1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693
//! Generate files suitable for use with [Graphviz](http://www.graphviz.org/) //! //! The `render` function generates output (e.g., an `output.dot` file) for //! use with [Graphviz](http://www.graphviz.org/) by walking a labeled //! graph. (Graphviz can then automatically lay out the nodes and edges //! of the graph, and also optionally render the graph as an image or //! other [output formats]( //! http://www.graphviz.org/content/output-formats), such as SVG.) //! //! Rather than impose some particular graph data structure on clients, //! this library exposes two traits that clients can implement on their //! own structs before handing them over to the rendering function. //! //! Note: This library does not yet provide access to the full //! expressiveness of the [DOT language]( //! http://www.graphviz.org/doc/info/lang.html). For example, there are //! many [attributes](http://www.graphviz.org/content/attrs) related to //! providing layout hints (e.g., left-to-right versus top-down, which //! algorithm to use, etc). The current intention of this library is to //! emit a human-readable .dot file with very regular structure suitable //! for easy post-processing. //! //! # Examples //! //! The first example uses a very simple graph representation: a list of //! pairs of ints, representing the edges (the node set is implicit). //! Each node label is derived directly from the int representing the node, //! while the edge labels are all empty strings. //! //! This example also illustrates how to use `Cow<[T]>` to return //! an owned vector or a borrowed slice as appropriate: we construct the //! node vector from scratch, but borrow the edge list (rather than //! constructing a copy of all the edges from scratch). //! //! The output from this example renders five nodes, with the first four //! forming a diamond-shaped acyclic graph and then pointing to the fifth //! which is cyclic. //! //! ```rust //! #![feature(rustc_private)] //! //! use std::io::Write; //! use graphviz as dot; //! //! type Nd = isize; //! type Ed = (isize,isize); //! struct Edges(Vec<Ed>); //! //! pub fn render_to<W: Write>(output: &mut W) { //! let edges = Edges(vec![(0,1), (0,2), (1,3), (2,3), (3,4), (4,4)]); //! dot::render(&edges, output).unwrap() //! } //! //! impl<'a> dot::Labeller<'a> for Edges { //! type Node = Nd; //! type Edge = Ed; //! fn graph_id(&'a self) -> dot::Id<'a> { dot::Id::new("example1").unwrap() } //! //! fn node_id(&'a self, n: &Nd) -> dot::Id<'a> { //! dot::Id::new(format!("N{}", *n)).unwrap() //! } //! } //! //! impl<'a> dot::GraphWalk<'a> for Edges { //! type Node = Nd; //! type Edge = Ed; //! fn nodes(&self) -> dot::Nodes<'a,Nd> { //! // (assumes that |N| \approxeq |E|) //! let &Edges(ref v) = self; //! let mut nodes = Vec::with_capacity(v.len()); //! for &(s,t) in v { //! nodes.push(s); nodes.push(t); //! } //! nodes.sort(); //! nodes.dedup(); //! nodes.into() //! } //! //! fn edges(&'a self) -> dot::Edges<'a,Ed> { //! let &Edges(ref edges) = self; //! (&edges[..]).into() //! } //! //! fn source(&self, e: &Ed) -> Nd { let &(s,_) = e; s } //! //! fn target(&self, e: &Ed) -> Nd { let &(_,t) = e; t } //! } //! //! # pub fn main() { render_to(&mut Vec::new()) } //! ``` //! //! ```no_run //! # pub fn render_to<W:std::io::Write>(output: &mut W) { unimplemented!