rustc_ap_graphviz/lib.rs
1//! Generate files suitable for use with [Graphviz](http://www.graphviz.org/)
2//!
3//! The `render` function generates output (e.g., an `output.dot` file) for
4//! use with [Graphviz](http://www.graphviz.org/) by walking a labeled
5//! graph. (Graphviz can then automatically lay out the nodes and edges
6//! of the graph, and also optionally render the graph as an image or
7//! other [output formats](
8//! http://www.graphviz.org/content/output-formats), such as SVG.)
9//!
10//! Rather than impose some particular graph data structure on clients,
11//! this library exposes two traits that clients can implement on their
12//! own structs before handing them over to the rendering function.
13//!
14//! Note: This library does not yet provide access to the full
15//! expressiveness of the [DOT language](
16//! http://www.graphviz.org/doc/info/lang.html). For example, there are
17//! many [attributes](http://www.graphviz.org/content/attrs) related to
18//! providing layout hints (e.g., left-to-right versus top-down, which
19//! algorithm to use, etc). The current intention of this library is to
20//! emit a human-readable .dot file with very regular structure suitable
21//! for easy post-processing.
22//!
23//! # Examples
24//!
25//! The first example uses a very simple graph representation: a list of
26//! pairs of ints, representing the edges (the node set is implicit).
27//! Each node label is derived directly from the int representing the node,
28//! while the edge labels are all empty strings.
29//!
30//! This example also illustrates how to use `Cow<[T]>` to return
31//! an owned vector or a borrowed slice as appropriate: we construct the
32//! node vector from scratch, but borrow the edge list (rather than
33//! constructing a copy of all the edges from scratch).
34//!
35//! The output from this example renders five nodes, with the first four
36//! forming a diamond-shaped acyclic graph and then pointing to the fifth
37//! which is cyclic.
38//!
39//! ```rust
40//! #![feature(rustc_private)]
41//!
42//! use std::io::Write;
43//! use graphviz as dot;
44//!
45//! type Nd = isize;
46//! type Ed = (isize,isize);
47//! struct Edges(Vec<Ed>);
48//!
49//! pub fn render_to<W: Write>(output: &mut W) {
50//! let edges = Edges(vec![(0,1), (0,2), (1,3), (2,3), (3,4), (4,4)]);
51//! dot::render(&edges, output).unwrap()
52//! }
53//!
54//! impl<'a> dot::Labeller<'a> for Edges {
55//! type Node = Nd;
56//! type Edge = Ed;
57//! fn graph_id(&'a self) -> dot::Id<'a> { dot::Id::new("example1").unwrap() }
58//!
59//! fn node_id(&'a self, n: &Nd) -> dot::Id<'a> {
60//! dot::Id::new(format!("N{}", *n)).unwrap()
61//! }
62//! }
63//!
64//! impl<'a> dot::GraphWalk<'a> for Edges {
65//! type Node = Nd;
66//! type Edge = Ed;
67//! fn nodes(&self) -> dot::Nodes<'a,Nd> {
68//! // (assumes that |N| \approxeq |E|)
69//! let &Edges(ref v) = self;
70//! let mut nodes = Vec::with_capacity(v.len());
71//! for &(s,t) in v {
72//! nodes.push(s); nodes.push(t);
73//! }
74//! nodes.sort();
75//! nodes.dedup();
76//! nodes.into()
77//! }
78//!
79//! fn edges(&'a self) -> dot::Edges<'a,Ed> {
80//! let &Edges(ref edges) = self;
81//! (&edges[..]).into()
82//! }
83//!
84//! fn source(&self, e: &Ed) -> Nd { let &(s,_) = e; s }
85//!
86//! fn target(&self, e: &Ed) -> Nd { let &(_,t) = e; t }
87//! }
88//!
89//! # pub fn main() { render_to(&mut Vec::new()) }
90//! ```
91//!
