crypto/pbkdf2.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
/*!
* This module implements the PBKDF2 Key Derivation Function as specified by
* http://tools.ietf.org/html/rfc2898.
*/
use std::iter::repeat;
use std::io;
use cryptoutil::copy_memory;
use rand::{OsRng, Rng};
use serialize::base64;
use serialize::base64::{FromBase64, ToBase64};
use cryptoutil::{read_u32_be, write_u32_be};
use hmac::Hmac;
use mac::Mac;
use sha2::Sha256;
use util::fixed_time_eq;
// Calculate a block of the output of size equal to the output_bytes of the underlying Mac function
// mac - The Mac function to use
// salt - the salt value to use
// c - the iteration count
// idx - the 1 based index of the block
// scratch - a temporary variable the same length as the block
// block - the block of the output to calculate
fn calculate_block<M: Mac>(
mac: &mut M,
salt: &[u8],
c: u32,
idx: u32,
scratch: &mut [u8],
block: &mut [u8]) {
// Perform the 1st iteration. The output goes directly into block
mac.input(salt);
let mut idx_buf = [0u8; 4];
write_u32_be(&mut idx_buf, idx);
mac.input(&idx_buf);
mac.raw_result(block);
mac.reset();
// Perform the 2nd iteration. The input comes from block and is output into scratch. scratch is
// then exclusive-or added into block. After all this, the input to the next step is now in
// scratch and block is left to just accumulate the exclusive-of sum of remaining iterations.
if c > 1 {
mac.input(block);
mac.raw_result(scratch);
mac.reset();
for (output, &input) in block.iter_mut().zip(scratch.iter()) {
*output ^= input;
}
}
// Perform all remaining iterations
for _ in 2..c {
mac.input(scratch);
mac.raw_result(scratch);
mac.reset();
for (output, &input) in block.iter_mut().zip(scratch.iter()) {
*output ^= input;
}
}
}
/**
* Execute the PBKDF2 Key Derivation Function. The Scrypt Key Derivation Function generally provides
* better security, so, applications that do not have a requirement to use PBKDF2 specifically
* should consider using that function instead.
*
* # Arguments
* * mac - The Pseudo Random Function to use.
* * salt - The salt value to use.
* * c - The iteration count. Users should carefully determine this value as it is the primary
* factor in determining the security of the derived key.
* * output - The output buffer to fill with the derived key value.
*
*/
pub fn pbkdf2<M: Mac>(mac: &mut M, salt: &[u8], c: u32, output: &mut [u8]) {
assert!(c > 0);
let os = mac.output_bytes();
// A temporary storage array needed by calculate_block. This is really only necessary if c > 1.
// Most users of pbkdf2 should use a value much larger than 1, so, this allocation should almost
// always be necessary. A big exception is Scrypt. However, this allocation is unlikely to be
// the bottleneck in Scrypt performance.
let mut scratch: Vec<u8> = repeat(0).take(os).collect();
let mut idx: u32 = 0;
for chunk in output.chunks_mut(os) {
// The block index starts at 1. So, this is supposed to run on the first execution.
idx = idx.checked_add(1).expect("PBKDF2 size limit exceeded.");
if chunk.len() == os {
calculate_block(mac, salt, c, idx, &mut scratch, chunk);
} else {
let mut tmp: Vec<u8> = repeat(0).take(os).collect();
calculate_block(mac, salt, c, idx, &mut scratch[..], &mut tmp[..]);
let chunk_len = chunk.len();
copy_memory(&tmp[..chunk_len], chunk);
}
}
}
/**
* pbkdf2_simple is a helper function that should be sufficient for the majority of cases where
* an application needs to use PBKDF2 to hash a password for storage. The result is a String that
* contains the parameters used as part of its encoding. The pbkdf2_check function may be used on
* a password to check if it is equal to a hashed value.
