1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
//! The Rust abstract syntax tree module.
//!
//! This module contains common structures forming the language AST.
//! Two main entities in the module are [`Item`] (which represents an AST element with
//! additional metadata), and [`ItemKind`] (which represents a concrete type and contains
//! information specific to the type of the item).
//!
//! Other module items worth mentioning:
//! - [`Ty`] and [`TyKind`]: A parsed Rust type.
//! - [`Expr`] and [`ExprKind`]: A parsed Rust expression.
//! - [`Pat`] and [`PatKind`]: A parsed Rust pattern. Patterns are often dual to expressions.
//! - [`Stmt`] and [`StmtKind`]: An executable action that does not return a value.
//! - [`FnDecl`], [`FnHeader`] and [`Param`]: Metadata associated with a function declaration.
//! - [`Generics`], [`GenericParam`], [`WhereClause`]: Metadata associated with generic parameters.
//! - [`EnumDef`] and [`Variant`]: Enum declaration.
//! - [`Lit`] and [`LitKind`]: Literal expressions.
//! - [`MacroDef`], [`MacStmtStyle`], [`MacCall`], [`MacDelimiter`]: Macro definition and invocation.
//! - [`Attribute`]: Metadata associated with item.
//! - [`UnOp`], [`BinOp`], and [`BinOpKind`]: Unary and binary operators.

pub use crate::util::parser::ExprPrecedence;
pub use GenericArgs::*;
pub use UnsafeSource::*;

use crate::ptr::P;
use crate::token::{self, CommentKind, DelimToken};
use crate::tokenstream::{DelimSpan, TokenStream, TokenTree};

use rustc_data_structures::stable_hasher::{HashStable, StableHasher};
use rustc_data_structures::sync::Lrc;
use rustc_data_structures::thin_vec::ThinVec;
use rustc_macros::HashStable_Generic;
use rustc_serialize::{self, Decoder, Encoder};
use rustc_span::source_map::{respan, Spanned};
use rustc_span::symbol::{kw, sym, Ident, Symbol};
use rustc_span::{Span, DUMMY_SP};

use std::cmp::Ordering;
use std::convert::TryFrom;
use std::fmt;
use std::iter;

#[cfg(test)]
mod tests;

/// A "Label" is an identifier of some point in sources,
/// e.g. in the following code:
///
/// ```rust
/// 'outer: loop {
///     break 'outer;
/// }
/// ```
///
/// `'outer` is a label.
#[derive(Clone, Encodable, Decodable, Copy, HashStable_Generic)]
pub struct Label {
    pub ident: Ident,
}

impl fmt::Debug for Label {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "label({:?})", self.ident)
    }
}

/// A "Lifetime" is an annotation of the scope in which variable
/// can be used, e.g. `'a` in `&'a i32`.
#[derive(Clone, Encodable, Decodable, Copy)]
pub struct Lifetime {
    pub id: NodeId,
    pub ident: Ident,
}

impl fmt::Debug for Lifetime {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "lifetime({}: {})", self.id, self)
    }
}

impl fmt::Display for Lifetime {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "{}", self.ident.name)
    }
}

/// A "Path" is essentially Rust's notion of a name.
///
/// It's represented as a sequence of identifiers,
/// along with a bunch of supporting information.
///
/// E.g., `std::cmp::PartialEq`.
#[derive(Clone, Encodable, Decodable, Debug)]
pub struct Path {
    pub span: Span,
    /// The segments in the path: the things separated by `::`.
    /// Global paths begin with `kw::PathRoot`.
    pub segments: Vec<PathSegment>,
}

impl PartialEq<Symbol> for Path {
    fn eq(&self, symbol: &Symbol) -> bool {
        self.segments.len() == 1 && { self.segments[0].ident.name == *symbol }
    }
}

impl<CTX> HashStable<CTX> for Path {
    fn hash_stable(&self, hcx: &mut CTX, hasher: &mut StableHasher) {
        self.segments.len().hash_stable(hcx, hasher);
        for segment in &self.segments {
            segment.ident.name.hash_stable(hcx, hasher);
        }
    }
}

impl Path {
    // Convert a span and an identifier to the corresponding
    // one-segment path.
    pub fn from_ident(ident: Ident) -> Path {
        Path { segments: vec![PathSegment::from_ident(ident)], span: ident.span }
    }

    pub fn is_global(&self) -> bool {
        !self.segments.is_empty() && self.segments[0].ident.name == kw::PathRoot
    }
}

/// A segment of a path: an identifier, an optional lifetime, and a set of types.
///
/// E.g., `std`, `String` or `Box<T>`.
#[derive(Clone, Encodable, Decodable, Debug)]
pub struct PathSegment {
    /// The identifier portion of this path segment.
    pub ident: Ident,

    pub id: NodeId,

    /// Type/lifetime parameters attached to this path. They come in
    /// two flavors: `Path<A,B,C>` and `Path(A,B) -> C`.
    /// `None` means that no parameter list is supplied (`Path`),
    /// `Some` means that parameter list is supplied (`Path<X, Y>`)
    /// but it can be empty (`Path<>`).
    /// `P` is used as a size optimization for the common case with no parameters.
    pub args: Option<P<GenericArgs>>,
}

impl PathSegment {
    pub fn from_ident(ident: Ident) -> Self {
        PathSegment { ident, id: DUMMY_NODE_ID, args: None }
    }
    pub fn path_root(span: Span) -> Self {
        PathSegment::from_ident(Ident::new(kw::PathRoot, span))
    }
}