92//! ```no_run
93//! # pub fn render_to<W:std::io::Write>(output: &mut W) { unimplemented!() }
94//! pub fn main() {
95//! use std::fs::File;
96//! let mut f = File::create("example1.dot").unwrap();
97//! render_to(&mut f)
98//! }
99//! ```
100//!
101//! Output from first example (in `example1.dot`):
102//!
103//! ```dot
104//! digraph example1 {
105//! N0[label="N0"];
106//! N1[label="N1"];
107//! N2[label="N2"];
108//! N3[label="N3"];
109//! N4[label="N4"];
110//! N0 -> N1[label=""];
111//! N0 -> N2[label=""];
112//! N1 -> N3[label=""];
113//! N2 -> N3[label=""];
114//! N3 -> N4[label=""];
115//! N4 -> N4[label=""];
116//! }
117//! ```
118//!
119//! The second example illustrates using `node_label` and `edge_label` to
120//! add labels to the nodes and edges in the rendered graph. The graph
121//! here carries both `nodes` (the label text to use for rendering a
122//! particular node), and `edges` (again a list of `(source,target)`
123//! indices).
124//!
125//! This example also illustrates how to use a type (in this case the edge
126//! type) that shares substructure with the graph: the edge type here is a
127//! direct reference to the `(source,target)` pair stored in the graph's
128//! internal vector (rather than passing around a copy of the pair
129//! itself). Note that this implies that `fn edges(&'a self)` must
130//! construct a fresh `Vec<&'a (usize,usize)>` from the `Vec<(usize,usize)>`
131//! edges stored in `self`.
132//!
133//! Since both the set of nodes and the set of edges are always
134//! constructed from scratch via iterators, we use the `collect()` method
135//! from the `Iterator` trait to collect the nodes and edges into freshly
136//! constructed growable `Vec` values (rather than using `Cow` as in the
137//! first example above).
138//!
139//! The output from this example renders four nodes that make up the
140//! Hasse-diagram for the subsets of the set `{x, y}`. Each edge is
141//! labeled with the ⊆ character (specified using the HTML character
142//! entity `&sube`).
143//!
144//! ```rust
145//! #![feature(rustc_private)]
146//!
147//! use std::io::Write;
148//! use graphviz as dot;
149//!
150//! type Nd = usize;
151//! type Ed<'a> = &'a (usize, usize);
152//! struct Graph { nodes: Vec<&'static str>, edges: Vec<(usize,usize)> }
153//!
154//! pub fn render_to<W: Write>(output: &mut W) {
155//! let nodes = vec!["{x,y}","{x}","{y}","{}"];
156//! let edges = vec![(0,1), (0,2), (1,3), (2,3)];
157//! let graph = Graph { nodes: nodes, edges: edges };
158//!
159//! dot::render(&graph, output).unwrap()
160//! }
161//!
162//! impl<'a> dot::Labeller<'a> for Graph {
163//! type Node = Nd;
164//! type Edge = Ed<'a>;
165//! fn graph_id(&'a self) -> dot::Id<'a> { dot::Id::new("example2").unwrap() }
166//! fn node_id(&'a self, n: &Nd) -> dot::Id<'a> {
167//! dot::Id::new(format!("N{}", n)).unwrap()
168//! }
169//! fn node_label<'b>(&'b self, n: &Nd) -> dot::LabelText<'b> {
170//! dot::LabelText::LabelStr(self.nodes[*n].into())
171//! }
172//! fn edge_label<'b>(&'b self, _: &Ed) -> dot::LabelText<'b> {
173//! dot::LabelText::LabelStr("⊆".into())
174//! }
175//! }
176//!
177//! impl<'a> dot::GraphWalk<'a> for Graph {
178//! type Node = Nd;
179//! type Edge = Ed<'a>;
180//! fn nodes(&self) -> dot::Nodes<'a,Nd> { (0..self.nodes.len()).collect() }
181//! fn edges(&'a self) -> dot::Edges<'a,Ed<'a>> { self.edges.iter().collect() }
182//! fn source(&self, e: &Ed) -> Nd { let & &(s,_) = e; s }
183//! fn target(&self, e: &Ed) -> Nd { let & &(_,t) = e; t }
184//! }
185//!
