rust_kzg_bn254_prover/
kzg.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
use ark_bn254::{Fr, G1Affine, G1Projective};
use ark_ec::{CurveGroup, VariableBaseMSM};
use ark_poly::{EvaluationDomain, GeneralEvaluationDomain};
use ark_std::{ops::Div, Zero};
use num_traits::ToPrimitive;
use rayon::iter::{IntoParallelRefIterator, ParallelIterator};
use rust_kzg_bn254_primitives::{
    blob::Blob,
    errors::KzgError,
    helpers,
    polynomial::{PolynomialCoeffForm, PolynomialEvalForm},
};

use crate::srs::SRS;

/// Main interesting struct of the rust-kzg-bn254 crate.
/// [Kzg] is a struct that holds the SRS points in monomial form, and
/// provides methods for committing to a blob, (either via a [Blob] itself,
/// or a [PolynomialCoeffForm] or [PolynomialEvalForm]), and generating and
/// verifying proofs.
///
/// The [Blob] and [PolynomialCoeffForm]/[PolynomialEvalForm] structs are mostly
/// <https://en.wikipedia.org/wiki/Passive_data_structure> with
/// constructor and few helper methods.
#[derive(Debug, PartialEq, Clone)]
pub struct KZG {
    expanded_roots_of_unity: Vec<Fr>,
}

impl Default for KZG {
    fn default() -> Self {
        Self::new()
    }
}

impl KZG {
    pub fn new() -> Self {
        Self {
            expanded_roots_of_unity: vec![],
        }
    }

    /// Calculates the roots of unities and assigns it to the struct
    ///
    /// # Arguments
    /// * `length_of_data_after_padding` - Length of the blob data after padding in bytes.
    ///
    /// # Returns
    /// * `Result<(), KzgError>`
    ///
    /// # Details
    /// - Generates roots of unity needed for FFT operations
    ///
    /// # Example
    /// ```
    /// use rust_kzg_bn254_prover::kzg::KZG;
    /// use rust_kzg_bn254_primitives::blob::Blob;
    /// use ark_std::One;
    /// use ark_bn254::Fr;
    ///
    /// let mut kzg = KZG::new();
    /// let input_blob = Blob::from_raw_data(b"test blob data");
    /// kzg.calculate_and_store_roots_of_unity(input_blob.len().try_into().unwrap()).unwrap();
    /// ```
    pub fn calculate_and_store_roots_of_unity(
        &mut self,
        length_of_data_after_padding: u64,
    ) -> Result<(), KzgError> {
        let roots_of_unity = helpers::calculate_roots_of_unity(length_of_data_after_padding)?;
        self.expanded_roots_of_unity = roots_of_unity;
        Ok(())
    }

    pub fn get_roots_of_unities(&self) -> Vec<Fr> {
        self.expanded_roots_of_unity.clone()
    }

    /// helper function to get the
    pub fn get_nth_root_of_unity(&self, i: usize) -> Option<&Fr> {
        self.expanded_roots_of_unity.get(i)
    }

    /// Commit the polynomial with the srs values loaded into [Kzg].
    pub fn commit_eval_form(
        &self,
        polynomial: &PolynomialEvalForm,
        srs: &SRS,
    ) -> Result<G1Affine, KzgError> {
        if polynomial.len() > srs.g1.len() {
            return Err(KzgError::SerializationError(
                "polynomial length is not correct".to_string(),
            ));
        }

        // When the polynomial is in evaluation form, use IFFT to transform monomial srs
        // points to lagrange form.
        let bases = self.g1_ifft(polynomial.len(), srs)?;

        match G1Projective::msm(&bases, polynomial.evaluations()) {
            Ok(res) => Ok(res.into_affine()),
            Err(err) => Err(KzgError::CommitError(err.to_string())),
        }
    }