/// The arguments of a path segment.
///
/// E.g., `<A, B>` as in `Foo<A, B>` or `(A, B)` as in `Foo(A, B)`.
#[derive(Clone, Encodable, Decodable, Debug)]
pub enum GenericArgs {
    /// The `<'a, A, B, C>` in `foo::bar::baz::<'a, A, B, C>`.
    AngleBracketed(AngleBracketedArgs),
    /// The `(A, B)` and `C` in `Foo(A, B) -> C`.
    Parenthesized(ParenthesizedArgs),
}

impl GenericArgs {
    pub fn is_parenthesized(&self) -> bool {
        match *self {
            Parenthesized(..) => true,
            _ => false,
        }
    }

    pub fn is_angle_bracketed(&self) -> bool {
        match *self {
            AngleBracketed(..) => true,
            _ => false,
        }
    }

    pub fn span(&self) -> Span {
        match *self {
            AngleBracketed(ref data) => data.span,
            Parenthesized(ref data) => data.span,
        }
    }
}

/// Concrete argument in the sequence of generic args.
#[derive(Clone, Encodable, Decodable, Debug)]
pub enum GenericArg {
    /// `'a` in `Foo<'a>`
    Lifetime(Lifetime),
    /// `Bar` in `Foo<Bar>`
    Type(P<Ty>),
    /// `1` in `Foo<1>`
    Const(AnonConst),
}

impl GenericArg {
    pub fn span(&self) -> Span {
        match self {
            GenericArg::Lifetime(lt) => lt.ident.span,
            GenericArg::Type(ty) => ty.span,
            GenericArg::Const(ct) => ct.value.span,
        }
    }
}

/// A path like `Foo<'a, T>`.
#[derive(Clone, Encodable, Decodable, Debug, Default)]
pub struct AngleBracketedArgs {
    /// The overall span.
    pub span: Span,
    /// The comma separated parts in the `<...>`.
    pub args: Vec<AngleBracketedArg>,
}

/// Either an argument for a parameter e.g., `'a`, `Vec<u8>`, `0`,
/// or a constraint on an associated item, e.g., `Item = String` or `Item: Bound`.
#[derive(Clone, Encodable, Decodable, Debug)]
pub enum AngleBracketedArg {
    /// Argument for a generic parameter.
    Arg(GenericArg),
    /// Constraint for an associated item.
    Constraint(AssocTyConstraint),
}

impl Into<Option<P<GenericArgs>>> for AngleBracketedArgs {
    fn into(self) -> Option<P<GenericArgs>> {
        Some(P(GenericArgs::AngleBracketed(self)))
    }
}

impl Into<Option<P<GenericArgs>>> for ParenthesizedArgs {
    fn into(self) -> Option<P<GenericArgs>> {
        Some(P(GenericArgs::Parenthesized(self)))
    }
}

/// A path like `Foo(A, B) -> C`.
#[derive(Clone, Encodable, Decodable, Debug)]
pub struct ParenthesizedArgs {
    /// Overall span
    pub span: Span,

    /// `(A, B)`
    pub inputs: Vec<P<Ty>>,

    /// `C`
    pub output: FnRetTy,
}

impl ParenthesizedArgs {
    pub fn as_angle_bracketed_args(&self) -> AngleBracketedArgs {
        let args = self
            .inputs
            .iter()
            .cloned()
            .map(|input| AngleBracketedArg::Arg(GenericArg::Type(input)))
            .collect();
        AngleBracketedArgs { span: self.span, args }
    }
}

pub use crate::node_id::{NodeId, CRATE_NODE_ID, DUMMY_NODE_ID};

/// A modifier on a bound, e.g., `?Sized` or `?const Trait`.
///
/// Negative bounds should also be handled here.
#[derive(Copy, Clone, PartialEq, Eq, Encodable, Decodable, Debug)]
pub enum TraitBoundModifier {
    /// No modifiers
    None,

    /// `?Trait`
    Maybe,

    /// `?const Trait`
    MaybeConst,

    /// `?const ?Trait`
    //
    // This parses but will be rejected during AST validation.
    MaybeConstMaybe,
}

/// The AST represents all type param bounds as types.
/// `typeck::collect::compute_bounds` matches these against
/// the "special" built-in traits (see `middle::lang_items`) and
/// detects `Copy`, `Send` and `Sync`.
#[derive(Clone, Encodable, Decodable, Debug)]
pub enum GenericBound {
    Trait(PolyTraitRef, TraitBoundModifier),
    Outlives(Lifetime),
}

impl GenericBound {
    pub fn span(&self) -> Span {
        match self {
            GenericBound::Trait(ref t, ..) => t.span,
            GenericBound::Outlives(ref l) => l.ident.span,
        }
    }
}

pub type GenericBounds = Vec<GenericBound>;