186//! # pub fn main() { render_to(&mut Vec::new()) }
187//! ```
188//!
189//! ```no_run
190//! # pub fn render_to<W:std::io::Write>(output: &mut W) { unimplemented!() }
191//! pub fn main() {
192//! use std::fs::File;
193//! let mut f = File::create("example2.dot").unwrap();
194//! render_to(&mut f)
195//! }
196//! ```
197//!
198//! The third example is similar to the second, except now each node and
199//! edge now carries a reference to the string label for each node as well
200//! as that node's index. (This is another illustration of how to share
201//! structure with the graph itself, and why one might want to do so.)
202//!
203//! The output from this example is the same as the second example: the
204//! Hasse-diagram for the subsets of the set `{x, y}`.
205//!
206//! ```rust
207//! #![feature(rustc_private)]
208//!
209//! use std::io::Write;
210//! use graphviz as dot;
211//!
212//! type Nd<'a> = (usize, &'a str);
213//! type Ed<'a> = (Nd<'a>, Nd<'a>);
214//! struct Graph { nodes: Vec<&'static str>, edges: Vec<(usize,usize)> }
215//!
216//! pub fn render_to<W: Write>(output: &mut W) {
217//! let nodes = vec!["{x,y}","{x}","{y}","{}"];
218//! let edges = vec![(0,1), (0,2), (1,3), (2,3)];
219//! let graph = Graph { nodes: nodes, edges: edges };
220//!
221//! dot::render(&graph, output).unwrap()
222//! }
223//!
224//! impl<'a> dot::Labeller<'a> for Graph {
225//! type Node = Nd<'a>;
226//! type Edge = Ed<'a>;
227//! fn graph_id(&'a self) -> dot::Id<'a> { dot::Id::new("example3").unwrap() }
228//! fn node_id(&'a self, n: &Nd<'a>) -> dot::Id<'a> {
229//! dot::Id::new(format!("N{}", n.0)).unwrap()
230//! }
231//! fn node_label<'b>(&'b self, n: &Nd<'b>) -> dot::LabelText<'b> {
232//! let &(i, _) = n;
233//! dot::LabelText::LabelStr(self.nodes[i].into())
234//! }
235//! fn edge_label<'b>(&'b self, _: &Ed<'b>) -> dot::LabelText<'b> {
236//! dot::LabelText::LabelStr("⊆".into())
237//! }
238//! }
239//!
240//! impl<'a> dot::GraphWalk<'a> for Graph {
241//! type Node = Nd<'a>;
242//! type Edge = Ed<'a>;
243//! fn nodes(&'a self) -> dot::Nodes<'a,Nd<'a>> {
244//! self.nodes.iter().map(|s| &s[..]).enumerate().collect()
245//! }
246//! fn edges(&'a self) -> dot::Edges<'a,Ed<'a>> {
247//! self.edges.iter()
248//! .map(|&(i,j)|((i, &self.nodes[i][..]),
249//! (j, &self.nodes[j][..])))
250//! .collect()
251//! }
252//! fn source(&self, e: &Ed<'a>) -> Nd<'a> { let &(s,_) = e; s }
253//! fn target(&self, e: &Ed<'a>) -> Nd<'a> { let &(_,t) = e; t }
254//! }
255//!
256//! # pub fn main() { render_to(&mut Vec::new()) }
257//! ```
258//!
259//! ```no_run
260//! # pub fn render_to<W:std::io::Write>(output: &mut W) { unimplemented!() }
261//! pub fn main() {
262//! use std::fs::File;
263//! let mut f = File::create("example3.dot").unwrap();
264//! render_to(&mut f)
265//! }
266//! ```
267//!
268//! # References
269//!
270//! * [Graphviz](http://www.graphviz.org/)
271//!
