crypto/scrypt.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
/*!
* This module implements the Scrypt key derivation function as specified in [1].
*
* # References
* [1] - C. Percival. Stronger Key Derivation Via Sequential Memory-Hard Functions.
* http://www.tarsnap.com/scrypt/scrypt.pdf
*/
use std;
use std::iter::repeat;
use std::io;
use std::mem::size_of;
use cryptoutil::copy_memory;
use rand::{OsRng, Rng};
use serialize::base64;
use serialize::base64::{FromBase64, ToBase64};
use cryptoutil::{read_u32_le, read_u32v_le, write_u32_le};
use hmac::Hmac;
use pbkdf2::pbkdf2;
use sha2::Sha256;
use util::fixed_time_eq;
// The salsa20/8 core function.
fn salsa20_8(input: &[u8], output: &mut [u8]) {
let mut x = [0u32; 16];
read_u32v_le(&mut x, input);
let rounds = 8;
macro_rules! run_round (
($($set_idx:expr, $idx_a:expr, $idx_b:expr, $rot:expr);*) => { {
$( x[$set_idx] ^= x[$idx_a].wrapping_add(x[$idx_b]).rotate_left($rot); )*
} }
);
for _ in 0..rounds / 2 {
run_round!(
0x4, 0x0, 0xc, 7;
0x8, 0x4, 0x0, 9;
0xc, 0x8, 0x4, 13;
0x0, 0xc, 0x8, 18;
0x9, 0x5, 0x1, 7;
0xd, 0x9, 0x5, 9;
0x1, 0xd, 0x9, 13;
0x5, 0x1, 0xd, 18;
0xe, 0xa, 0x6, 7;
0x2, 0xe, 0xa, 9;
0x6, 0x2, 0xe, 13;
0xa, 0x6, 0x2, 18;
0x3, 0xf, 0xb, 7;
0x7, 0x3, 0xf, 9;
0xb, 0x7, 0x3, 13;
0xf, 0xb, 0x7, 18;
0x1, 0x0, 0x3, 7;
0x2, 0x1, 0x0, 9;
0x3, 0x2, 0x1, 13;
0x0, 0x3, 0x2, 18;
0x6, 0x5, 0x4, 7;
0x7, 0x6, 0x5, 9;
0x4, 0x7, 0x6, 13;
0x5, 0x4, 0x7, 18;
0xb, 0xa, 0x9, 7;
0x8, 0xb, 0xa, 9;
0x9, 0x8, 0xb, 13;
0xa, 0x9, 0x8, 18;
0xc, 0xf, 0xe, 7;
0xd, 0xc, 0xf, 9;
0xe, 0xd, 0xc, 13;
0xf, 0xe, 0xd, 18
)
}
for i in 0..16 {
write_u32_le(
&mut output[i * 4..(i + 1) * 4],
x[i].wrapping_add(read_u32_le(&input[i * 4..(i + 1) * 4])));
}
}
fn xor(x: &[u8], y: &[u8], output: &mut [u8]) {
for ((out, &x_i), &y_i) in output.iter_mut().zip(x.iter()).zip(y.iter()) {
*out = x_i ^ y_i;
}
}
// Execute the BlockMix operation
// input - the input vector. The length must be a multiple of 128.
// output - the output vector. Must be the same length as input.
fn scrypt_block_mix(input: &[u8], output: &mut [u8]) {
let mut x = [0u8; 64];
copy_memory(&input[input.len() - 64..], &mut x);
let mut t = [0u8; 64];
for (i, chunk) in input.chunks(64).enumerate() {
xor(&x, chunk, &mut t);
salsa20_8(&t, &mut x);
let pos = if i % 2 == 0 { (i / 2) * 64 } else { (i / 2) * 64 + input.len() / 2 };
copy_memory(&x, &mut output[pos..pos + 64]);
}
}
// Execute the ROMix operation in-place.
// b - the data to operate on
// v - a temporary variable to store the vector V
// t - a temporary variable to store the result of the xor
// n - the scrypt parameter N
fn scrypt_ro_mix(b: &mut [u8], v: &mut [u8], t: &mut [u8], n: usize) {
fn integerify(x: &[u8], n: usize) -> usize {
// n is a power of 2, so n - 1 gives us a bitmask that we can use to perform a calculation
// mod n using a simple bitwise and.
let mask = n - 1;
// This cast is safe since we're going to get the value mod n (which is a power of 2), so we
// don't have to care about truncating any of the high bits off
let result = (read_u32_le(&x[x.len() - 64..x.len() - 60]) as usize) & mask;
result
}
let len = b.len();
for chunk in v.chunks_mut(len) {
copy_memory(b, chunk);
scrypt_block_mix(chunk, b);
}
for _ in 0..n {
let j = integerify(b, n);
xor(b, &v[j * len..(j + 1) * len], t);
scrypt_block_mix(t, b);
}
}
/**
* The Scrypt parameter values.