/// Specifies the enforced ordering for generic parameters. In the future,
/// if we wanted to relax this order, we could override `PartialEq` and
/// `PartialOrd`, to allow the kinds to be unordered.
#[derive(Hash, Clone, Copy)]
pub enum ParamKindOrd {
    Lifetime,
    Type,
    // `unordered` is only `true` if `sess.has_features().const_generics`
    // is active. Specifically, if it's only `min_const_generics`, it will still require
    // ordering consts after types.
    Const { unordered: bool },
}

impl Ord for ParamKindOrd {
    fn cmp(&self, other: &Self) -> Ordering {
        use ParamKindOrd::*;
        let to_int = |v| match v {
            Lifetime => 0,
            Type | Const { unordered: true } => 1,
            // technically both consts should be ordered equally,
            // but only one is ever encountered at a time, so this is
            // fine.
            Const { unordered: false } => 2,
        };

        to_int(*self).cmp(&to_int(*other))
    }
}
impl PartialOrd for ParamKindOrd {
    fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
        Some(self.cmp(other))
    }
}
impl PartialEq for ParamKindOrd {
    fn eq(&self, other: &Self) -> bool {
        self.cmp(other) == Ordering::Equal
    }
}
impl Eq for ParamKindOrd {}

impl fmt::Display for ParamKindOrd {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        match self {
            ParamKindOrd::Lifetime => "lifetime".fmt(f),
            ParamKindOrd::Type => "type".fmt(f),
            ParamKindOrd::Const { .. } => "const".fmt(f),
        }
    }
}

#[derive(Clone, Encodable, Decodable, Debug)]
pub enum GenericParamKind {
    /// A lifetime definition (e.g., `'a: 'b + 'c + 'd`).
    Lifetime,
    Type {
        default: Option<P<Ty>>,
    },
    Const {
        ty: P<Ty>,
        /// Span of the `const` keyword.
        kw_span: Span,
    },
}

#[derive(Clone, Encodable, Decodable, Debug)]
pub struct GenericParam {
    pub id: NodeId,
    pub ident: Ident,
    pub attrs: AttrVec,
    pub bounds: GenericBounds,
    pub is_placeholder: bool,
    pub kind: GenericParamKind,
}

/// Represents lifetime, type and const parameters attached to a declaration of
/// a function, enum, trait, etc.
#[derive(Clone, Encodable, Decodable, Debug)]
pub struct Generics {
    pub params: Vec<GenericParam>,
    pub where_clause: WhereClause,
    pub span: Span,
}

impl Default for Generics {
    /// Creates an instance of `Generics`.
    fn default() -> Generics {
        Generics {
            params: Vec::new(),
            where_clause: WhereClause {
                has_where_token: false,
                predicates: Vec::new(),
                span: DUMMY_SP,
            },
            span: DUMMY_SP,
        }
    }
}

/// A where-clause in a definition.
#[derive(Clone, Encodable, Decodable, Debug)]
pub struct WhereClause {
    /// `true` if we ate a `where` token: this can happen
    /// if we parsed no predicates (e.g. `struct Foo where {}`).
    /// This allows us to accurately pretty-print
    /// in `nt_to_tokenstream`
    pub has_where_token: bool,
    pub predicates: Vec<WherePredicate>,
    pub span: Span,
}

/// A single predicate in a where-clause.
#[derive(Clone, Encodable, Decodable, Debug)]
pub enum WherePredicate {
    /// A type binding (e.g., `for<'c> Foo: Send + Clone + 'c`).
    BoundPredicate(WhereBoundPredicate),
    /// A lifetime predicate (e.g., `'a: 'b + 'c`).
    RegionPredicate(WhereRegionPredicate),
    /// An equality predicate (unsupported).
    EqPredicate(WhereEqPredicate),
}

impl WherePredicate {
    pub fn span(&self) -> Span {
        match self {
            &WherePredicate::BoundPredicate(ref p) => p.span,
            &WherePredicate::RegionPredicate(ref p) => p.span,
            &WherePredicate::EqPredicate(ref p) => p.span,
        }
    }
}

/// A type bound.
///
/// E.g., `for<'c> Foo: Send + Clone + 'c`.
#[derive(Clone, Encodable, Decodable, Debug)]
pub struct WhereBoundPredicate {
    pub span: Span,
    /// Any generics from a `for` binding.
    pub bound_generic_params: Vec<GenericParam>,
    /// The type being bounded.
    pub bounded_ty: P<Ty>,
    /// Trait and lifetime bounds (`Clone + Send + 'static`).
    pub bounds: GenericBounds,
}

/// A lifetime predicate.
///
/// E.g., `'a: 'b + 'c`.
#[derive(Clone, Encodable, Decodable, Debug)]
pub struct WhereRegionPredicate {
    pub span: Span,
    pub lifetime: Lifetime,
    pub bounds: GenericBounds,
}

/// An equality predicate (unsupported).
///
/// E.g., `T = int`.
#[derive(Clone, Encodable, Decodable, Debug)]
pub struct WhereEqPredicate {
    pub id: NodeId,
    pub span: Span,
    pub lhs_ty: P<Ty>,
    pub rhs_ty: P<Ty>,
}

