crypto/fortuna.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
/*!
* An implementation of the Fortuna CSPRNG
*
* First create a `FortunaRng` object using either the `new_unseeded`
* constructor or `SeedableRng::from_seed`. Additional entropy may be
* added using the method `add_random_event`, or the underlying RNG
* maybe reseeded directly by `SeedableRng::reseed`. Note that this is
* not recommended, since the generator automatically reseeds itself
* using the data provided by `add_random_events` through an
* accumulator. The accumulator is part of Fortuna's design and using
* `SeedableRng::reseed` directly bypasses it.
*
* Note that the underlying block cipher is `AesSafe256Encryptor` which
* is designed to be timing-attack resistant. The speed hit from this
* is in line with a "safety first" API, but be aware of it.
*
* Fortuna was originally described in
* Practical Cryptography, Niels Ferguson and Bruce Schneier.
* John Wiley & Sons, 2003.
*
* Comments throughout this file contain references of the form
* (PC 1.2.3); these refer to sections within this text.
*
* # A note on forking
*
* Proper behaviour for a CSRNG on a process fork is to reseed itself with
* the timestamp and new process ID, to ensure that after forking the child
* process does not share the same RNG state (and therefore the same output)
* as its parent.
*
* However, this appears not to be possible in Rust, due to
* https://github.com/rust-lang/rust/issues/16799
* The reason is that Rust's process management all happens through its
* stdlib runtime, which explicitly does not support forking, so it provides
* no mechanism with which to detect forks.
*
* What this means is that if you are writing forking code (using `#![no_std]`
* say) then you need to EXPLICITLY RESEED THE RNG AFTER FORKING.
*/
use cryptoutil::copy_memory;
use rand::{Rng, SeedableRng};
use time::precise_time_s;
use aessafe::AesSafe256Encryptor;
use cryptoutil::read_u32_le;
use digest::Digest;
use sha2::Sha256;
use symmetriccipher::BlockEncryptor;
/// Length in bytes that the first pool must be before a "catastrophic
/// reseed" is allowed to happen. (A direct reseed through the
/// `SeedableRng` API is not affected by this limit.)
pub const MIN_POOL_SIZE: usize = 64;
/// Maximum number of bytes to generate before rekeying
const MAX_GEN_SIZE: usize = (1 << 20);
/// Length in bytes of the AES key
const KEY_LEN: usize = 32;
/// Length in bytes of the AES counter
const CTR_LEN: usize = 16;
/// Length in bytes of the AES block
const AES_BLOCK_SIZE: usize = 16;
/// Number of pools used to accumulate entropy
const NUM_POOLS: usize = 32;
/// The underlying PRNG (PC 9.4)
struct FortunaGenerator {
key: [u8; KEY_LEN],
ctr: [u8; CTR_LEN],
}
impl FortunaGenerator {
/// Creates a new generator (PC 9.4.1)
fn new() -> FortunaGenerator {
FortunaGenerator {
key: [0; KEY_LEN],
ctr: [0; CTR_LEN],
}
}
/// Increments the counter in place
fn increment_counter(&mut self) {
for i in 0..self.ctr.len() {
self.ctr[i] = self.ctr[i].wrapping_add(1);
// As soon as we don't carry, stop
if self.ctr[i] != 0 {
break;
}
}
}
/// Reseeds the generator (PC 9.4.2)
fn reseed(&mut self, s: &[u8]) {
// Compute key as Sha256d( key || s )
let mut hasher = Sha256::new();
hasher.input(&self.key[..]);
hasher.input(s);
hasher.result(&mut self.key);
hasher = Sha256::new();
hasher.input(&self.key[..]);
hasher.result(&mut self.key[..]);
// Increment the counter
self.increment_counter();
}
/// Generates some `k` 16-byte blocks of random output (PC 9.4.3)
/// This should never be used directly, except by `generate_random_data`.