*/
#[derive(Clone, Copy)]
pub struct ScryptParams {
log_n: u8,
r: u32,
p: u32
}
impl ScryptParams {
/**
* Create a new instance of ScryptParams.
*
* # Arguments
*
* * log_n - The log2 of the Scrypt parameter N
* * r - The Scrypt parameter r
* * p - The Scrypt parameter p
*
*/
pub fn new(log_n: u8, r: u32, p: u32) -> ScryptParams {
assert!(r > 0);
assert!(p > 0);
assert!(log_n > 0);
assert!((log_n as usize) < size_of::<usize>() * 8);
assert!(size_of::<usize>() >= size_of::<u32>() || (r <= std::usize::MAX as u32 && p < std::usize::MAX as u32));
let r = r as usize;
let p = p as usize;
let n: usize = 1 << log_n;
// check that r * 128 doesn't overflow
let r128 = match r.checked_mul(128) {
Some(x) => x,
None => panic!("Invalid Scrypt parameters.")
};
// check that n * r * 128 doesn't overflow
match r128.checked_mul(n) {
Some(_) => { },
None => panic!("Invalid Scrypt parameters.")
};
// check that p * r * 128 doesn't overflow
match r128.checked_mul(p) {
Some(_) => { },
None => panic!("Invalid Scrypt parameters.")
};
// This check required by Scrypt:
// check: n < 2^(128 * r / 8)
// r * 16 won't overflow since r128 didn't
assert!((log_n as usize) < r * 16);
// This check required by Scrypt:
// check: p <= ((2^32-1) * 32) / (128 * r)
// It takes a bit of re-arranging to get the check above into this form, but, it is indeed
// the same.
assert!(r * p < 0x40000000);
ScryptParams {
log_n: log_n,
r: r as u32,
p: p as u32
}
}
}
/**
* The scrypt key derivation function.
*
* # Arguments
*
* * password - The password to process as a byte vector
* * salt - The salt value to use as a byte vector
* * params - The ScryptParams to use
* * output - The resulting derived key is returned in this byte vector.
*
*/
pub fn scrypt(password: &[u8], salt: &[u8], params: &ScryptParams, output: &mut [u8]) {
// This check required by Scrypt:
// check output.len() > 0 && output.len() <= (2^32 - 1) * 32
assert!(output.len() > 0);
assert!(output.len() / 32 <= 0xffffffff);
// The checks in the ScryptParams constructor guarantee that the following is safe:
let n = 1 << params.log_n;
let r128 = (params.r as usize) * 128;
let pr128 = (params.p as usize) * r128;
let nr128 = n * r128;
let mut mac = Hmac::new(Sha256::new(), password);
let mut b: Vec<u8> = repeat(0).take(pr128).collect();
pbkdf2(&mut mac, salt, 1, &mut b);
let mut v: Vec<u8> = repeat(0).take(nr128).collect();
let mut t: Vec<u8> = repeat(0).take(r128).collect();
for chunk in &mut b.chunks_mut(r128) {
scrypt_ro_mix(chunk, &mut v, &mut t, n);
}
pbkdf2(&mut mac, &*b, 1, output);
}
/**
* scrypt_simple is a helper function that should be sufficient for the majority of cases where
* an application needs to use Scrypt to hash a password for storage. The result is a String that
* contains the parameters used as part of its encoding. The scrypt_check function may be used on
* a password to check if it is equal to a hashed value.
*
* # Format
*
* The format of the output is a modified version of the Modular Crypt Format that encodes algorithm
* used and the parameter values. If all parameter values can each fit within a single byte, a
* compact format is used (format 0). However, if any value cannot, an expanded format where the r
* and p parameters are encoded using 4 bytes (format 1) is used. Both formats use a 128-bit salt
* and a 256-bit hash. The format is indicated as "rscrypt" which is short for "Rust Scrypt format."