#[derive(Clone, Encodable, Decodable, Debug)]
pub struct Crate {
    pub module: Mod,
    pub attrs: Vec<Attribute>,
    pub span: Span,
    /// The order of items in the HIR is unrelated to the order of
    /// items in the AST. However, we generate proc macro harnesses
    /// based on the AST order, and later refer to these harnesses
    /// from the HIR. This field keeps track of the order in which
    /// we generated proc macros harnesses, so that we can map
    /// HIR proc macros items back to their harness items.
    pub proc_macros: Vec<NodeId>,
}

/// Possible values inside of compile-time attribute lists.
///
/// E.g., the '..' in `#[name(..)]`.
#[derive(Clone, Encodable, Decodable, Debug, HashStable_Generic)]
pub enum NestedMetaItem {
    /// A full MetaItem, for recursive meta items.
    MetaItem(MetaItem),
    /// A literal.
    ///
    /// E.g., `"foo"`, `64`, `true`.
    Literal(Lit),
}

/// A spanned compile-time attribute item.
///
/// E.g., `#[test]`, `#[derive(..)]`, `#[rustfmt::skip]` or `#[feature = "foo"]`.
#[derive(Clone, Encodable, Decodable, Debug, HashStable_Generic)]
pub struct MetaItem {
    pub path: Path,
    pub kind: MetaItemKind,
    pub span: Span,
}

/// A compile-time attribute item.
///
/// E.g., `#[test]`, `#[derive(..)]` or `#[feature = "foo"]`.
#[derive(Clone, Encodable, Decodable, Debug, HashStable_Generic)]
pub enum MetaItemKind {
    /// Word meta item.
    ///
    /// E.g., `test` as in `#[test]`.
    Word,
    /// List meta item.
    ///
    /// E.g., `derive(..)` as in `#[derive(..)]`.
    List(Vec<NestedMetaItem>),
    /// Name value meta item.
    ///
    /// E.g., `feature = "foo"` as in `#[feature = "foo"]`.
    NameValue(Lit),
}

/// A block (`{ .. }`).
///
/// E.g., `{ .. }` as in `fn foo() { .. }`.
#[derive(Clone, Encodable, Decodable, Debug)]
pub struct Block {
    /// The statements in the block.
    pub stmts: Vec<Stmt>,
    pub id: NodeId,
    /// Distinguishes between `unsafe { ... }` and `{ ... }`.
    pub rules: BlockCheckMode,
    pub span: Span,
}

/// A match pattern.
///
/// Patterns appear in match statements and some other contexts, such as `let` and `if let`.
#[derive(Clone, Encodable, Decodable, Debug)]
pub struct Pat {
    pub id: NodeId,
    pub kind: PatKind,
    pub span: Span,
    pub tokens: Option<TokenStream>,
}

impl Pat {
    /// Attempt reparsing the pattern as a type.
    /// This is intended for use by diagnostics.
    pub fn to_ty(&self) -> Option<P<Ty>> {
        let kind = match &self.kind {
            // In a type expression `_` is an inference variable.
            PatKind::Wild => TyKind::Infer,
            // An IDENT pattern with no binding mode would be valid as path to a type. E.g. `u32`.
            PatKind::Ident(BindingMode::ByValue(Mutability::Not), ident, None) => {
                TyKind::Path(None, Path::from_ident(*ident))
            }
            PatKind::Path(qself, path) => TyKind::Path(qself.clone(), path.clone()),
            PatKind::MacCall(mac) => TyKind::MacCall(mac.clone()),
            // `&mut? P` can be reinterpreted as `&mut? T` where `T` is `P` reparsed as a type.
            PatKind::Ref(pat, mutbl) => {
                pat.to_ty().map(|ty| TyKind::Rptr(None, MutTy { ty, mutbl: *mutbl }))?
            }
            // A slice/array pattern `[P]` can be reparsed as `[T]`, an unsized array,
            // when `P` can be reparsed as a type `T`.
            PatKind::Slice(pats) if pats.len() == 1 => pats[0].to_ty().map(TyKind::Slice)?,
            // A tuple pattern `(P0, .., Pn)` can be reparsed as `(T0, .., Tn)`
            // assuming `T0` to `Tn` are all syntactically valid as types.
            PatKind::Tuple(pats) => {
                let mut tys = Vec::with_capacity(pats.len());
                // FIXME(#48994) - could just be collected into an Option<Vec>
                for pat in pats {
                    tys.push(pat.to_ty()?);
                }
                TyKind::Tup(tys)
            }
            _ => return None,
        };

        Some(P(Ty { kind, id: self.id, span: self.span }))
    }

    /// Walk top-down and call `it` in each place where a pattern occurs
    /// starting with the root pattern `walk` is called on. If `it` returns
    /// false then we will descend no further but siblings will be processed.
    pub fn walk(&self, it: &mut impl FnMut(&Pat) -> bool) {
        if !it(self) {
            return;
        }

        match &self.kind {
            // Walk into the pattern associated with `Ident` (if any).
            PatKind::Ident(_, _, Some(p)) => p.walk(it),