fn generate_blocks(&mut self, k: usize, out: &mut [u8]) {
assert!(self.ctr[..] != [0; CTR_LEN][..]);
// Setup AES encryptor
let block_encryptor = AesSafe256Encryptor::new(&self.key[..]);
// Concatenate all the blocks
for j in 0..k {
block_encryptor.encrypt_block(&self.ctr[..],
&mut out[AES_BLOCK_SIZE * j..AES_BLOCK_SIZE * (j + 1)]);
self.increment_counter();
}
}
/// Generates `n` bytes of random data (9.4.4)
fn generate_random_data(&mut self, out: &mut [u8]) {
let (n, rem) = (out.len() / AES_BLOCK_SIZE, out.len() % AES_BLOCK_SIZE);
assert!(n <= MAX_GEN_SIZE);
// Generate output
self.generate_blocks(n, &mut out[..(n * AES_BLOCK_SIZE)]);
if rem > 0 {
let mut buf = [0; AES_BLOCK_SIZE];
self.generate_blocks(1, &mut buf);
copy_memory(&buf[..rem], &mut out[(n * AES_BLOCK_SIZE)..]);
}
// Rekey
let mut new_key = [0; KEY_LEN];
self.generate_blocks(KEY_LEN / AES_BLOCK_SIZE, &mut new_key);
self.key = new_key;
}
}
/// A single entropy pool (not public)
#[derive(Clone, Copy)]
struct Pool {
state: Sha256,
count: usize
}
impl Pool {
fn new() -> Pool {
Pool { state: Sha256::new(), count: 0 }
}
fn input(&mut self, data: &[u8]) {
self.state.input(data);
self.count += data.len();
}
fn result(&mut self, output: &mut [u8]) {
self.state.result(output);
// Double-SHA256 it
self.state = Sha256::new();
self.state.input(output);
self.state.result(output);
// Clear the pool state
self.state = Sha256::new();
self.count = 0;
}
}
/// The `Fortuna` CSPRNG (PC 9.5)
pub struct Fortuna {
pool: [Pool; NUM_POOLS],
generator: FortunaGenerator,
reseed_count: u32,
last_reseed_time: f64
}
impl Fortuna {
/// Creates a new unseeded `Fortuna` (PC 9.5.4)
pub fn new_unseeded() -> Fortuna {
Fortuna {
pool: [Pool::new(); NUM_POOLS],
generator: FortunaGenerator::new(),
reseed_count: 0,
last_reseed_time: 0.0
}
}
/// Adds a random event `e` from source `s` to entropy pool `i` (PC 9.5.6)
pub fn add_random_event(&mut self, s: u8, i: usize, e: &[u8]) {
assert!(i <= NUM_POOLS);
// These restrictions (and `s` in [0, 255]) are part of the Fortuna spec.
assert!(e.len() > 0);
assert!(e.len() <= 32);
(&mut self.pool[i]).input(&[s]);
(&mut self.pool[i]).input(&[e.len() as u8]);
(&mut self.pool[i]).input(e);
}
}
impl Rng for Fortuna {
/// Generate a bunch of random data into `dest` (PC 9.5.5)
///
/// # Failure modes
///
/// If the RNG has not been seeded, and there is less than
/// `MIN_POOL_SIZE` bytes of data in the first accumulator
/// pool, this function will fail the task.
fn fill_bytes(&mut self, dest: &mut [u8]) {
// Reseed if necessary
let now = precise_time_s();
if self.pool[0].count >= MIN_POOL_SIZE &&
now - self.last_reseed_time > 0.1 {
self.reseed_count += 1;
self.last_reseed_time = now;
// Compute key as Sha256d( key || s )
let mut hash = [0; (32 * NUM_POOLS)];
let mut n_pools = 0;
while self.reseed_count % (1 << n_pools) == 0 {
(&mut self.pool[n_pools]).result(&mut hash[n_pools * 32..(n_pools + 1) * 32]);
n_pools += 1;
assert!(n_pools < NUM_POOLS);
assert!(n_pools < 32); // width of counter
}
self.generator.reseed(&hash[..n_pools * 32]);
}
// Fail on unseeded RNG
if self.reseed_count == 0 {
panic!("rust-crypto: an unseeded Fortuna was asked for random bytes!");
}
// Generate return data
for dest in dest.chunks_mut(MAX_GEN_SIZE) {
self.generator.generate_random_data(dest);
}
}
fn next_u32(&mut self) -> u32 {
let mut ret = [0; 4];
self.fill_bytes(&mut ret);
read_u32_le(&ret[..])