() } //! pub fn main() { //! use std::fs::File; //! let mut f = File::create("example1.dot").unwrap(); //! render_to(&mut f) //! } //! ``` //! //! Output from first example (in `example1.dot`): //! //! ```dot //! digraph example1 { //! N0[label="N0"]; //! N1[label="N1"]; //! N2[label="N2"]; //! N3[label="N3"]; //! N4[label="N4"]; //! N0 -> N1[label=""]; //! N0 -> N2[label=""]; //! N1 -> N3[label=""]; //! N2 -> N3[label=""]; //! N3 -> N4[label=""]; //! N4 -> N4[label=""]; //! } //! ``` //! //! The second example illustrates using `node_label` and `edge_label` to //! add labels to the nodes and edges in the rendered graph. The graph //! here carries both `nodes` (the label text to use for rendering a //! particular node), and `edges` (again a list of `(source,target)` //! indices). //! //! This example also illustrates how to use a type (in this case the edge //! type) that shares substructure with the graph: the edge type here is a //! direct reference to the `(source,target)` pair stored in the graph's //! internal vector (rather than passing around a copy of the pair //! itself). Note that this implies that `fn edges(&'a self)` must //! construct a fresh `Vec<&'a (usize,usize)>` from the `Vec<(usize,usize)>` //! edges stored in `self`. //! //! Since both the set of nodes and the set of edges are always //! constructed from scratch via iterators, we use the `collect()` method //! from the `Iterator` trait to collect the nodes and edges into freshly //! constructed growable `Vec` values (rather than using `Cow` as in the //! first example above). //! //! The output from this example renders four nodes that make up the //! Hasse-diagram for the subsets of the set `{x, y}`. Each edge is //! labeled with the ⊆ character (specified using the HTML character //! entity `&sube`). //! //! ```rust //! #![feature(rustc_private)] //! //! use std::io::Write; //! use graphviz as dot; //! //! type Nd = usize; //! type Ed<'a> = &'a (usize, usize); //! struct Graph { nodes: Vec<&'static str>, edges: Vec<(usize,usize)> } //! //! pub fn render_to<W: Write>(output: &mut W) { //! let nodes = vec!["{x,y}","{x}","{y}","{}"]; //! let edges = vec![(0,1), (0,2), (1,3), (2,3)]; //! let graph = Graph { nodes: nodes, edges: edges }; //! //! dot::render(&graph, output).unwrap() //! } //! //! impl<'a> dot::Labeller<'a> for Graph { //! type Node = Nd; //! type Edge = Ed<'a>; //! fn graph_id(&'a self) -> dot::Id<'a> { dot::Id::new("example2").unwrap() } //! fn node_id(&'a self, n: &Nd) -> dot::Id<'a> { //! dot::Id::new(format!("N{}", n)).unwrap() //! } //! fn node_label<'b>(&'b self, n: &Nd) -> dot::LabelText<'b> { //! dot::LabelText::LabelStr(self.nodes[*n].into()) //! } //! fn edge_label<'b>(&'b self, _: &Ed) -> dot::LabelText<'b> { //! dot::LabelText::LabelStr("⊆".into()) //! } //! } //! //! impl<'a> dot::GraphWalk<'a> for Graph { //! type Node = Nd; //! type Edge = Ed<'a>; //! fn nodes(&self) -> dot::Nodes<'a,Nd> { (0..self.nodes.len()).collect() } //! fn edges(&'a self) -> dot::Edges<'a,Ed<'a>> { self.edges.iter().collect() } //! fn source(&self, e: &Ed) -> Nd { let & &(s,_) = e; s } //! fn target(&self, e: &Ed) -> Nd { let & &(_,t) = e; t } //! } //! //! # pub fn main() { render_to(&mut Vec::new()) } //! ``` //! //! ```no_run //! # pub fn render_to<W:std::io::Write>(output: &mut W) { unimplemented!() } //! pub fn main() { //! use std::fs::File; //! let mut f = File::create("example2.dot").unwrap(); //! render_to(&mut f) //! } //! ``` //! //! The third example is similar to the second, except now each node and //! edge now carries a reference to the string label for each node as well //! as that node's index. (This is another illustration of how to share //! structure with the graph itself, and why one might want to do so.) //! //! The output from this example is the same as the second example: the //! Hasse-diagram for the subsets of the set `{x, y}`. //! //! ```rust //! #![feature(rustc_private)] //! //! use std::io::Write; //! use graphviz as dot; //! //! type Nd<'a> = (usize, &'a str); //! type Ed<'a> = (Nd<'a>, Nd<'a>); //! struct Graph { nodes: Vec<&'static str>, edges: Vec<(usize,usize)> } //! //! pub fn render_to<W: Write>(output: &mut W) { //! let nodes = vec!