*
* # Format
*
* The format of the output is a modified version of the Modular Crypt Format that encodes algorithm
* used and iteration count. The format is indicated as "rpbkdf2" which is short for "Rust PBKF2
* format."
*
* $rpbkdf2$0$<base64(c)>$<base64(salt)>$<based64(hash)>$
*
* # Arguments
*
* * password - The password to process as a str
* * c - The iteration count
*
*/
pub fn pbkdf2_simple(password: &str, c: u32) -> io::Result<String> {
let mut rng = try!(OsRng::new());
// 128-bit salt
let salt: Vec<u8> = rng.gen_iter::<u8>().take(16).collect();
// 256-bit derived key
let mut dk = [0u8; 32];
let mut mac = Hmac::new(Sha256::new(), password.as_bytes());
pbkdf2(&mut mac, &salt[..], c, &mut dk);
let mut result = "$rpbkdf2$0$".to_string();
let mut tmp = [0u8; 4];
write_u32_be(&mut tmp, c);
result.push_str(&tmp.to_base64(base64::STANDARD)[..]);
result.push('$');
result.push_str(&salt.to_base64(base64::STANDARD)[..]);
result.push('$');
result.push_str(&dk.to_base64(base64::STANDARD)[..]);
result.push('$');
Ok(result)
}
/**
* pbkdf2_check compares a password against the result of a previous call to pbkdf2_simple and
* returns true if the passed in password hashes to the same value.
*
* # Arguments
*
* * password - The password to process as a str
* * hashed_value - A string representing a hashed password returned by pbkdf2_simple()
*
*/
pub fn pbkdf2_check(password: &str, hashed_value: &str) -> Result<bool, &'static str> {
static ERR_STR: &'static str = "Hash is not in Rust PBKDF2 format.";
let mut iter = hashed_value.split('$');
// Check that there are no characters before the first "$"
match iter.next() {
Some(x) => if x != "" { return Err(ERR_STR); },
None => return Err(ERR_STR)
}
// Check the name
match iter.next() {
Some(t) => if t != "rpbkdf2" { return Err(ERR_STR); },
None => return Err(ERR_STR)
}
// Parse format - currenlty only version 0 is supported
match iter.next() {
Some(fstr) => {
match fstr {
"0" => { }
_ => return Err(ERR_STR)
}
}
None => return Err(ERR_STR)
}
// Parse the iteration count
let c = match iter.next() {
Some(pstr) => match pstr.from_base64() {
Ok(pvec) => {
if pvec.len() != 4 { return Err(ERR_STR); }
read_u32_be(&pvec[..])
}
Err(_) => return Err(ERR_STR)
},
None => return Err(ERR_STR)
};
// Salt
let salt = match iter.next() {
Some(sstr) => match sstr.from_base64() {
Ok(salt) => salt,
Err(_) => return Err(ERR_STR)
},
None => return Err(ERR_STR)
};
// Hashed value
let hash = match iter.next() {
Some(hstr) => match hstr.from_base64() {
Ok(hash) => hash,
Err(_) => return Err(ERR_STR)
},
None => return Err(ERR_STR)
};
// Make sure that the input ends with a "$"
match iter.next() {
Some(x) => if x != "" { return Err(ERR_STR); },
None => return Err(ERR_STR)
}
// Make sure there is no trailing data after the final "$"
match iter.next() {
Some(_) => return Err(ERR_STR),
None => { }
}
let mut mac = Hmac::new(Sha256::new(), password.as_bytes());
let mut output: Vec<u8> = repeat(0).take(hash.len()).collect();
pbkdf2(&mut mac, &salt[..], c, &mut output[..]);
// Be careful here - its important that the comparison be done using a fixed time equality
// check. Otherwise an adversary that can measure how long this step takes can learn about the
// hashed value which would allow them to mount an offline brute force attack against the
// hashed password.
Ok(fixed_time_eq(&output[..], &hash[..]))