272//! * [DOT language](http://www.graphviz.org/doc/info/lang.html)
273
274#![doc(
275 html_root_url = "https://doc.rust-lang.org/nightly/",
276 test(attr(allow(unused_variables), deny(warnings)))
277)]
278#![feature(rustc_private, nll)]
279
280use LabelText::*;
281
282use std::borrow::Cow;
283use std::io;
284use std::io::prelude::*;
285
286/// The text for a graphviz label on a node or edge.
287pub enum LabelText<'a> {
288 /// This kind of label preserves the text directly as is.
289 ///
290 /// Occurrences of backslashes (`\`) are escaped, and thus appear
291 /// as backslashes in the rendered label.
292 LabelStr(Cow<'a, str>),
293
294 /// This kind of label uses the graphviz label escString type:
295 /// <http://www.graphviz.org/content/attrs#kescString>
296 ///
297 /// Occurrences of backslashes (`\`) are not escaped; instead they
298 /// are interpreted as initiating an escString escape sequence.
299 ///
300 /// Escape sequences of particular interest: in addition to `\n`
301 /// to break a line (centering the line preceding the `\n`), there
302 /// are also the escape sequences `\l` which left-justifies the
303 /// preceding line and `\r` which right-justifies it.
304 EscStr(Cow<'a, str>),
305
306 /// This uses a graphviz [HTML string label][html]. The string is
307 /// printed exactly as given, but between `<` and `>`. **No
308 /// escaping is performed.**
309 ///
310 /// [html]: http://www.graphviz.org/content/node-shapes#html
311 HtmlStr(Cow<'a, str>),
312}
313
314/// The style for a node or edge.
315/// See <http://www.graphviz.org/doc/info/attrs.html#k:style> for descriptions.
316/// Note that some of these are not valid for edges.
317#[derive(Copy, Clone, PartialEq, Eq, Debug)]
318pub enum Style {
319 None,
320 Solid,
321 Dashed,
322 Dotted,
323 Bold,
324 Rounded,
325 Diagonals,
326 Filled,
327 Striped,
328 Wedged,
329}
330
331impl Style {
332 pub fn as_slice(self) -> &'static str {
333 match self {
334 Style::None => "",
335 Style::Solid => "solid",
336 Style::Dashed => "dashed",
337 Style::Dotted => "dotted",
338 Style::Bold => "bold",
339 Style::Rounded => "rounded",
340 Style::Diagonals => "diagonals",
341 Style::Filled => "filled",
342 Style::Striped => "striped",
343 Style::Wedged => "wedged",
344 }
345 }
346}
347
348// There is a tension in the design of the labelling API.
349//
350// For example, I considered making a `Labeller<T>` trait that
351// provides labels for `T`, and then making the graph type `G`
352// implement `Labeller<Node>` and `Labeller<Edge>`. However, this is
353// not possible without functional dependencies. (One could work
354// around that, but I did not explore that avenue heavily.)
355//
356// Another approach that I actually used for a while was to make a
357// `Label<Context>` trait that is implemented by the client-specific
358// Node and Edge types (as well as an implementation on Graph itself
359// for the overall name for the graph). The main disadvantage of this
360// second approach (compared to having the `G` type parameter
361// implement a Labelling service) that I have encountered is that it
362// makes it impossible to use types outside of the current crate
363// directly as Nodes/Edges; you need to wrap them in newtype'd
364// structs. See e.g., the `No` and `Ed` structs in the examples. (In
365// practice clients using a graph in some other crate would need to
366// provide some sort of adapter shim over the graph anyway to
367// interface with this library).
368//
369// Another approach would be to make a single `Labeller<N,E>` trait
370// that provides three methods (graph_label, node_label, edge_label),
371// and then make `G` implement `Labeller<N,E>`. At first this did not
372// appeal to me, since I had thought I would need separate methods on
373// each data variant for dot-internal identifiers versus user-visible
374// labels. However, the identifier/label distinction only arises for
375// nodes; graphs themselves only have identifiers, and edges only have
376// labels.
377//
378// So in the end I decided to use the third approach described above.