["{x,y}","{x}","{y}","{}"]; //! let edges = vec![(0,1), (0,2), (1,3), (2,3)]; //! let graph = Graph { nodes: nodes, edges: edges }; //! //! dot::render(&graph, output).unwrap() //! } //! //! impl<'a> dot::Labeller<'a> for Graph { //! type Node = Nd<'a>; //! type Edge = Ed<'a>; //! fn graph_id(&'a self) -> dot::Id<'a> { dot::Id::new("example3").unwrap() } //! fn node_id(&'a self, n: &Nd<'a>) -> dot::Id<'a> { //! dot::Id::new(format!("N{}", n.0)).unwrap() //! } //! fn node_label<'b>(&'b self, n: &Nd<'b>) -> dot::LabelText<'b> { //! let &(i, _) = n; //! dot::LabelText::LabelStr(self.nodes[i].into()) //! } //! fn edge_label<'b>(&'b self, _: &Ed<'b>) -> dot::LabelText<'b> { //! dot::LabelText::LabelStr("⊆".into()) //! } //! } //! //! impl<'a> dot::GraphWalk<'a> for Graph { //! type Node = Nd<'a>; //! type Edge = Ed<'a>; //! fn nodes(&'a self) -> dot::Nodes<'a,Nd<'a>> { //! self.nodes.iter().map(|s| &s[..]).enumerate().collect() //! } //! fn edges(&'a self) -> dot::Edges<'a,Ed<'a>> { //! self.edges.iter() //! .map(|&(i,j)|((i, &self.nodes[i][..]), //! (j, &self.nodes[j][..]))) //! .collect() //! } //! fn source(&self, e: &Ed<'a>) -> Nd<'a> { let &(s,_) = e; s } //! fn target(&self, e: &Ed<'a>) -> Nd<'a> { let &(_,t) = e; t } //! } //! //! # pub fn main() { render_to(&mut Vec::new()) } //! ``` //! //! ```no_run //! # pub fn render_to<W:std::io::Write>(output: &mut W) { unimplemented!() } //! pub fn main() { //! use std::fs::File; //! let mut f = File::create("example3.dot").unwrap(); //! render_to(&mut f) //! } //! ``` //! //! # References //! //! * [Graphviz](http://www.graphviz.org/) //! //! * [DOT language](http://www.graphviz.org/doc/info/lang.html) #![doc( html_root_url = "https://doc.rust-lang.org/nightly/", test(attr(allow(unused_variables), deny(warnings))) )] #![feature(rustc_private, nll)] use LabelText::*; use std::borrow::Cow; use std::io; use std::io::prelude::*; /// The text for a graphviz label on a node or edge. pub enum LabelText<'a> { /// This kind of label preserves the text directly as is. /// /// Occurrences of backslashes (`\`) are escaped, and thus appear /// as backslashes in the rendered label. LabelStr(Cow<'a, str>), /// This kind of label uses the graphviz label escString type: /// <http://www.graphviz.org/content/attrs#kescString> /// /// Occurrences of backslashes (`\`) are not escaped; instead they /// are interpreted as initiating an escString escape sequence. /// /// Escape sequences of particular interest: in addition to `\n` /// to break a line (centering the line preceding the `\n`), there /// are also the escape sequences `\l` which left-justifies the /// preceding line and `\r` which right-justifies it. EscStr(Cow<'a, str>), /// This uses a graphviz [HTML string label][html]. The string is /// printed exactly as given, but between `<` and `>`. **No /// escaping is performed.