}
#[cfg(test)]
mod test {
use std::iter::repeat;
use pbkdf2::{pbkdf2, pbkdf2_simple, pbkdf2_check};
use hmac::Hmac;
use sha1::Sha1;
struct Test {
password: Vec<u8>,
salt: Vec<u8>,
c: u32,
expected: Vec<u8>
}
// Test vectors from http://tools.ietf.org/html/rfc6070. The 4th test vector is omitted because
// it takes too long to run.
fn tests() -> Vec<Test> {
vec![
Test {
password: b"password".to_vec(),
salt: b"salt".to_vec(),
c: 1,
expected: vec![
0x0c, 0x60, 0xc8, 0x0f, 0x96, 0x1f, 0x0e, 0x71,
0xf3, 0xa9, 0xb5, 0x24, 0xaf, 0x60, 0x12, 0x06,
0x2f, 0xe0, 0x37, 0xa6 ]
},
Test {
password: b"password".to_vec(),
salt: b"salt".to_vec(),
c: 2,
expected: vec![
0xea, 0x6c, 0x01, 0x4d, 0xc7, 0x2d, 0x6f, 0x8c,
0xcd, 0x1e, 0xd9, 0x2a, 0xce, 0x1d, 0x41, 0xf0,
0xd8, 0xde, 0x89, 0x57 ]
},
Test {
password: b"password".to_vec(),
salt: b"salt".to_vec(),
c: 4096,
expected: vec![
0x4b, 0x00, 0x79, 0x01, 0xb7, 0x65, 0x48, 0x9a,
0xbe, 0xad, 0x49, 0xd9, 0x26, 0xf7, 0x21, 0xd0,
0x65, 0xa4, 0x29, 0xc1 ]
},
Test {
password: b"passwordPASSWORDpassword".to_vec(),
salt: b"saltSALTsaltSALTsaltSALTsaltSALTsalt".to_vec(),
c: 4096,
expected: vec![
0x3d, 0x2e, 0xec, 0x4f, 0xe4, 0x1c, 0x84, 0x9b,
0x80, 0xc8, 0xd8, 0x36, 0x62, 0xc0, 0xe4, 0x4a,
0x8b, 0x29, 0x1a, 0x96, 0x4c, 0xf2, 0xf0, 0x70, 0x38 ]
},
Test {
password: vec![112, 97, 115, 115, 0, 119, 111, 114, 100],
salt: vec![115, 97, 0, 108, 116],
c: 4096,
expected: vec![
0x56, 0xfa, 0x6a, 0xa7, 0x55, 0x48, 0x09, 0x9d,
0xcc, 0x37, 0xd7, 0xf0, 0x34, 0x25, 0xe0, 0xc3 ]
}
]
}
#[test]
fn test_pbkdf2() {
let tests = tests();
for t in tests.iter() {
let mut mac = Hmac::new(Sha1::new(), &t.password[..]);
let mut result: Vec<u8> = repeat(0).take(t.expected.len()).collect();
pbkdf2(&mut mac, &t.salt[..], t.c, &mut result);
assert!(result == t.expected);
}
}
#[test]
fn test_pbkdf2_simple() {
let password = "password";
let out1 = pbkdf2_simple(password, 1024).unwrap();
let out2 = pbkdf2_simple(password, 1024).unwrap();
// This just makes sure that a salt is being applied. It doesn't verify that that salt is
// cryptographically strong, however.
assert!(out1 != out2);
match pbkdf2_check(password, &out1[..]) {
Ok(r) => assert!(r),
Err(_) => panic!()
}
match pbkdf2_check(password, &out2[..]) {
Ok(r) => assert!(r),
Err(_) => panic!()
}
match pbkdf2_check("wrong", &out1[..]) {
Ok(r) => assert!(!r),
Err(_) => panic!()
}
match pbkdf2_check("wrong", &out2[..]) {
Ok(r) => assert!(!r),
Err(_) => panic!()
}
}
}