*
* $rscrypt$<format>$<base64(log_n,r,p)>$<base64(salt)>$<based64(hash)>$
*
* # Arguments
*
* * password - The password to process as a str
* * params - The ScryptParams to use
*
*/
pub fn scrypt_simple(password: &str, params: &ScryptParams) -> io::Result<String> {
let mut rng = try!(OsRng::new());
// 128-bit salt
let salt: Vec<u8> = rng.gen_iter::<u8>().take(16).collect();
// 256-bit derived key
let mut dk = [0u8; 32];
scrypt(password.as_bytes(), &*salt, params, &mut dk);
let mut result = "$rscrypt$".to_string();
if params.r < 256 && params.p < 256 {
result.push_str("0$");
let mut tmp = [0u8; 3];
tmp[0] = params.log_n;
tmp[1] = params.r as u8;
tmp[2] = params.p as u8;
result.push_str(&*tmp.to_base64(base64::STANDARD));
} else {
result.push_str("1$");
let mut tmp = [0u8; 9];
tmp[0] = params.log_n;
write_u32_le(&mut tmp[1..5], params.r);
write_u32_le(&mut tmp[5..9], params.p);
result.push_str(&*tmp.to_base64(base64::STANDARD));
}
result.push('$');
result.push_str(&*salt.to_base64(base64::STANDARD));
result.push('$');
result.push_str(&*dk.to_base64(base64::STANDARD));
result.push('$');
Ok(result)
}
/**
* scrypt_check compares a password against the result of a previous call to scrypt_simple and
* returns true if the passed in password hashes to the same value.
*
* # Arguments
*
* * password - The password to process as a str
* * hashed_value - A string representing a hashed password returned by scrypt_simple()
*
*/
pub fn scrypt_check(password: &str, hashed_value: &str) -> Result<bool, &'static str> {
static ERR_STR: &'static str = "Hash is not in Rust Scrypt format.";
let mut iter = hashed_value.split('$');
// Check that there are no characters before the first "$"
match iter.next() {
Some(x) => if x != "" { return Err(ERR_STR); },
None => return Err(ERR_STR)
}
// Check the name
match iter.next() {
Some(t) => if t != "rscrypt" { return Err(ERR_STR); },
None => return Err(ERR_STR)
}
// Parse format - currenlty only version 0 (compact) and 1 (expanded) are supported
let params: ScryptParams;
match iter.next() {
Some(fstr) => {
// Parse the parameters - the size of them depends on the if we are using the compact or
// expanded format
let pvec = match iter.next() {
Some(pstr) => match pstr.from_base64() {
Ok(x) => x,
Err(_) => return Err(ERR_STR)
},
None => return Err(ERR_STR)
};
match fstr {
"0" => {
if pvec.len() != 3 { return Err(ERR_STR); }
let log_n = pvec[0];
let r = pvec[1] as u32;
let p = pvec[2] as u32;
params = ScryptParams::new(log_n, r, p);
}
"1" => {
if pvec.len() != 9 { return Err(ERR_STR); }
let log_n = pvec[0];
let mut pval = [0u32; 2];
read_u32v_le(&mut pval, &pvec[1..9]);
params = ScryptParams::new(log_n, pval[0], pval[1]);
}
_ => return Err(ERR_STR)
}
}
None => return Err(ERR_STR)
}
// Salt
let salt = match iter.next() {
Some(sstr) => match sstr.from_base64() {
Ok(salt) => salt,
Err(_) => return Err(ERR_STR)
},
None => return Err(ERR_STR)
};
// Hashed value
let hash = match iter.next() {
Some(hstr) => match hstr.from_base64() {
Ok(hash) => hash,
Err(_) => return Err(ERR_STR)
},
None => return Err(ERR_STR)
};
// Make sure that the input ends with a "$"
match iter.next() {
Some(x) => if x != "" { return Err(ERR_STR); },
None => return Err(ERR_STR)
}
// Make sure there is no trailing data after the final "$"
match iter.next() {
Some(_) => return Err(ERR_STR),
None => { }
}
let mut output: Vec<u8> = repeat(0).take(hash.len()).collect();
scrypt(password.as_bytes(), &*salt, ¶ms, &mut output);
// Be careful here - its important that the comparison be done using a fixed time equality
// check. Otherwise an adversary that can measure how long this step takes can learn about the
// hashed value which would allow them to mount an offline brute force attack against the
// hashed password.