            // Walk into each field of struct.
            PatKind::Struct(_, fields, _) => fields.iter().for_each(|field| field.pat.walk(it)),

            // Sequence of patterns.
            PatKind::TupleStruct(_, s) | PatKind::Tuple(s) | PatKind::Slice(s) | PatKind::Or(s) => {
                s.iter().for_each(|p| p.walk(it))
            }

            // Trivial wrappers over inner patterns.
            PatKind::Box(s) | PatKind::Ref(s, _) | PatKind::Paren(s) => s.walk(it),

            // These patterns do not contain subpatterns, skip.
            PatKind::Wild
            | PatKind::Rest
            | PatKind::Lit(_)
            | PatKind::Range(..)
            | PatKind::Ident(..)
            | PatKind::Path(..)
            | PatKind::MacCall(_) => {}
        }
    }

    /// Is this a `..` pattern?
    pub fn is_rest(&self) -> bool {
        match self.kind {
            PatKind::Rest => true,
            _ => false,
        }
    }
}

/// A single field in a struct pattern
///
/// Patterns like the fields of Foo `{ x, ref y, ref mut z }`
/// are treated the same as` x: x, y: ref y, z: ref mut z`,
/// except is_shorthand is true
#[derive(Clone, Encodable, Decodable, Debug)]
pub struct FieldPat {
    /// The identifier for the field
    pub ident: Ident,
    /// The pattern the field is destructured to
    pub pat: P<Pat>,
    pub is_shorthand: bool,
    pub attrs: AttrVec,
    pub id: NodeId,
    pub span: Span,
    pub is_placeholder: bool,
}

#[derive(Clone, PartialEq, Encodable, Decodable, Debug, Copy)]
pub enum BindingMode {
    ByRef(Mutability),
    ByValue(Mutability),
}

#[derive(Clone, Encodable, Decodable, Debug)]
pub enum RangeEnd {
    Included(RangeSyntax),
    Excluded,
}

#[derive(Clone, Encodable, Decodable, Debug)]
pub enum RangeSyntax {
    /// `...`
    DotDotDot,
    /// `..=`
    DotDotEq,
}

#[derive(Clone, Encodable, Decodable, Debug)]
pub enum PatKind {
    /// Represents a wildcard pattern (`_`).
    Wild,

    /// A `PatKind::Ident` may either be a new bound variable (`ref mut binding @ OPT_SUBPATTERN`),
    /// or a unit struct/variant pattern, or a const pattern (in the last two cases the third
    /// field must be `None`). Disambiguation cannot be done with parser alone, so it happens
    /// during name resolution.
    Ident(BindingMode, Ident, Option<P<Pat>>),

    /// A struct or struct variant pattern (e.g., `Variant {x, y, ..}`).
    /// The `bool` is `true` in the presence of a `..`.
    Struct(Path, Vec<FieldPat>, /* recovered */ bool),

    /// A tuple struct/variant pattern (`Variant(x, y, .., z)`).
    TupleStruct(Path, Vec<P<Pat>>),

    /// An or-pattern `A | B | C`.
    /// Invariant: `pats.len() >= 2`.
    Or(Vec<P<Pat>>),

    /// A possibly qualified path pattern.
    /// Unqualified path patterns `A::B::C` can legally refer to variants, structs, constants
    /// or associated constants. Qualified path patterns `<A>::B::C`/`<A as Trait>::B::C` can
    /// only legally refer to associated constants.
    Path(Option<QSelf>, Path),

    /// A tuple pattern (`(a, b)`).
    Tuple(Vec<P<Pat>>),

    /// A `box` pattern.
    Box(P<Pat>),

    /// A reference pattern (e.g., `&mut (a, b)`).
    Ref(P<Pat>, Mutability),

    /// A literal.
    Lit(P<Expr>),

    /// A range pattern (e.g., `1...2`, `1..=2` or `1..2`).
    Range(Option<P<Expr>>, Option<P<Expr>>, Spanned<RangeEnd>),

    /// A slice pattern `[a, b, c]`.
    Slice(Vec<P<Pat>>),

    /// A rest pattern `..`.
    ///
    /// Syntactically it is valid anywhere.
    ///
    /// Semantically however, it only has meaning immediately inside:
    /// - a slice pattern: `[a, .., b]`,
    /// - a binding pattern immediately inside a slice pattern: `[a, r @ ..]`,
    /// - a tuple pattern: `(a, .., b)`,
    /// - a tuple struct/variant pattern: `$path(a, .., b)`.
    ///
    /// In all of these cases, an additional restriction applies,
    /// only one rest pattern may occur in the pattern sequences.
    Rest,

    /// Parentheses in patterns used for grouping (i.e., `(PAT)`).
    Paren(P<Pat>),

    /// A macro pattern; pre-expansion.
    MacCall(MacCall),
}

#[derive(Clone, PartialEq, Eq, PartialOrd, Ord, Hash, Debug, Copy)]
#[derive(HashStable_Generic, Encodable, Decodable)]
pub enum Mutability {
    Mut,
    Not,
}

impl Mutability {
    /// Returns `MutMutable` only if both `self` and `other` are mutable.
    pub fn and(self, other: Self) -> Self {
        match self {
            Mutability::Mut => other,
            Mutability::Not => Mutability::Not,
        }
    }

    pub fn invert(self) -> Self {
        match self {
            Mutability::Mut => Mutability::Not,
            Mutability::Not => Mutability::Mut,
        }
    }

    pub fn prefix_str(&self) -> &'static str {
        match self {
            Mutability::Mut => "mut ",
            Mutability::Not => "",
        }
    }
}

