crypto/
pbkdf2.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

/*!
 * This module implements the PBKDF2 Key Derivation Function as specified by
 * http://tools.ietf.org/html/rfc2898.
 */

use std::iter::repeat;
use std::io;
use cryptoutil::copy_memory;

use rand::{OsRng, Rng};
use serialize::base64;
use serialize::base64::{FromBase64, ToBase64};

use cryptoutil::{read_u32_be, write_u32_be};
use hmac::Hmac;
use mac::Mac;
use sha2::Sha256;
use util::fixed_time_eq;

// Calculate a block of the output of size equal to the output_bytes of the underlying Mac function
// mac - The Mac function to use
// salt - the salt value to use
// c - the iteration count
// idx - the 1 based index of the block
// scratch - a temporary variable the same length as the block
// block - the block of the output to calculate
fn calculate_block<M: Mac>(
        mac: &mut M,
        salt: &[u8],
        c: u32,
        idx: u32,
        scratch: &mut [u8],
        block: &mut [u8]) {
    // Perform the 1st iteration. The output goes directly into block
    mac.input(salt);
    let mut idx_buf = [0u8; 4];
    write_u32_be(&mut idx_buf, idx);
    mac.input(&idx_buf);
    mac.raw_result(block);
    mac.reset();

    // Perform the 2nd iteration. The input comes from block and is output into scratch. scratch is
    // then exclusive-or added into block. After all this, the input to the next step is now in
    // scratch and block is left to just accumulate the exclusive-of sum of remaining iterations.
    if c > 1 {
        mac.input(block);
        mac.raw_result(scratch);
        mac.reset();
        for (output, &input) in block.iter_mut().zip(scratch.iter()) {
            *output ^= input;
        }
    }

    // Perform all remaining iterations
    for _ in 2..c {
        mac.input(scratch);
        mac.raw_result(scratch);
        mac.reset();
        for (output, &input) in block.iter_mut().zip(scratch.iter()) {
            *output ^= input;
        }
    }
}

/**
 * Execute the PBKDF2 Key Derivation Function. The Scrypt Key Derivation Function generally provides
 * better security, so, applications that do not have a requirement to use PBKDF2 specifically
 * should consider using that function instead.
 *
 * # Arguments
 * * mac - The Pseudo Random Function to use.
 * * salt - The salt value to use.
 * * c - The iteration count. Users should carefully determine this value as it is the primary
 *       factor in determining the security of the derived key.
 * * output - The output buffer to fill with the derived key value.
 *
 */
pub fn pbkdf2<M: Mac>(mac: &mut M, salt: &[u8], c: u32, output: &mut [u8]) {
    assert!(c > 0);

    let os = mac.output_bytes();

    // A temporary storage array needed by calculate_block. This is really only necessary if c > 1.
    // Most users of pbkdf2 should use a value much larger than 1, so, this allocation should almost
    // always be necessary. A big exception is Scrypt. However, this allocation is unlikely to be
    // the bottleneck in Scrypt performance.
    let mut scratch: Vec<u8> = repeat(0).take(os).collect();

    let mut idx: u32 = 0;

    for chunk in output.chunks_mut(os) {
        // The block index starts at 1. So, this is supposed to run on the first execution.
        idx = idx.checked_add(1).expect("PBKDF2 size limit exceeded.");

        if chunk.len() == os {
            calculate_block(mac, salt, c, idx, &mut scratch, chunk);
        } else {
            let mut tmp: Vec<u8> = repeat(0).take(os).collect();
            calculate_block(mac, salt, c, idx, &mut scratch[..], &mut tmp[..]);
            let chunk_len = chunk.len();
            copy_memory(&tmp[..chunk_len], chunk);
        }
    }
}