** /// /// [html]: http://www.graphviz.org/content/node-shapes#html HtmlStr(Cow<'a, str>), } /// The style for a node or edge. /// See <http://www.graphviz.org/doc/info/attrs.html#k:style> for descriptions. /// Note that some of these are not valid for edges. #[derive(Copy, Clone, PartialEq, Eq, Debug)] pub enum Style { None, Solid, Dashed, Dotted, Bold, Rounded, Diagonals, Filled, Striped, Wedged, } impl Style { pub fn as_slice(self) -> &'static str { match self { Style::None => "", Style::Solid => "solid", Style::Dashed => "dashed", Style::Dotted => "dotted", Style::Bold => "bold", Style::Rounded => "rounded", Style::Diagonals => "diagonals", Style::Filled => "filled", Style::Striped => "striped", Style::Wedged => "wedged", } } } // There is a tension in the design of the labelling API. // // For example, I considered making a `Labeller<T>` trait that // provides labels for `T`, and then making the graph type `G` // implement `Labeller<Node>` and `Labeller<Edge>`. However, this is // not possible without functional dependencies. (One could work // around that, but I did not explore that avenue heavily.) // // Another approach that I actually used for a while was to make a // `Label<Context>` trait that is implemented by the client-specific // Node and Edge types (as well as an implementation on Graph itself // for the overall name for the graph). The main disadvantage of this // second approach (compared to having the `G` type parameter // implement a Labelling service) that I have encountered is that it // makes it impossible to use types outside of the current crate // directly as Nodes/Edges; you need to wrap them in newtype'd // structs. See e.g., the `No` and `Ed` structs in the examples. (In // practice clients using a graph in some other crate would need to // provide some sort of adapter shim over the graph anyway to // interface with this library). // // Another approach would be to make a single `Labeller<N,E>` trait // that provides three methods (graph_label, node_label, edge_label), // and then make `G` implement `Labeller<N,E>`. At first this did not // appeal to me, since I had thought I would need separate methods on // each data variant for dot-internal identifiers versus user-visible // labels. However, the identifier/label distinction only arises for // nodes; graphs themselves only have identifiers, and edges only have // labels. // // So in the end I decided to use the third approach described above. /// `Id` is a Graphviz `ID`. pub struct Id<'a> { name: Cow<'a, str>, } impl<'a> Id<'a> { /// Creates an `Id` named `name`. /// /// The caller must ensure that the input conforms to an /// identifier format: it must be a non-empty string made up of /// alphanumeric or underscore characters, not beginning with a /// digit (i.e., the regular expression `[a-zA-Z_][a-zA-Z_0-9]*`). /// /// (Note: this format is a strict subset of the `ID` format /// defined by the DOT language. This function may change in the /// future to accept a broader subset, or the entirety, of DOT's /// `ID` format.) /// /// Passing an invalid string (containing spaces, brackets, /// quotes, ...) will return an empty `Err` value. pub fn new<Name: Into<Cow<'a, str>>>(name: Name) -> Result<Id<'a>, ()> { let name = name.into(); match name.chars().next() { Some(c) if c.is_ascii_alphabetic() || c == '_' => {} _ => return Err(()), } if !name.chars().all(|c| c.is_ascii_alphanumeric() || c == '_') { return Err(()); } Ok(Id { name }) } pub fn as_slice(&'a self) -> &'a str { &*self.name } pub fn name(self) -> Cow<'a, str> { self.name } } /// Each instance of a type that implements `Label<C>` maps to a /// unique identifier with respect to `C`, which is used to identify /// it in the generated .dot file. They can also provide more /// elaborate (and non-unique) label text that is used in the graphviz /// rendered output. /// The graph instance is responsible for providing the DOT compatible /// identifiers for the nodes and (optionally) rendered labels for the nodes and /// edges, as well as an identifier for the graph itself. pub trait