/// The kind of borrow in an `AddrOf` expression,
/// e.g., `&place` or `&raw const place`.
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
#[derive(Encodable, Decodable, HashStable_Generic)]
pub enum BorrowKind {
    /// A normal borrow, `&$expr` or `&mut $expr`.
    /// The resulting type is either `&'a T` or `&'a mut T`
    /// where `T = typeof($expr)` and `'a` is some lifetime.
    Ref,
    /// A raw borrow, `&raw const $expr` or `&raw mut $expr`.
    /// The resulting type is either `*const T` or `*mut T`
    /// where `T = typeof($expr)`.
    Raw,
}

#[derive(Clone, PartialEq, Encodable, Decodable, Debug, Copy)]
pub enum BinOpKind {
    /// The `+` operator (addition)
    Add,
    /// The `-` operator (subtraction)
    Sub,
    /// The `*` operator (multiplication)
    Mul,
    /// The `/` operator (division)
    Div,
    /// The `%` operator (modulus)
    Rem,
    /// The `&&` operator (logical and)
    And,
    /// The `||` operator (logical or)
    Or,
    /// The `^` operator (bitwise xor)
    BitXor,
    /// The `&` operator (bitwise and)
    BitAnd,
    /// The `|` operator (bitwise or)
    BitOr,
    /// The `<<` operator (shift left)
    Shl,
    /// The `>>` operator (shift right)
    Shr,
    /// The `==` operator (equality)
    Eq,
    /// The `<` operator (less than)
    Lt,
    /// The `<=` operator (less than or equal to)
    Le,
    /// The `!=` operator (not equal to)
    Ne,
    /// The `>=` operator (greater than or equal to)
    Ge,
    /// The `>` operator (greater than)
    Gt,
}

impl BinOpKind {
    pub fn to_string(&self) -> &'static str {
        use BinOpKind::*;
        match *self {
            Add => "+",
            Sub => "-",
            Mul => "*",
            Div => "/",
            Rem => "%",
            And => "&&",
            Or => "||",
            BitXor => "^",
            BitAnd => "&",
            BitOr => "|",
            Shl => "<<",
            Shr => ">>",
            Eq => "==",
            Lt => "<",
            Le => "<=",
            Ne => "!=",
            Ge => ">=",
            Gt => ">",
        }
    }
    pub fn lazy(&self) -> bool {
        match *self {
            BinOpKind::And | BinOpKind::Or => true,
            _ => false,
        }
    }

    pub fn is_shift(&self) -> bool {
        match *self {
            BinOpKind::Shl | BinOpKind::Shr => true,
            _ => false,
        }
    }

    pub fn is_comparison(&self) -> bool {
        use BinOpKind::*;
        // Note for developers: please keep this as is;
        // we want compilation to fail if another variant is added.
        match *self {
            Eq | Lt | Le | Ne | Gt | Ge => true,
            And | Or | Add | Sub | Mul | Div | Rem | BitXor | BitAnd | BitOr | Shl | Shr => false,
        }
    }

    /// Returns `true` if the binary operator takes its arguments by value
    pub fn is_by_value(&self) -> bool {
        !self.is_comparison()
    }
}

pub type BinOp = Spanned<BinOpKind>;

/// Unary operator.
///
/// Note that `&data` is not an operator, it's an `AddrOf` expression.
#[derive(Clone, Encodable, Decodable, Debug, Copy)]
pub enum UnOp {
    /// The `*` operator for dereferencing
    Deref,
    /// The `!` operator for logical inversion
    Not,
    /// The `-` operator for negation
    Neg,
}

impl UnOp {
    /// Returns `true` if the unary operator takes its argument by value
    pub fn is_by_value(u: UnOp) -> bool {
        match u {
            UnOp::Neg | UnOp::Not => true,
            _ => false,
        }
    }

    pub fn to_string(op: UnOp) -> &'static str {
        match op {
            UnOp::Deref => "*",
            UnOp::Not => "!",
            UnOp::Neg => "-",
        }
    }
}

/// A statement
#[derive(Clone, Encodable, Decodable, Debug)]
pub struct Stmt {
    pub id: NodeId,
    pub kind: StmtKind,
    pub span: Span,
}

impl Stmt {
    pub fn add_trailing_semicolon(mut self) -> Self {
        self.kind = match self.kind {
            StmtKind::Expr(expr) => StmtKind::Semi(expr),
            StmtKind::MacCall(mac) => StmtKind::MacCall(
                mac.map(|(mac, _style, attrs)| (mac, MacStmtStyle::Semicolon, attrs)),
            ),
            kind => kind,
        };
        self
    }

    pub fn is_item(&self) -> bool {
        match self.kind {
            StmtKind::Item(_) => true,
            _ => false,
        }
    }

    pub fn is_expr(&self) -> bool {
        match self.kind {
            StmtKind::Expr(_) => true,
            _ => false,
        }
    }
}

