t6.lsh(3) & bit6) | (t7.lsh(4) & bit7);
let x4 = (t0.rsh(4) & bit0) | (t1.rsh(3) & bit1) | (t2.rsh(2) & bit2) | (t3.rsh(1) & bit3) |
(t4 & bit4) | (t5.lsh(1) & bit5) | (t6.lsh(2) & bit6) | (t7.lsh(3) & bit7);
let x5 = (t0.rsh(5) & bit0) | (t1.rsh(4) & bit1) | (t2.rsh(3) & bit2) | (t3.rsh(2) & bit3) |
(t4.rsh(1) & bit4) | (t5 & bit5) | (t6.lsh(1) & bit6) | (t7.lsh(2) & bit7);
let x6 = (t0.rsh(6) & bit0) | (t1.rsh(5) & bit1) | (t2.rsh(4) & bit2) | (t3.rsh(3) & bit3) |
(t4.rsh(2) & bit4) | (t5.rsh(1) & bit5) | (t6 & bit6) | (t7.lsh(1) & bit7);
let x7 = (t0.rsh(7) & bit0) | (t1.rsh(6) & bit1) | (t2.rsh(5) & bit2) | (t3.rsh(4) & bit3) |
(t4.rsh(3) & bit4) | (t5.rsh(2) & bit5) | (t6.rsh(1) & bit6) | (t7 & bit7);
fn write_row_major(block: u32x4, output: &mut [u8]) {
let u32x4(a0, a1, a2, a3) = block;
output[0] = a0 as u8;
output[1] = a1 as u8;
output[2] = a2 as u8;
output[3] = a3 as u8;
output[4] = (a0 >> 8) as u8;
output[5] = (a1 >> 8) as u8;
output[6] = (a2 >> 8) as u8;
output[7] = (a3 >> 8) as u8;
output[8] = (a0 >> 16) as u8;
output[9] = (a1 >> 16) as u8;
output[10] = (a2 >> 16) as u8;
output[11] = (a3 >> 16) as u8;
output[12] = (a0 >> 24) as u8;
output[13] = (a1 >> 24) as u8;
output[14] = (a2 >> 24) as u8;
output[15] = (a3 >> 24) as u8;
}
write_row_major(x0, &mut output[0..16]);
write_row_major(x1, &mut output[16..32]);
write_row_major(x2, &mut output[32..48]);
write_row_major(x3, &mut output[48..64]);
write_row_major(x4, &mut output[64..80]);
write_row_major(x5, &mut output[80..96]);
write_row_major(x6, &mut output[96..112]);
write_row_major(x7, &mut output[112..128])
}
// The Gf2Ops, Gf4Ops, and Gf8Ops traits specify the functions needed to calculate the AES S-Box
// values. This particuar implementation of those S-Box values is taken from [7], so that is where
// to look for details on how all that all works. This includes the transformations matrices defined
// below for the change_basis operation on the u32 and u32x4 types.
// Operations in GF(2^2) using normal basis (Omega^2,Omega)
trait Gf2Ops {
// multiply
fn mul(self, y: Self) -> Self;
// scale by N = Omega^2
fn scl_n(self) -> Self;
// scale by N^2 = Omega
fn scl_n2(self) -> Self;
// square
fn sq(self) -> Self;
// Same as sqaure
fn inv(self) -> Self;
}
impl <T: BitXor<Output = T> + BitAnd<Output = T> + Copy> Gf2Ops for Bs2State<T> {
fn mul(self, y: Bs2State<T>) -> Bs2State<T> {
let (b, a) = self.split();
let (d, c) = y.split();
let e = (a ^ b) & (c ^ d);
let p = (a & c) ^ e;
let q = (b & d) ^ e;
Bs2State(q, p)
}
fn scl_n(self) -> Bs2State<T> {
let (b, a) = self.split();
let q = a ^ b;
Bs2State(q, b)
}
fn scl_n2(self) -> Bs2State<T> {
let (b, a) = self.split();
let p = a ^ b;
let q = a;
Bs2State(q, p)
}
fn sq(self) -> Bs2State<T> {
let (b, a) = self.split();
Bs2State(a, b)
}
fn inv(self) -> Bs2State<T> {
self.sq()
}
}
// Operations in GF(2^4) using normal basis (alpha^8,alpha^2)
trait Gf4Ops {
// multiply
fn mul(self, y: Self) -> Self;
// square & scale by nu
// nu = beta^8 = N^2*alpha^2, N = w^2
fn sq_scl(self) -> Self;
// inverse