/**
 * pbkdf2_simple is a helper function that should be sufficient for the majority of cases where
 * an application needs to use PBKDF2 to hash a password for storage. The result is a String that
 * contains the parameters used as part of its encoding. The pbkdf2_check function may be used on
 * a password to check if it is equal to a hashed value.
 *
 * # Format
 *
 * The format of the output is a modified version of the Modular Crypt Format that encodes algorithm
 * used and iteration count. The format is indicated as "rpbkdf2" which is short for "Rust PBKF2
 * format."
 *
 * $rpbkdf2$0$<base64(c)>$<base64(salt)>$<based64(hash)>$
 *
 * # Arguments
 *
 * * password - The password to process as a str
 * * c - The iteration count
 *
 */
pub fn pbkdf2_simple(password: &str, c: u32) -> io::Result<String> {
    let mut rng = try!(OsRng::new());

    // 128-bit salt
    let salt: Vec<u8> = rng.gen_iter::<u8>().take(16).collect();

    // 256-bit derived key
    let mut dk = [0u8; 32];

    let mut mac = Hmac::new(Sha256::new(), password.as_bytes());

    pbkdf2(&mut mac, &salt[..], c, &mut dk);

    let mut result = "$rpbkdf2$0$".to_string();
    let mut tmp = [0u8; 4];
    write_u32_be(&mut tmp, c);
    result.push_str(&tmp.to_base64(base64::STANDARD)[..]);
    result.push('$');
    result.push_str(&salt.to_base64(base64::STANDARD)[..]);
    result.push('$');
    result.push_str(&dk.to_base64(base64::STANDARD)[..]);
    result.push('$');

    Ok(result)
}

/**
 * pbkdf2_check compares a password against the result of a previous call to pbkdf2_simple and
 * returns true if the passed in password hashes to the same value.
 *
 * # Arguments
 *
 * * password - The password to process as a str
 * * hashed_value - A string representing a hashed password returned by pbkdf2_simple()
 *
 */
pub fn pbkdf2_check(password: &str, hashed_value: &str) -> Result<bool, &'static str> {
    static ERR_STR: &'static str = "Hash is not in Rust PBKDF2 format.";

    let mut iter = hashed_value.split('$');

    // Check that there are no characters before the first "$"
    match iter.next() {
        Some(x) => if x != "" { return Err(ERR_STR); },
        None => return Err(ERR_STR)
    }

    // Check the name
    match iter.next() {
        Some(t) => if t != "rpbkdf2" { return Err(ERR_STR); },
        None => return Err(ERR_STR)
    }

    // Parse format - currenlty only version 0 is supported
    match iter.next() {
        Some(fstr) => {
            match fstr {
                "0" => { }
                _ => return Err(ERR_STR)
            }
        }
        None => return Err(ERR_STR)
    }

    // Parse the iteration count
    let c = match iter.next() {
        Some(pstr) => match pstr.from_base64() {
            Ok(pvec) => {
                if pvec.len() != 4 { return Err(ERR_STR); }
                read_u32_be(&pvec[..])
            }
            Err(_) => return Err(ERR_STR)
        },
        None => return Err(ERR_STR)
    };

    // Salt
    let salt = match iter.next() {
        Some(sstr) => match sstr.from_base64() {
            Ok(salt) => salt,
            Err(_) => return Err(ERR_STR)
        },
        None => return Err(ERR_STR)
    };

    // Hashed value
    let hash = match iter.next() {
        Some(hstr) => match hstr.from_base64() {
            Ok(hash) => hash,
            Err(_) => return Err(ERR_STR)
        },
        None => return Err(ERR_STR)
    };

    // Make sure that the input ends with a "$"
    match iter.next() {
        Some(x) => if x != "" { return Err(ERR_STR); },
        None => return Err(ERR_STR)
    }

    // Make sure there is no trailing data after the final "$"
    match iter.next() {
        Some(_) => return Err(ERR_STR),
        None => { }
    }

    let mut mac = Hmac::new(Sha256::new(), password.as_bytes());

    let mut output: Vec<u8> = repeat(0).take(hash.len()).collect();
    pbkdf2(&mut mac, &salt[..], c, &mut output[..]);

    // Be careful here - its important that the comparison be done using a fixed time equality
    // check. Otherwise an adversary that can measure how long this step takes can learn about the
    // hashed value which would allow them to mount an offline brute force attack against the
    // hashed password.
    Ok(fixed_time_eq(&output[..], &hash[..]))
}