#[derive(Clone, Encodable, Decodable, Debug)]
pub enum StmtKind {
    /// A local (let) binding.
    Local(P<Local>),
    /// An item definition.
    Item(P<Item>),
    /// Expr without trailing semi-colon.
    Expr(P<Expr>),
    /// Expr with a trailing semi-colon.
    Semi(P<Expr>),
    /// Just a trailing semi-colon.
    Empty,
    /// Macro.
    MacCall(P<(MacCall, MacStmtStyle, AttrVec)>),
}

#[derive(Clone, Copy, PartialEq, Encodable, Decodable, Debug)]
pub enum MacStmtStyle {
    /// The macro statement had a trailing semicolon (e.g., `foo! { ... };`
    /// `foo!(...);`, `foo![...];`).
    Semicolon,
    /// The macro statement had braces (e.g., `foo! { ... }`).
    Braces,
    /// The macro statement had parentheses or brackets and no semicolon (e.g.,
    /// `foo!(...)`). All of these will end up being converted into macro
    /// expressions.
    NoBraces,
}

/// Local represents a `let` statement, e.g., `let <pat>:<ty> = <expr>;`.
#[derive(Clone, Encodable, Decodable, Debug)]
pub struct Local {
    pub id: NodeId,
    pub pat: P<Pat>,
    pub ty: Option<P<Ty>>,
    /// Initializer expression to set the value, if any.
    pub init: Option<P<Expr>>,
    pub span: Span,
    pub attrs: AttrVec,
}

/// An arm of a 'match'.
///
/// E.g., `0..=10 => { println!("match!") }` as in
///
/// ```
/// match 123 {
///     0..=10 => { println!("match!") },
///     _ => { println!("no match!") },
/// }
/// ```
#[derive(Clone, Encodable, Decodable, Debug)]
pub struct Arm {
    pub attrs: Vec<Attribute>,
    /// Match arm pattern, e.g. `10` in `match foo { 10 => {}, _ => {} }`
    pub pat: P<Pat>,
    /// Match arm guard, e.g. `n > 10` in `match foo { n if n > 10 => {}, _ => {} }`
    pub guard: Option<P<Expr>>,
    /// Match arm body.
    pub body: P<Expr>,
    pub span: Span,
    pub id: NodeId,
    pub is_placeholder: bool,
}

/// Access of a named (e.g., `obj.foo`) or unnamed (e.g., `obj.0`) struct field.
#[derive(Clone, Encodable, Decodable, Debug)]
pub struct Field {
    pub attrs: AttrVec,
    pub id: NodeId,
    pub span: Span,
    pub ident: Ident,
    pub expr: P<Expr>,
    pub is_shorthand: bool,
    pub is_placeholder: bool,
}

#[derive(Clone, PartialEq, Encodable, Decodable, Debug, Copy)]
pub enum BlockCheckMode {
    Default,
    Unsafe(UnsafeSource),
}

#[derive(Clone, PartialEq, Encodable, Decodable, Debug, Copy)]
pub enum UnsafeSource {
    CompilerGenerated,
    UserProvided,
}

/// A constant (expression) that's not an item or associated item,
/// but needs its own `DefId` for type-checking, const-eval, etc.
/// These are usually found nested inside types (e.g., array lengths)
/// or expressions (e.g., repeat counts), and also used to define
/// explicit discriminant values for enum variants.
#[derive(Clone, Encodable, Decodable, Debug)]
pub struct AnonConst {
    pub id: NodeId,
    pub value: P<Expr>,
}

/// An expression.
#[derive(Clone, Encodable, Decodable, Debug)]
pub struct Expr {
    pub id: NodeId,
    pub kind: ExprKind,
    pub span: Span,
    pub attrs: AttrVec,
    pub tokens: Option<TokenStream>,
}

// `Expr` is used a lot. Make sure it doesn't unintentionally get bigger.
#[cfg(target_arch = "x86_64")]
rustc_data_structures::static_assert_size!(Expr, 104);

impl Expr {
    /// Returns `true` if this expression would be valid somewhere that expects a value;
    /// for example, an `if` condition.
    pub fn returns(&self) -> bool {
        if let ExprKind::Block(ref block, _) = self.kind {
            match block.stmts.last().map(|last_stmt| &last_stmt.kind) {
                // Implicit return
                Some(&StmtKind::Expr(_)) => true,
                Some(&StmtKind::Semi(ref expr)) => {
                    if let ExprKind::Ret(_) = expr.kind {
                        // Last statement is explicit return.
                        true
                    } else {
                        false
                    }
                }
                // This is a block that doesn't end in either an implicit or explicit return.
                _ => false,
            }
        } else {
            // This is not a block, it is a value.
            true
        }
    }