    /// Commit the polynomial with the srs values loaded into [Kzg].
    pub fn commit_coeff_form(
        &self,
        polynomial: &PolynomialCoeffForm,
        srs: &SRS,
    ) -> Result<G1Affine, KzgError> {
        if polynomial.len() > srs.g1.len() {
            return Err(KzgError::SerializationError(
                "polynomial length is not correct".to_string(),
            ));
        }
        // When the polynomial is in coefficient form, use the original srs points (in
        // monomial form).
        let bases = srs.g1[..polynomial.len()].to_vec();

        match G1Projective::msm(&bases, polynomial.coeffs()) {
            Ok(res) => Ok(res.into_affine()),
            Err(err) => Err(KzgError::CommitError(err.to_string())),
        }
    }

    /// Helper function for `compute_kzg_proof()` and `compute_blob_kzg_proof()`
    fn compute_proof_impl(
        &self,
        polynomial: &PolynomialEvalForm,
        z_fr: &Fr,
        srs: &SRS,
    ) -> Result<G1Affine, KzgError> {
        // Verify polynomial length matches that of the roots of unity
        if polynomial.len() != self.expanded_roots_of_unity.len() {
            return Err(KzgError::GenericError(
                "inconsistent length between blob and root of unities".to_string(),
            ));
        }

        let eval_fr = polynomial.evaluations();
        // Pre-allocate vector for shifted polynomial p(x) - y
        let mut poly_shift: Vec<Fr> = Vec::with_capacity(eval_fr.len());

        // Evaluate polynomial at the point z
        // This gives us y = p(z)
        let y_fr = helpers::evaluate_polynomial_in_evaluation_form(polynomial, z_fr)?;

        // Compute p(x) - y for each evaluation point
        // This is the numerator of the quotient polynomial
        for fr in eval_fr {
            poly_shift.push(*fr - y_fr);
        }

        // Compute denominator polynomial (x - z) at each root of unity
        let mut denom_poly = Vec::<Fr>::with_capacity(self.expanded_roots_of_unity.len());
        for root_of_unity in self.expanded_roots_of_unity.iter().take(eval_fr.len()) {
            denom_poly.push(*root_of_unity - z_fr);
        }

        // Pre-allocate vector for quotient polynomial evaluations
        let mut quotient_poly = Vec::<Fr>::with_capacity(self.expanded_roots_of_unity.len());

        // Compute quotient polynomial q(x) = (p(x) - y)/(x - z) at each root of unity
        for i in 0..self.expanded_roots_of_unity.len() {
            if denom_poly[i].is_zero() {
                // Special case: when x = z, use L'Hôpital's rule
                // Compute the derivative evaluation instead
                quotient_poly.push(self.compute_quotient_eval_on_domain(z_fr, eval_fr, &y_fr));
            } else {
                // Normal case: direct polynomial division
                quotient_poly.push(poly_shift[i].div(denom_poly[i]));
            }
        }

        let quotient_poly_eval_form = PolynomialEvalForm::new(quotient_poly);
        self.commit_eval_form(&quotient_poly_eval_form, srs)
    }

    /// commit to a [Blob], by transforming it into a [PolynomialEvalForm] and
    /// then calling [Kzg::commit_eval_form].
    pub fn commit_blob(&self, blob: &Blob, srs: &SRS) -> Result<G1Affine, KzgError> {
        let polynomial = blob.to_polynomial_eval_form();
        self.commit_eval_form(&polynomial, srs)
    }

    pub fn compute_proof_with_known_z_fr_index(
        &self,
        polynomial: &PolynomialEvalForm,
        index: u64,
        srs: &SRS,
    ) -> Result<G1Affine, KzgError> {
        // Convert u64 index to usize for array indexing
        let usized_index = index.to_usize().ok_or(KzgError::GenericError(
            "Index conversion to usize failed".to_string(),
        ))?;

        // Get the root of unity at the specified index
        let z_fr = self
            .get_nth_root_of_unity(usized_index)
            .ok_or_else(|| KzgError::GenericError("Root of unity not found".to_string()))?;

        // Compute the KZG proof at the selected root of unity
        // This delegates to the main proof computation function
        // using our selected evaluation point
        self.compute_proof(polynomial, z_fr, srs)
    }