fn inv(self) -> Self;
}
impl <T: BitXor<Output = T> + BitAnd<Output = T> + Copy> Gf4Ops for Bs4State<T> {
fn mul(self, y: Bs4State<T>) -> Bs4State<T> {
let (b, a) = self.split();
let (d, c) = y.split();
let f = c.xor(d);
let e = a.xor(b).mul(f).scl_n();
let p = a.mul(c).xor(e);
let q = b.mul(d).xor(e);
q.join(p)
}
fn sq_scl(self) -> Bs4State<T> {
let (b, a) = self.split();
let p = a.xor(b).sq();
let q = b.sq().scl_n2();
q.join(p)
}
fn inv(self) -> Bs4State<T> {
let (b, a) = self.split();
let c = a.xor(b).sq().scl_n();
let d = a.mul(b);
let e = c.xor(d).inv();
let p = e.mul(b);
let q = e.mul(a);
q.join(p)
}
}
// Operations in GF(2^8) using normal basis (d^16,d)
trait Gf8Ops {
// inverse
fn inv(&self) -> Self;
}
impl <T: BitXor<Output = T> + BitAnd<Output = T> + Copy + Default> Gf8Ops for Bs8State<T> {
fn inv(&self) -> Bs8State<T> {
let (b, a) = self.split();
let c = a.xor(b).sq_scl();
let d = a.mul(b);
let e = c.xor(d).inv();
let p = e.mul(b);
let q = e.mul(a);
q.join(p)
}
}
impl <T: AesBitValueOps + Copy + 'static> AesOps for Bs8State<T> {
fn sub_bytes(self) -> Bs8State<T> {
let nb: Bs8State<T> = self.change_basis_a2x();
let inv = nb.inv();
let nb2: Bs8State<T> = inv.change_basis_x2s();
nb2.xor_x63()
}
fn inv_sub_bytes(self) -> Bs8State<T> {
let t = self.xor_x63();
let nb: Bs8State<T> = t.change_basis_s2x();
let inv = nb.inv();
inv.change_basis_x2a()
}
fn shift_rows(self) -> Bs8State<T> {
let Bs8State(x0, x1, x2, x3, x4, x5, x6, x7) = self;
Bs8State(
x0.shift_row(),
x1.shift_row(),
x2.shift_row(),
x3.shift_row(),
x4.shift_row(),
x5.shift_row(),
x6.shift_row(),
x7.shift_row())
}
fn inv_shift_rows(self) -> Bs8State<T> {
let Bs8State(x0, x1, x2, x3, x4, x5, x6, x7) = self;
Bs8State(
x0.inv_shift_row(),
x1.inv_shift_row(),
x2.inv_shift_row(),
x3.inv_shift_row(),
x4.inv_shift_row(),
x5.inv_shift_row(),
x6.inv_shift_row(),
x7.inv_shift_row())
}
// Formula from [5]
fn mix_columns(self) -> Bs8State<T> {
let Bs8State(x0, x1, x2, x3, x4, x5, x6, x7) = self;
let x0out = x7 ^ x7.ror1() ^ x0.ror1() ^ (x0 ^ x0.ror1()).ror2();
let x1out = x0 ^ x0.ror1() ^ x7 ^ x7.ror1() ^ x1.ror1() ^ (x1 ^ x1.ror1()).ror2();
let x2out = x1 ^ x1.ror1() ^ x2.ror1() ^ (x2 ^ x2.ror1()).ror2();
let x3out = x2 ^ x2.ror1() ^ x7 ^ x7.ror1() ^ x3.ror1() ^ (x3 ^ x3.ror1()).ror2();
let x4out = x3 ^ x3.ror1() ^ x7 ^ x7.ror1() ^ x4.ror1() ^ (x4 ^ x4.ror1()).ror2();
let x5out = x4 ^ x4.ror1() ^ x5.ror1() ^ (x5 ^ x5.ror1()).ror2();
let x6out = x5 ^ x5.ror1() ^ x6.ror1() ^ (x6 ^ x6.ror1()).ror2();
let x7out = x6 ^ x6.ror1() ^ x7.ror1() ^ (x7 ^ x7.ror1()).ror2();
Bs8State(x0out, x1out, x2out, x3out, x4out, x5out, x6out, x7out)
}
// Formula from [6]
fn inv_mix_columns(self) -> Bs8State<T> {
let Bs8State(x0, x1, x2, x3, x4, x5, x6, x7) = self;
let x0out = x5 ^ x6 ^ x7 ^
(x5 ^ x7 ^ x0).ror1() ^
(x0 ^ x5 ^ x6).ror2() ^
(x5 ^ x0).ror3();
let x1out = x5 ^ x0 ^
(x6 ^ x5 ^ x0 ^ x7 ^ x1).ror1() ^
(x1 ^ x7 ^ x5).ror2() ^
(x6 ^ x5 ^ x1).ror3();
let x2out = x6 ^ x0 ^ x1 ^
(x7 ^ x6 ^ x1 ^ x2).ror1() ^
(x0 ^ x2 ^ x6).ror2() ^
(x7 ^ x6 ^ x2).ror3();