}
}
impl<'a> SeedableRng<&'a [u8]> for Fortuna {
fn from_seed(seed: &'a [u8]) -> Fortuna {
let mut ret = Fortuna::new_unseeded();
ret.reseed(seed);
ret
}
fn reseed(&mut self, seed: &'a [u8]) {
self.reseed_count += 1;
self.last_reseed_time = precise_time_s();
self.generator.reseed(seed);
}
}
#[cfg(test)]
fn test_force_reseed(f: &mut Fortuna) {
f.last_reseed_time -= 0.2;
}
#[cfg(test)]
mod tests {
use rand::{SeedableRng, Rng};
use super::{Fortuna, Pool, NUM_POOLS, test_force_reseed};
#[test]
fn test_create_unseeded() {
let _: Fortuna = Fortuna::new_unseeded();
}
#[test]
#[should_panic]
fn test_use_unseeded() {
let mut f: Fortuna = Fortuna::new_unseeded();
let _ = f.next_u32();
}
#[test]
#[should_panic]
fn test_badly_seeded() {
let mut f: Fortuna = Fortuna::new_unseeded();
f.add_random_event(0, 0, &[10; 32]);
let _ = f.next_u32();
}
#[test]
#[should_panic]
fn test_too_big_event() {
let mut f: Fortuna = Fortuna::new_unseeded();
f.add_random_event(0, 0, &[10; 33]);
}
#[test]
fn test_seeded() {
// NB for this test I'm just trusting the output of the RNG to be correct.
// I do check for some high-level features: changing most anything should
// change the output, there should be no tests, etc.
let mut f1: Fortuna = SeedableRng::from_seed(&[0, 1, 2, 3, 4, 5][..]);
assert_eq!(f1.next_u32(), 3369034117);
let mut f2: Fortuna = Fortuna::new_unseeded();
f2.reseed(&[0, 1, 2, 3, 4, 5]);
assert_eq!(f2.next_u32(), 3369034117);
// Ensure reseeding doesn't totally reset the seed. That is, this output should
// be different from the above
let mut f3: Fortuna = Fortuna::new_unseeded();
f3.reseed(&[0, 1, 2, 3, 4, 5]);
f3.reseed(&[0, 1, 2, 3, 4, 5]);
assert_eq!(f3.next_u32(), 2689122182);
// These three should all be different
let mut f4: Fortuna = Fortuna::new_unseeded();
f4.add_random_event(0, 0, &[10; 32]);
f4.add_random_event(0, 0, &[10; 32]);
let x = f4.next_u32();
let mut f5: Fortuna = Fortuna::new_unseeded();
f5.add_random_event(0, 0, &[10; 32]);
f5.add_random_event(0, 0, &[20; 32]);
let y = f5.next_u32();
let mut f6: Fortuna = Fortuna::new_unseeded();
f6.add_random_event(0, 0, &[20; 32]);
f6.add_random_event(0, 0, &[10; 32]);
let z = f6.next_u32();
assert!(x != y);
assert!(y != z);
assert!(x != z);
}
#[test]
fn test_generator_correctness() {
let mut output = [0; 100];
// Expected output as in http://www.seehuhn.de/pages/fortuna
let expected = [ 82, 254, 233, 139, 254, 85, 6, 222, 222, 149,
120, 35, 173, 71, 89, 232, 51, 182, 252, 139,
153, 153, 111, 30, 16, 7, 124, 185, 159, 24,
50, 68, 236, 107, 133, 18, 217, 219, 46, 134,
169, 156, 211, 74, 163, 17, 100, 173, 26, 70,
246, 193, 57, 164, 167, 175, 233, 220, 160, 114,
2, 200, 215, 80, 207, 218, 85, 58, 235, 117,