    /// Compute a kzg proof from a polynomial in evaluation form.
    /// We don't currently support proofs for polynomials in coefficient form,
    /// but one can take the FFT of the polynomial in coefficient form to
    /// get the polynomial in evaluation form. This is available via the
    /// method [PolynomialCoeffForm::to_eval_form].
    /// TODO(anupsv): Accept bytes instead of Fr element. Ref: https://github.com/Layr-Labs/rust-kzg-bn254/issues/29
    pub fn compute_proof(
        &self,
        polynomial: &PolynomialEvalForm,
        z_fr: &Fr,
        srs: &SRS,
    ) -> Result<G1Affine, KzgError> {
        // Verify that polynomial length matches roots of unity length
        if polynomial.len() != self.expanded_roots_of_unity.len() {
            return Err(KzgError::GenericError(
                "inconsistent length between blob and root of unities".to_string(),
            ));
        }

        // Call the implementation to compute the actual proof
        // This will:
        // 1. Evaluate polynomial at z
        // 2. Compute quotient polynomial q(x) = (p(x) - p(z)) / (x - z)
        // 3. Generate KZG proof as commitment to q(x)
        self.compute_proof_impl(polynomial, z_fr, srs)
    }

    /// refer to DA for more context
    pub fn compute_quotient_eval_on_domain(&self, z_fr: &Fr, eval_fr: &[Fr], value_fr: &Fr) -> Fr {
        let mut quotient = Fr::zero();
        let mut fi: Fr = Fr::zero();
        let mut numerator: Fr = Fr::zero();
        let mut denominator: Fr = Fr::zero();
        let mut temp: Fr = Fr::zero();

        self.expanded_roots_of_unity
            .iter()
            .enumerate()
            .for_each(|(i, omega_i)| {
                if *omega_i == *z_fr {
                    return;
                }
                fi = eval_fr[i] - value_fr;
                numerator = fi * omega_i;
                denominator = z_fr - omega_i;
                denominator *= z_fr;
                temp = numerator.div(denominator);
                quotient += temp;
            });

        quotient
    }

    /// function to compute the inverse FFT
    pub fn g1_ifft(&self, length: usize, srs: &SRS) -> Result<Vec<G1Affine>, KzgError> {
        // is not power of 2
        if !length.is_power_of_two() {
            return Err(KzgError::FFTError(
                "length provided is not a power of 2".to_string(),
            ));
        }

        let points_projective: Vec<G1Projective> = srs.g1[..length]
            .par_iter()
            .map(|&p| G1Projective::from(p))
            .collect();
        let ifft_result: Vec<_> = GeneralEvaluationDomain::<Fr>::new(length)
            .ok_or(KzgError::FFTError(
                "Could not perform IFFT due to domain consturction error".to_string(),
            ))?
            .ifft(&points_projective)
            .par_iter()
            .map(|p| p.into_affine())
            .collect();

        Ok(ifft_result)
    }

    /// TODO(anupsv): Match 4844 specs w.r.t to the inputs. Ref: https://github.com/Layr-Labs/rust-kzg-bn254/issues/30
    pub fn compute_blob_proof(
        &self,
        blob: &Blob,
        commitment: &G1Affine,
        srs: &SRS,
    ) -> Result<G1Affine, KzgError> {
        // Validate that the commitment is a valid point on the G1 curve
        // This prevents potential invalid curve attacks
        if !commitment.is_on_curve() || !commitment.is_in_correct_subgroup_assuming_on_curve() {
            return Err(KzgError::NotOnCurveError(
                "commitment not on curve".to_string(),
            ));
        }

        // Convert the blob to a polynomial in evaluation form
        // This is necessary because KZG proofs work with polynomials
        let blob_poly = blob.to_polynomial_eval_form();

        // Compute the evaluation challenge using Fiat-Shamir heuristic
        // This challenge determines the point at which we evaluate the polynomial
        let evaluation_challenge = helpers::compute_challenge(blob, commitment)?;

        // Compute the actual KZG proof using the polynomial and evaluation point
        // This creates a proof that the polynomial evaluates to a specific value at the challenge point
        // The proof is a single G1 point that can be used to verify the evaluation
        self.compute_proof_impl(&blob_poly, &evaluation_challenge, srs)
    }
}