379
380/// `Id` is a Graphviz `ID`.
381pub struct Id<'a> {
382 name: Cow<'a, str>,
383}
384
385impl<'a> Id<'a> {
386 /// Creates an `Id` named `name`.
387 ///
388 /// The caller must ensure that the input conforms to an
389 /// identifier format: it must be a non-empty string made up of
390 /// alphanumeric or underscore characters, not beginning with a
391 /// digit (i.e., the regular expression `[a-zA-Z_][a-zA-Z_0-9]*`).
392 ///
393 /// (Note: this format is a strict subset of the `ID` format
394 /// defined by the DOT language. This function may change in the
395 /// future to accept a broader subset, or the entirety, of DOT's
396 /// `ID` format.)
397 ///
398 /// Passing an invalid string (containing spaces, brackets,
399 /// quotes, ...) will return an empty `Err` value.
400 pub fn new<Name: Into<Cow<'a, str>>>(name: Name) -> Result<Id<'a>, ()> {
401 let name = name.into();
402 match name.chars().next() {
403 Some(c) if c.is_ascii_alphabetic() || c == '_' => {}
404 _ => return Err(()),
405 }
406 if !name.chars().all(|c| c.is_ascii_alphanumeric() || c == '_') {
407 return Err(());
408 }
409
410 Ok(Id { name })
411 }
412
413 pub fn as_slice(&'a self) -> &'a str {
414 &*self.name
415 }
416
417 pub fn name(self) -> Cow<'a, str> {
418 self.name
419 }
420}
421
422/// Each instance of a type that implements `Label<C>` maps to a
423/// unique identifier with respect to `C`, which is used to identify
424/// it in the generated .dot file. They can also provide more
425/// elaborate (and non-unique) label text that is used in the graphviz
426/// rendered output.
427
428/// The graph instance is responsible for providing the DOT compatible
429/// identifiers for the nodes and (optionally) rendered labels for the nodes and
430/// edges, as well as an identifier for the graph itself.
431pub trait Labeller<'a> {
432 type Node;
433 type Edge;
434
435 /// Must return a DOT compatible identifier naming the graph.
436 fn graph_id(&'a self) -> Id<'a>;
437
438 /// Maps `n` to a unique identifier with respect to `self`. The
439 /// implementor is responsible for ensuring that the returned name
440 /// is a valid DOT identifier.
441 fn node_id(&'a self, n: &Self::Node) -> Id<'a>;
442
443 /// Maps `n` to one of the [graphviz `shape` names][1]. If `None`
444 /// is returned, no `shape` attribute is specified.
445 ///
446 /// [1]: http://www.graphviz.org/content/node-shapes
447 fn node_shape(&'a self, _node: &Self::Node) -> Option<LabelText<'a>> {
448 None
449 }
450
451 /// Maps `n` to a label that will be used in the rendered output.
452 /// The label need not be unique, and may be the empty string; the
453 /// default is just the output from `node_id`.
454 fn node_label(&'a self, n: &Self::Node) -> LabelText<'a> {
455 LabelStr(self.node_id(n).name)
456 }
457
458 /// Maps `e` to a label that will be used in the rendered output.
459 /// The label need not be unique, and may be the empty string; the
460 /// default is in fact the empty string.
461 fn edge_label(&'a self, _e: &Self::Edge) -> LabelText<'a> {
462 LabelStr("".into())
463 }
464
465 /// Maps `n` to a style that will be used in the rendered output.
466 fn node_style(&'a self, _n: &Self::Node) -> Style {
467 Style::None
468 }
469
470 /// Maps `e` to a style that will be used in the rendered output.
471 fn edge_style(&'a self, _e: &Self::Edge) -> Style {
472 Style::None
473 }
474}
475
476/// Escape tags in such a way that it is suitable for inclusion in a
477/// Graphviz HTML label.