Labeller<'a> { type Node; type Edge; /// Must return a DOT compatible identifier naming the graph. fn graph_id(&'a self) -> Id<'a>; /// Maps `n` to a unique identifier with respect to `self`. The /// implementor is responsible for ensuring that the returned name /// is a valid DOT identifier. fn node_id(&'a self, n: &Self::Node) -> Id<'a>; /// Maps `n` to one of the [graphviz `shape` names][1]. If `None` /// is returned, no `shape` attribute is specified. /// /// [1]: http://www.graphviz.org/content/node-shapes fn node_shape(&'a self, _node: &Self::Node) -> Option<LabelText<'a>> { None } /// Maps `n` to a label that will be used in the rendered output. /// The label need not be unique, and may be the empty string; the /// default is just the output from `node_id`. fn node_label(&'a self, n: &Self::Node) -> LabelText<'a> { LabelStr(self.node_id(n).name) } /// Maps `e` to a label that will be used in the rendered output. /// The label need not be unique, and may be the empty string; the /// default is in fact the empty string. fn edge_label(&'a self, _e: &Self::Edge) -> LabelText<'a> { LabelStr("".into()) } /// Maps `n` to a style that will be used in the rendered output. fn node_style(&'a self, _n: &Self::Node) -> Style { Style::None } /// Maps `e` to a style that will be used in the rendered output. fn edge_style(&'a self, _e: &Self::Edge) -> Style { Style::None } } /// Escape tags in such a way that it is suitable for inclusion in a /// Graphviz HTML label. pub fn escape_html(s: &str) -> String { s.replace("&", "&").replace("\"", """).replace("<", "<").replace(">", ">") } impl<'a> LabelText<'a> { pub fn label<S: Into<Cow<'a, str>>>(s: S) -> LabelText<'a> { LabelStr(s.into()) } pub fn escaped<S: Into<Cow<'a, str>>>(s: S) -> LabelText<'a> { EscStr(s.into()) } pub fn html<S: Into<Cow<'a, str>>>(s: S) -> LabelText<'a> { HtmlStr(s.into()) } fn escape_char<F>(c: char, mut f: F) where F: FnMut(char), { match c { // not escaping \\, since Graphviz escString needs to // interpret backslashes; see EscStr above. '\\' => f(c), _ => { for c in c.escape_default() { f(c) } } } } fn escape_str(s: &str) -> String { let mut out = String::with_capacity(s.len()); for c in s.chars() { LabelText::escape_char(c, |c| out.push(c)); } out } /// Renders text as string suitable for a label in a .dot file. /// This includes quotes or suitable delimiters. pub fn to_dot_string(&self) -> String { match *self { LabelStr(ref s) => format!("\"{}\"", s.escape_default()), EscStr(ref s) => format!("\"{}\"", LabelText::escape_str(&s)), HtmlStr(ref s) => format!("<{}>", s), } } /// Decomposes content into string suitable for making EscStr that /// yields same content as self. The result obeys the law /// render(`lt`) == render(`EscStr(lt.pre_escaped_content())`) for /// all `lt: LabelText`. fn pre_escaped_content(self) -> Cow<'a, str> { match self { EscStr(s) => s, LabelStr(s) => { if s.contains('\\') { (&*s).escape_default().to_string().into() } else { s } } HtmlStr(s) => s, } } /// Puts `prefix` on a line above this label, with a blank line separator. pub fn prefix_line(self, prefix: LabelText<'_>) -> LabelText<'static> { prefix.suffix_line(self) } /// Puts `suffix` on a line below this label, with a blank line separator. pub fn suffix_line(self, suffix: LabelText<'_>) -> LabelText<'static> { let mut prefix = self.pre_escaped_content().into_owned(); let suffix = suffix.pre_escaped_content(); prefix.push_str(r"\n\n"); prefix.push_str(&suffix); EscStr(prefix.into()) } } pub type Nodes<'a, N> = Cow<'a, [N]>; pub type Edges<'a, E> = Cow<'a, [E]>; // (The type parameters in GraphWalk should be associated