let x3out = x0 ^ x5 ^ x1 ^ x6 ^ x2 ^
(x0 ^ x5 ^ x2 ^ x3).ror1() ^
(x0 ^ x1 ^ x3 ^ x5 ^ x6 ^ x7).ror2() ^
(x0 ^ x5 ^ x7 ^ x3).ror3();
let x4out = x1 ^ x5 ^ x2 ^ x3 ^
(x1 ^ x6 ^ x5 ^ x3 ^ x7 ^ x4).ror1() ^
(x1 ^ x2 ^ x4 ^ x5 ^ x7).ror2() ^
(x1 ^ x5 ^ x6 ^ x4).ror3();
let x5out = x2 ^ x6 ^ x3 ^ x4 ^
(x2 ^ x7 ^ x6 ^ x4 ^ x5).ror1() ^
(x2 ^ x3 ^ x5 ^ x6).ror2() ^
(x2 ^ x6 ^ x7 ^ x5).ror3();
let x6out = x3 ^ x7 ^ x4 ^ x5 ^
(x3 ^ x7 ^ x5 ^ x6).ror1() ^
(x3 ^ x4 ^ x6 ^ x7).ror2() ^
(x3 ^ x7 ^ x6).ror3();
let x7out = x4 ^ x5 ^ x6 ^
(x4 ^ x6 ^ x7).ror1() ^
(x4 ^ x5 ^ x7).ror2() ^
(x4 ^ x7).ror3();
Bs8State(x0out, x1out, x2out, x3out, x4out, x5out, x6out, x7out)
}
fn add_round_key(self, rk: &Bs8State<T>) -> Bs8State<T> {
self.xor(*rk)
}
}
trait AesBitValueOps: BitXor<Output = Self> + BitAnd<Output = Self> + Not<Output = Self> + Default + Sized {
fn shift_row(self) -> Self;
fn inv_shift_row(self) -> Self;
fn ror1(self) -> Self;
fn ror2(self) -> Self;
fn ror3(self) -> Self;
}
impl AesBitValueOps for u16 {
fn shift_row(self) -> u16 {
// first 4 bits represent first row - don't shift
(self & 0x000f) |
// next 4 bits represent 2nd row - left rotate 1 bit
((self & 0x00e0) >> 1) | ((self & 0x0010) << 3) |
// next 4 bits represent 3rd row - left rotate 2 bits
((self & 0x0c00) >> 2) | ((self & 0x0300) << 2) |
// next 4 bits represent 4th row - left rotate 3 bits
((self & 0x8000) >> 3) | ((self & 0x7000) << 1)
}
fn inv_shift_row(self) -> u16 {
// first 4 bits represent first row - don't shift
(self & 0x000f) |
// next 4 bits represent 2nd row - right rotate 1 bit
((self & 0x0080) >> 3) | ((self & 0x0070) << 1) |
// next 4 bits represent 3rd row - right rotate 2 bits
((self & 0x0c00) >> 2) | ((self & 0x0300) << 2) |
// next 4 bits represent 4th row - right rotate 3 bits
((self & 0xe000) >> 1) | ((self & 0x1000) << 3)
}
fn ror1(self) -> u16 {
self >> 4 | self << 12
}
fn ror2(self) -> u16 {
self >> 8 | self << 8
}
fn ror3(self) -> u16 {
self >> 12 | self << 4
}
}
impl u32x4 {
fn lsh(self, s: u32) -> u32x4 {
let u32x4(a0, a1, a2, a3) = self;
u32x4(
a0 << s,
(a1 << s) | (a0 >> (32 - s)),
(a2 << s) | (a1 >> (32 - s)),
(a3 << s) | (a2 >> (32 - s)))
}
fn rsh(self, s: u32) -> u32x4 {
let u32x4(a0, a1, a2, a3) = self;
u32x4(
(a0 >> s) | (a1 << (32 - s)),
(a1 >> s) | (a2 << (32 - s)),
(a2 >> s) | (a3 << (32 - s)),
a3 >> s)
}
}
impl Not for u32x4 {
type Output = u32x4;
fn not(self) -> u32x4 {
self ^ U32X4_1
}
}
impl Default for u32x4 {
fn default() -> u32x4 {
u32x4(0, 0, 0, 0)
}
}
impl AesBitValueOps for u32x4 {
fn shift_row(self) -> u32x4 {
let u32x4(a0, a1, a2, a3) = self;
u32x4(a0, a1 >> 8 | a1 << 24, a2 >> 16 | a2 << 16, a3 >> 24 | a3 << 8)
}
fn inv_shift_row(self) -> u32x4 {
let u32x4(a0, a1, a2, a3) = self;
u32x4(a0, a1 >> 24 | a1 << 8, a2 >> 16 | a2 << 16, a3 >> 8 | a3 << 24)
}
fn ror1(self) -> u32x4 {
let u32x4(a0, a1, a2, a3) = self;
u32x4(a1, a2, a3, a0)
}
fn ror2(self) -> u32x4 {
let u32x4(a0, a1, a2, a3) = self;
u32x4(a2, a3, a0, a1)
}
fn ror3(self) -> u32x4 {
let u32x4(a0, a1, a2, a3) = self;
u32x4(a3, a0, a1, a2)
}
}