478pub fn escape_html(s: &str) -> String {
479 s.replace("&", "&").replace("\"", """).replace("<", "<").replace(">", ">")
480}
481
482impl<'a> LabelText<'a> {
483 pub fn label<S: Into<Cow<'a, str>>>(s: S) -> LabelText<'a> {
484 LabelStr(s.into())
485 }
486
487 pub fn escaped<S: Into<Cow<'a, str>>>(s: S) -> LabelText<'a> {
488 EscStr(s.into())
489 }
490
491 pub fn html<S: Into<Cow<'a, str>>>(s: S) -> LabelText<'a> {
492 HtmlStr(s.into())
493 }
494
495 fn escape_char<F>(c: char, mut f: F)
496 where
497 F: FnMut(char),
498 {
499 match c {
500 // not escaping \\, since Graphviz escString needs to
501 // interpret backslashes; see EscStr above.
502 '\\' => f(c),
503 _ => {
504 for c in c.escape_default() {
505 f(c)
506 }
507 }
508 }
509 }
510 fn escape_str(s: &str) -> String {
511 let mut out = String::with_capacity(s.len());
512 for c in s.chars() {
513 LabelText::escape_char(c, |c| out.push(c));
514 }
515 out
516 }
517
518 /// Renders text as string suitable for a label in a .dot file.
519 /// This includes quotes or suitable delimiters.
520 pub fn to_dot_string(&self) -> String {
521 match *self {
522 LabelStr(ref s) => format!("\"{}\"", s.escape_default()),
523 EscStr(ref s) => format!("\"{}\"", LabelText::escape_str(&s)),
524 HtmlStr(ref s) => format!("<{}>", s),
525 }
526 }
527
528 /// Decomposes content into string suitable for making EscStr that
529 /// yields same content as self. The result obeys the law
530 /// render(`lt`) == render(`EscStr(lt.pre_escaped_content())`) for
531 /// all `lt: LabelText`.
532 fn pre_escaped_content(self) -> Cow<'a, str> {
533 match self {
534 EscStr(s) => s,
535 LabelStr(s) => {
536 if s.contains('\\') {
537 (&*s).escape_default().to_string().into()
538 } else {
539 s
540 }
541 }
542 HtmlStr(s) => s,
543 }
544 }
545
546 /// Puts `prefix` on a line above this label, with a blank line separator.
547 pub fn prefix_line(self, prefix: LabelText<'_>) -> LabelText<'static> {
548 prefix.suffix_line(self)
549 }
550
551 /// Puts `suffix` on a line below this label, with a blank line separator.
552 pub fn suffix_line(self, suffix: LabelText<'_>) -> LabelText<'static> {
553 let mut prefix = self.pre_escaped_content().into_owned();
554 let suffix = suffix.pre_escaped_content();
555 prefix.push_str(r"\n\n");
556 prefix.push_str(&suffix);
557 EscStr(prefix.into())
558 }
559}
560
561pub type Nodes<'a, N> = Cow<'a, [N]>;
562pub type Edges<'a, E> = Cow<'a, [E]>;
563
564// (The type parameters in GraphWalk should be associated items,
565// when/if Rust supports such.)
566
567/// GraphWalk is an abstraction over a directed graph = (nodes,edges)
568/// made up of node handles `N` and edge handles `E`, where each `E`
569/// can be mapped to its source and target nodes.
570///
571/// The lifetime parameter `'a` is exposed in this trait (rather than
572/// introduced as a generic parameter on each method declaration) so
573/// that a client impl can choose `N` and `E` that have substructure
574/// that is bound by the self lifetime `'a`.
575///
576/// The `nodes` and `edges` method each return instantiations of
577/// `Cow<[T]>` to leave implementors the freedom to create
578/// entirely new vectors or to pass back slices into internally owned
579/// vectors.
580pub trait GraphWalk<'a> {
581 type Node: Clone;
582 type Edge: Clone;
583
584 /// Returns all the nodes in this graph.
585 fn nodes(&'a self) -> Nodes<'a, Self::Node>;
586 /// Returns all of the edges in this graph.