#[cfg(test)]
mod test {
    use std::iter::repeat;

    use pbkdf2::{pbkdf2, pbkdf2_simple, pbkdf2_check};
    use hmac::Hmac;
    use sha1::Sha1;

    struct Test {
        password: Vec<u8>,
        salt: Vec<u8>,
        c: u32,
        expected: Vec<u8>
    }

    // Test vectors from http://tools.ietf.org/html/rfc6070. The 4th test vector is omitted because
    // it takes too long to run.

    fn tests() -> Vec<Test> {
        vec![
            Test {
                password: b"password".to_vec(),
                salt: b"salt".to_vec(),
                c: 1,
                expected: vec![
                    0x0c, 0x60, 0xc8, 0x0f, 0x96, 0x1f, 0x0e, 0x71,
                    0xf3, 0xa9, 0xb5, 0x24, 0xaf, 0x60, 0x12, 0x06,
                    0x2f, 0xe0, 0x37, 0xa6 ]
            },
            Test {
                password: b"password".to_vec(),
                salt: b"salt".to_vec(),
                c: 2,
                expected: vec![
                    0xea, 0x6c, 0x01, 0x4d, 0xc7, 0x2d, 0x6f, 0x8c,
                    0xcd, 0x1e, 0xd9, 0x2a, 0xce, 0x1d, 0x41, 0xf0,
                    0xd8, 0xde, 0x89, 0x57 ]
            },
            Test {
                password: b"password".to_vec(),
                salt: b"salt".to_vec(),
                c: 4096,
                expected: vec![
                    0x4b, 0x00, 0x79, 0x01, 0xb7, 0x65, 0x48, 0x9a,
                    0xbe, 0xad, 0x49, 0xd9, 0x26, 0xf7, 0x21, 0xd0,
                    0x65, 0xa4, 0x29, 0xc1 ]
            },
            Test {
                password: b"passwordPASSWORDpassword".to_vec(),
                salt: b"saltSALTsaltSALTsaltSALTsaltSALTsalt".to_vec(),
                c: 4096,
                expected: vec![
                    0x3d, 0x2e, 0xec, 0x4f, 0xe4, 0x1c, 0x84, 0x9b,
                    0x80, 0xc8, 0xd8, 0x36, 0x62, 0xc0, 0xe4, 0x4a,
                    0x8b, 0x29, 0x1a, 0x96, 0x4c, 0xf2, 0xf0, 0x70, 0x38 ]
            },
            Test {
                password: vec![112, 97, 115, 115, 0, 119, 111, 114, 100],
                salt: vec![115, 97, 0, 108, 116],
                c: 4096,
                expected: vec![
                    0x56, 0xfa, 0x6a, 0xa7, 0x55, 0x48, 0x09, 0x9d,
                    0xcc, 0x37, 0xd7, 0xf0, 0x34, 0x25, 0xe0, 0xc3 ]
            }
        ]
    }

    #[test]
    fn test_pbkdf2() {
        let tests = tests();
        for t in tests.iter() {
            let mut mac = Hmac::new(Sha1::new(), &t.password[..]);
            let mut result: Vec<u8> = repeat(0).take(t.expected.len()).collect();
            pbkdf2(&mut mac, &t.salt[..], t.c, &mut result);
            assert!(result == t.expected);
        }
    }

    #[test]
    fn test_pbkdf2_simple() {
        let password = "password";

        let out1 = pbkdf2_simple(password, 1024).unwrap();
        let out2 = pbkdf2_simple(password, 1024).unwrap();

        // This just makes sure that a salt is being applied. It doesn't verify that that salt is
        // cryptographically strong, however.
        assert!(out1 != out2);

        match pbkdf2_check(password, &out1[..]) {
            Ok(r) => assert!(r),
            Err(_) => panic!()
        }
        match pbkdf2_check(password, &out2[..]) {
            Ok(r) => assert!(r),
            Err(_) => panic!()
        }

        match pbkdf2_check("wrong", &out1[..]) {
            Ok(r) => assert!(!r),
            Err(_) => panic!()
        }
        match pbkdf2_check("wrong", &out2[..]) {
            Ok(r) => assert!(!r),
            Err(_) => panic!()
        }
    }
}