items, // when/if Rust supports such.) /// GraphWalk is an abstraction over a directed graph = (nodes,edges) /// made up of node handles `N` and edge handles `E`, where each `E` /// can be mapped to its source and target nodes. /// /// The lifetime parameter `'a` is exposed in this trait (rather than /// introduced as a generic parameter on each method declaration) so /// that a client impl can choose `N` and `E` that have substructure /// that is bound by the self lifetime `'a`. /// /// The `nodes` and `edges` method each return instantiations of /// `Cow<[T]>` to leave implementors the freedom to create /// entirely new vectors or to pass back slices into internally owned /// vectors. pub trait GraphWalk<'a> { type Node: Clone; type Edge: Clone; /// Returns all the nodes in this graph. fn nodes(&'a self) -> Nodes<'a, Self::Node>; /// Returns all of the edges in this graph. fn edges(&'a self) -> Edges<'a, Self::Edge>; /// The source node for `edge`. fn source(&'a self, edge: &Self::Edge) -> Self::Node; /// The target node for `edge`. fn target(&'a self, edge: &Self::Edge) -> Self::Node; } #[derive(Copy, Clone, PartialEq, Eq, Debug)] pub enum RenderOption { NoEdgeLabels, NoNodeLabels, NoEdgeStyles, NoNodeStyles, Monospace, } /// Returns vec holding all the default render options. pub fn default_options() -> Vec<RenderOption> { vec![] } /// Renders directed graph `g` into the writer `w` in DOT syntax. /// (Simple wrapper around `render_opts` that passes a default set of options.) pub fn render<'a, N, E, G, W>(g: &'a G, w: &mut W) -> io::Result<()> where N: Clone + 'a, E: Clone + 'a, G: Labeller<'a, Node = N, Edge = E> + GraphWalk<'a, Node = N, Edge = E>, W: Write, { render_opts(g, w, &[]) } /// Renders directed graph `g` into the writer `w` in DOT syntax. /// (Main entry point for the library.) pub fn render_opts<'a, N, E, G, W>(g: &'a G, w: &mut W, options: &[RenderOption]) -> io::Result<()> where N: Clone + 'a, E: Clone + 'a, G: Labeller<'a, Node = N, Edge = E> + GraphWalk<'a, Node = N, Edge = E>, W: Write, { writeln!(w, "digraph {} {{", g.graph_id().as_slice())?; // Global graph properties if options.contains(&RenderOption::Monospace) { writeln!(w, r#" graph[fontname="monospace"];"#)?; writeln!(w, r#" node[fontname="monospace"];"#)?; writeln!(w, r#" edge[fontname="monospace"];"#)?; } for n in g.nodes().iter() { write!(w, " ")?; let id = g.node_id(n); let escaped = &g.node_label(n).to_dot_string(); let mut text = Vec::new(); write!(text, "{}", id.as_slice()).unwrap(); if !options.contains(&RenderOption::NoNodeLabels) { write!(text, "[label={}]", escaped).unwrap(); } let style = g.node_style(n); if !options.contains(&RenderOption::NoNodeStyles) && style != Style::None { write!(text, "[style=\"{}\"]", style.as_slice()).unwrap(); } if let Some(s) = g.node_shape(n) { write!(text, "[shape={}]", &s.to_dot_string()).unwrap(); } writeln!(text, ";").unwrap(); w.write_all(&text[..])?; } for e in g.edges().iter() { let escaped_label = &g.edge_label(e).to_dot_string(); write!(w, " ")?; let source = g.source(e); let target = g.target(e); let source_id = g.node_id(&source); let target_id = g.node_id(&target); let mut text = Vec::new(); write!(text, "{} -> {}", source_id.as_slice(), target_id.as_slice()).unwrap(); if !options.contains(&RenderOption::NoEdgeLabels) { write!(text, "[label={}]", escaped_label).unwrap(); } let style = g.edge_style(e); if !options.contains(&RenderOption::NoEdgeStyles) && style != Style::None { write!(text, "[style=\"{}\"]", style.as_slice()).unwrap(); } writeln!(text, ";").unwrap(); w.write_all(&text[..])?; } writeln!(w, "}}") } #[cfg(test)] mod tests;