Ok(fixed_time_eq(&*output, &*hash))
}
#[cfg(test)]
mod test {
use std::iter::repeat;
use scrypt::{scrypt, scrypt_simple, scrypt_check, ScryptParams};
struct Test {
password: &'static str,
salt: &'static str,
log_n: u8,
r: u32,
p: u32,
expected: Vec<u8>
}
// Test vectors from [1]. The last test vector is omitted because it takes too long to run.
fn tests() -> Vec<Test> {
vec![
Test {
password: "",
salt: "",
log_n: 4,
r: 1,
p: 1,
expected: vec![
0x77, 0xd6, 0x57, 0x62, 0x38, 0x65, 0x7b, 0x20,
0x3b, 0x19, 0xca, 0x42, 0xc1, 0x8a, 0x04, 0x97,
0xf1, 0x6b, 0x48, 0x44, 0xe3, 0x07, 0x4a, 0xe8,
0xdf, 0xdf, 0xfa, 0x3f, 0xed, 0xe2, 0x14, 0x42,
0xfc, 0xd0, 0x06, 0x9d, 0xed, 0x09, 0x48, 0xf8,
0x32, 0x6a, 0x75, 0x3a, 0x0f, 0xc8, 0x1f, 0x17,
0xe8, 0xd3, 0xe0, 0xfb, 0x2e, 0x0d, 0x36, 0x28,
0xcf, 0x35, 0xe2, 0x0c, 0x38, 0xd1, 0x89, 0x06 ]
},
Test {
password: "password",
salt: "NaCl",
log_n: 10,
r: 8,
p: 16,
expected: vec![
0xfd, 0xba, 0xbe, 0x1c, 0x9d, 0x34, 0x72, 0x00,
0x78, 0x56, 0xe7, 0x19, 0x0d, 0x01, 0xe9, 0xfe,
0x7c, 0x6a, 0xd7, 0xcb, 0xc8, 0x23, 0x78, 0x30,
0xe7, 0x73, 0x76, 0x63, 0x4b, 0x37, 0x31, 0x62,
0x2e, 0xaf, 0x30, 0xd9, 0x2e, 0x22, 0xa3, 0x88,
0x6f, 0xf1, 0x09, 0x27, 0x9d, 0x98, 0x30, 0xda,
0xc7, 0x27, 0xaf, 0xb9, 0x4a, 0x83, 0xee, 0x6d,
0x83, 0x60, 0xcb, 0xdf, 0xa2, 0xcc, 0x06, 0x40 ]
},
Test {
password: "pleaseletmein",
salt: "SodiumChloride",
log_n: 14,
r: 8,
p: 1,
expected: vec![
0x70, 0x23, 0xbd, 0xcb, 0x3a, 0xfd, 0x73, 0x48,
0x46, 0x1c, 0x06, 0xcd, 0x81, 0xfd, 0x38, 0xeb,
0xfd, 0xa8, 0xfb, 0xba, 0x90, 0x4f, 0x8e, 0x3e,
0xa9, 0xb5, 0x43, 0xf6, 0x54, 0x5d, 0xa1, 0xf2,
0xd5, 0x43, 0x29, 0x55, 0x61, 0x3f, 0x0f, 0xcf,
0x62, 0xd4, 0x97, 0x05, 0x24, 0x2a, 0x9a, 0xf9,
0xe6, 0x1e, 0x85, 0xdc, 0x0d, 0x65, 0x1e, 0x40,
0xdf, 0xcf, 0x01, 0x7b, 0x45, 0x57, 0x58, 0x87 ]
},
]
}
#[test]
fn test_scrypt() {
let tests = tests();
for t in tests.iter() {
let mut result: Vec<u8> = repeat(0).take(t.expected.len()).collect();
let params = ScryptParams::new(t.log_n, t.r, t.p);
scrypt(t.password.as_bytes(), t.salt.as_bytes(), ¶ms, &mut result);
assert!(result == t.expected);
}
}
fn test_scrypt_simple(log_n: u8, r: u32, p: u32) {
let password = "password";
let params = ScryptParams::new(log_n, r, p);
let out1 = scrypt_simple(password, ¶ms).unwrap();
let out2 = scrypt_simple(password, ¶ms).unwrap();
// This just makes sure that a salt is being applied. It doesn't verify that that salt is
// cryptographically strong, however.
assert!(out1 != out2);
match scrypt_check(password, &out1[..]) {
Ok(r) => assert!(r),
Err(_) => panic!()
}
match scrypt_check(password, &out2[..]) {
Ok(r) => assert!(r),
Err(_) => panic!()
}
match scrypt_check("wrong", &out1[..]) {
Ok(r) => assert!(!r),
Err(_) => panic!()
}
match scrypt_check("wrong", &out2[..]) {
Ok(r) => assert!(!r),
Err(_) => panic!()
}
}
#[test]
fn test_scrypt_simple_compact() {
// These parameters are intentionally very weak - the goal is to make the test run quickly!
test_scrypt_simple(7, 8, 1);
}
#[test]
fn test_scrypt_simple_expanded() {
// These parameters are intentionally very weak - the goal is to make the test run quickly!
test_scrypt_simple(3, 1, 256);
}
}