587 fn edges(&'a self) -> Edges<'a, Self::Edge>;
588 /// The source node for `edge`.
589 fn source(&'a self, edge: &Self::Edge) -> Self::Node;
590 /// The target node for `edge`.
591 fn target(&'a self, edge: &Self::Edge) -> Self::Node;
592}
593
594#[derive(Copy, Clone, PartialEq, Eq, Debug)]
595pub enum RenderOption {
596 NoEdgeLabels,
597 NoNodeLabels,
598 NoEdgeStyles,
599 NoNodeStyles,
600
601 Monospace,
602}
603
604/// Returns vec holding all the default render options.
605pub fn default_options() -> Vec<RenderOption> {
606 vec![]
607}
608
609/// Renders directed graph `g` into the writer `w` in DOT syntax.
610/// (Simple wrapper around `render_opts` that passes a default set of options.)
611pub fn render<'a, N, E, G, W>(g: &'a G, w: &mut W) -> io::Result<()>
612where
613 N: Clone + 'a,
614 E: Clone + 'a,
615 G: Labeller<'a, Node = N, Edge = E> + GraphWalk<'a, Node = N, Edge = E>,
616 W: Write,
617{
618 render_opts(g, w, &[])
619}
620
621/// Renders directed graph `g` into the writer `w` in DOT syntax.
622/// (Main entry point for the library.)
623pub fn render_opts<'a, N, E, G, W>(g: &'a G, w: &mut W, options: &[RenderOption]) -> io::Result<()>
624where
625 N: Clone + 'a,
626 E: Clone + 'a,
627 G: Labeller<'a, Node = N, Edge = E> + GraphWalk<'a, Node = N, Edge = E>,
628 W: Write,
629{
630 writeln!(w, "digraph {} {{", g.graph_id().as_slice())?;
631
632 // Global graph properties
633 if options.contains(&RenderOption::Monospace) {
634 writeln!(w, r#" graph[fontname="monospace"];"#)?;
635 writeln!(w, r#" node[fontname="monospace"];"#)?;
636 writeln!(w, r#" edge[fontname="monospace"];"#)?;
637 }
638
639 for n in g.nodes().iter() {
640 write!(w, " ")?;
641 let id = g.node_id(n);
642
643 let escaped = &g.node_label(n).to_dot_string();
644
645 let mut text = Vec::new();
646 write!(text, "{}", id.as_slice()).unwrap();
647
648 if !options.contains(&RenderOption::NoNodeLabels) {
649 write!(text, "[label={}]", escaped).unwrap();
650 }
651
652 let style = g.node_style(n);
653 if !options.contains(&RenderOption::NoNodeStyles) && style != Style::None {
654 write!(text, "[style=\"{}\"]", style.as_slice()).unwrap();
655 }
656
657 if let Some(s) = g.node_shape(n) {
658 write!(text, "[shape={}]", &s.to_dot_string()).unwrap();
659 }
660
661 writeln!(text, ";").unwrap();
662 w.write_all(&text[..])?;
663 }
664
665 for e in g.edges().iter() {
666 let escaped_label = &g.edge_label(e).to_dot_string();
667 write!(w, " ")?;
668 let source = g.source(e);
669 let target = g.target(e);
670 let source_id = g.node_id(&source);
671 let target_id = g.node_id(&target);
672
673 let mut text = Vec::new();
674 write!(text, "{} -> {}", source_id.as_slice(), target_id.as_slice()).unwrap();
675
676 if !options.contains(&RenderOption::NoEdgeLabels) {
677 write!(text, "[label={}]", escaped_label).unwrap();
678 }
679
680 let style = g.edge_style(e);
681 if !options.contains(&RenderOption::NoEdgeStyles) && style != Style::None {
682 write!(text, "[style=\"{}\"]", style.as_slice()).unwrap();
683 }
684
685 writeln!(text, ";").unwrap();
686 w.write_all(&text[..])?;
687 }
688
689 writeln!(w, "}}")
690}
691
692#[cfg(test)]
693mod tests;