177, 223, 87, 192, 50, 251, 61, 65, 141, 100,
59, 228, 23, 215, 58, 107, 248, 248, 103, 57,
127, 31, 241, 91, 230, 33, 0, 164, 77, 46];
let mut f: Fortuna = SeedableRng::from_seed(&[1, 2, 3, 4][..]);
f.fill_bytes(&mut output);
assert_eq!(&expected[..], &output[..]);
let mut scratch = [0; (1 << 20)];
f.generator.generate_random_data(&mut scratch);
let expected = [122, 164, 26, 67, 102, 65, 30, 217, 219, 113,
14, 86, 214, 146, 185, 17, 107, 135, 183, 7,
18, 162, 126, 206, 46, 38, 54, 172, 248, 194,
118, 84, 162, 146, 83, 156, 152, 96, 192, 15,
23, 224, 113, 76, 21, 8, 226, 41, 161, 171,
197, 180, 138, 236, 126, 137, 101, 25, 219, 225,
3, 189, 16, 242, 33, 91, 34, 27, 8, 171,
171, 115, 157, 109, 248, 198, 227, 18, 204, 211,
42, 184, 92, 42, 171, 222, 198, 117, 162, 134,
116, 109, 77, 195, 187, 139, 37, 78, 224, 63];
f.fill_bytes(&mut output);
assert_eq!(&expected[..], &output[..]);
f.reseed(&[5]);
let expected = [217, 168, 141, 167, 46, 9, 218, 188, 98, 124,
109, 128, 242, 22, 189, 120, 180, 124, 15, 192,
116, 149, 211, 136, 253, 132, 60, 3, 29, 250,
95, 66, 133, 195, 37, 78, 242, 255, 160, 209,
185, 106, 68, 105, 83, 145, 165, 72, 179, 167,
53, 254, 183, 251, 128, 69, 78, 156, 219, 26,
124, 202, 35, 9, 174, 167, 41, 128, 184, 25,
2, 1, 63, 142, 205, 162, 69, 68, 207, 251,
101, 10, 29, 33, 133, 87, 189, 36, 229, 56,
17, 100, 138, 49, 79, 239, 210, 189, 141, 46];
f.fill_bytes(&mut output);
assert_eq!(&expected[..], &output[..]);
}
#[test]
fn test_accumulator_correctness() {
let mut output = [0; 100];
// Expected output from experiments with pycryto
// Note that this does not match the results for the Go implementation
// as described at http://www.seehuhn.de/pages/fortuna ... I believe
// this is because the author there is reusing some Fortuna state from
// the previous test. These results agree with pycrypto on a fresh slate
let mut f = Fortuna::new_unseeded();
f.pool = [Pool::new(); NUM_POOLS];
f.add_random_event(0, 0, &[0; 32]);
f.add_random_event(0, 0, &[0; 32]);
for i in 0..32 {
f.add_random_event(1, i, &[1, 2]);
}
// from Crypto.Random.Fortuna import FortunaAccumulator
// x = FortunaAccumulator.FortunaAccumulator()
// x.add_random_event(0, 0, "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0")
// x.add_random_event(0, 0, "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0")
// x.add_random_event(1, 0, "\1\2")
// x.add_random_event(1, 1, "\1\2")
// print list(bytearray(x.random_data(100)))
let expected = [ 21, 42, 103, 180, 211, 46, 177, 231, 172, 210,
109, 198, 34, 40, 245, 199, 76, 114, 105, 185,
186, 112, 183, 213, 19, 72, 186, 26, 182, 211,
254, 88, 67, 142, 246, 102, 80, 93, 144, 152,
123, 191, 168, 26, 21, 194, 69, 214, 249, 80,
182, 165, 203, 69, 134, 140, 11, 208, 50, 175,
180, 210, 110, 119, 3, 75, 1, 8, 5, 142,
226, 168, 179, 246, 82, 42, 223, 239, 201, 23,
28, 30, 195, 195, 9, 154, 31, 172, 209, 232,
238, 111, 75, 251, 196, 43, 217, 241, 93, 237];
f.fill_bytes(&mut output);
assert_eq!(&expected[..], &output[..]);
// Immediately (less than 100ms)
f.add_random_event(0, 0, &[0; 32]);
f.add_random_event(0, 0, &[0; 32]);
// x.add_random_event(0, 0, "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0")
// x.add_random_event(0, 0, "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0")
// print list(bytearray(x.random_data(100)))
let expected = [101, 123, 175, 157, 142, 202, 211, 47, 149, 214,
135, 249, 148, 19, 50, 116, 169, 188, 240, 218,
91, 62, 35, 44, 142, 108, 95, 20, 37, 185,
19, 121, 128, 231, 213, 23, 94, 147, 14, 41,
199, 253, 246, 14, 230, 152, 11, 17, 118, 254,
96, 251, 171, 115, 66, 21, 196, 164, 82, 6,
139, 238, 135, 22, 179, 6, 6, 252, 115, 87,
19, 167, 56, 192, 140, 93, 132, 78, 22, 16,
114, 68, 123, 200, 37, 183, 163, 224, 201, 155,
233, 71, 111, 26, 8, 114, 232, 181, 13, 51];
f.fill_bytes(&mut output);
assert_eq!(&expected[..], &output[..]);
// Simulate more than 100 ms passing
test_force_reseed(&mut f);
// time.sleep(0.2)
// print list(bytearray(x.random_data(100)))
let expected = [ 62, 147, 205, 228, 22, 3, 225, 217, 211, 202,
49, 148, 236, 125, 132, 43, 25, 177, 172, 93,
98, 177, 112, 160, 76, 101, 60, 98, 225, 9,
223, 120, 161, 98, 173, 178, 71, 15, 90, 153,
64, 179, 143, 22, 43, 165, 87, 147, 177, 128,
21, 105, 214, 197, 224, 187, 22, 139, 16, 153,
251, 48, 244, 87, 10, 104, 119, 179, 27, 255,
67, 148, 192, 52, 147, 216, 79, 204, 106, 112,
238, 0, 239, 99, 159, 96, 184, 90, 54, 122,
184, 241, 221, 151, 169, 29, 197, 45, 80, 6];
f.fill_bytes(&mut output);
assert_eq!(&expected[..], &output[..]);
}
}
#[cfg(all(test, feature = "with-bench"))]
mod bench {
use rand::{SeedableRng, Rng};
use test::Bencher;
use super::Fortuna;
#[bench]
pub fn fortuna_new_32(bh: &mut Bencher) {
let mut f: Fortuna = SeedableRng::from_seed(&[100; 64][..]);
bh.iter( || {
f.next_u32();
});
bh.bytes = 4;
}
#[bench]
pub fn fortuna_new_64(bh: &mut Bencher) {
let mut f: Fortuna = SeedableRng::from_seed(&[100; 64][..]);
bh.iter( || {
f.next_u64();
});
bh.bytes = 8;
}
#[bench]
pub fn fortuna_new_1k(bh: &mut Bencher) {
let mut f: Fortuna = SeedableRng::from_seed(&[100; 64][..]);
let mut bytes = [0u8; 1024];
bh.iter( || {
f.fill_bytes(&mut bytes);
});
bh.bytes = bytes.len() as u64;
}
#[bench]
pub fn fortuna_new_64k(bh: &mut Bencher) {
let mut f: Fortuna = SeedableRng::from_seed(&[100; 64][..]);
let mut bytes = [0u8; 65536];
bh.iter( || {
f.fill_bytes(&mut bytes);
});
bh.bytes = bytes.len() as u64;
}
}