    /// Is this expr either `N`, or `{ N }`.
    ///
    /// If this is not the case, name resolution does not resolve `N` when using
    /// `feature(min_const_generics)` as more complex expressions are not supported.
    pub fn is_potential_trivial_const_param(&self) -> bool {
        let this = if let ExprKind::Block(ref block, None) = self.kind {
            if block.stmts.len() == 1 {
                if let StmtKind::Expr(ref expr) = block.stmts[0].kind { expr } else { self }
            } else {
                self
            }
        } else {
            self
        };

        if let ExprKind::Path(None, ref path) = this.kind {
            if path.segments.len() == 1 && path.segments[0].args.is_none() {
                return true;
            }
        }

        false
    }

    pub fn to_bound(&self) -> Option<GenericBound> {
        match &self.kind {
            ExprKind::Path(None, path) => Some(GenericBound::Trait(
                PolyTraitRef::new(Vec::new(), path.clone(), self.span),
                TraitBoundModifier::None,
            )),
            _ => None,
        }
    }

    /// Attempts to reparse as `Ty` (for diagnostic purposes).
    pub fn to_ty(&self) -> Option<P<Ty>> {
        let kind = match &self.kind {
            // Trivial conversions.
            ExprKind::Path(qself, path) => TyKind::Path(qself.clone(), path.clone()),
            ExprKind::MacCall(mac) => TyKind::MacCall(mac.clone()),

            ExprKind::Paren(expr) => expr.to_ty().map(TyKind::Paren)?,

            ExprKind::AddrOf(BorrowKind::Ref, mutbl, expr) => {
                expr.to_ty().map(|ty| TyKind::Rptr(None, MutTy { ty, mutbl: *mutbl }))?
            }

            ExprKind::Repeat(expr, expr_len) => {
                expr.to_ty().map(|ty| TyKind::Array(ty, expr_len.clone()))?
            }

            ExprKind::Array(exprs) if exprs.len() == 1 => exprs[0].to_ty().map(TyKind::Slice)?,

            ExprKind::Tup(exprs) => {
                let tys = exprs.iter().map(|expr| expr.to_ty()).collect::<Option<Vec<_>>>()?;
                TyKind::Tup(tys)
            }

            // If binary operator is `Add` and both `lhs` and `rhs` are trait bounds,
            // then type of result is trait object.
            // Otherwise we don't assume the result type.
            ExprKind::Binary(binop, lhs, rhs) if binop.node == BinOpKind::Add => {
                if let (Some(lhs), Some(rhs)) = (lhs.to_bound(), rhs.to_bound()) {
                    TyKind::TraitObject(vec![lhs, rhs], TraitObjectSyntax::None)
                } else {
                    return None;
                }
            }

            // This expression doesn't look like a type syntactically.
            _ => return None,
        };

        Some(P(Ty { kind, id: self.id, span: self.span }))
    }

    pub fn precedence(&self) -> ExprPrecedence {
        match self.kind {
            ExprKind::Box(_) => ExprPrecedence::Box,
            ExprKind::Array(_) => ExprPrecedence::Array,
            ExprKind::Call(..) => ExprPrecedence::Call,
            ExprKind::MethodCall(..) => ExprPrecedence::MethodCall,
            ExprKind::Tup(_) => ExprPrecedence::Tup,
            ExprKind::Binary(op, ..) => ExprPrecedence::Binary(op.node),
            ExprKind::Unary(..) => ExprPrecedence::Unary,
            ExprKind::Lit(_) => ExprPrecedence::Lit,
            ExprKind::Type(..) | ExprKind::Cast(..) => ExprPrecedence::Cast,
            ExprKind::Let(..) => ExprPrecedence::Let,
            ExprKind::If(..) => ExprPrecedence::If,
            ExprKind::While(..) => ExprPrecedence::While,
            ExprKind::ForLoop(..) => ExprPrecedence::ForLoop,
            ExprKind::Loop(..) => ExprPrecedence::Loop,
            ExprKind::Match(..) => ExprPrecedence::Match,
            ExprKind::Closure(..) => ExprPrecedence::Closure,
            ExprKind::Block(..) => ExprPrecedence::Block,
            ExprKind::TryBlock(..) => ExprPrecedence::TryBlock,
            ExprKind::Async(..) => ExprPrecedence::Async,
            ExprKind::Await(..) => ExprPrecedence::Await,
            ExprKind::Assign(..) => ExprPrecedence::Assign,
            ExprKind::AssignOp(..) => ExprPrecedence::AssignOp,
            ExprKind::Field(..) => ExprPrecedence::Field,
            ExprKind::Index(..) => ExprPrecedence::Index,
            ExprKind::Range(..) => ExprPrecedence::Range,
            ExprKind::Path(..) => ExprPrecedence::Path,
            ExprKind::AddrOf(..) => ExprPrecedence::AddrOf,
            ExprKind::Break(..) => ExprPrecedence::Break,
            ExprKind::Continue(..) => ExprPrecedence::Continue,
            ExprKind::Ret(..) => ExprPrecedence::Ret,
            ExprKind::InlineAsm(..) | ExprKind::LlvmInlineAsm(..) => ExprPrecedence::InlineAsm,
            ExprKind::MacCall(..) => ExprPrecedence::Mac,
            ExprKind::Struct(..) => ExprPrecedence::Struct,
            ExprKind::Repeat(..) => ExprPrecedence::Repeat,
            ExprKind::Paren(..) => ExprPrecedence::Paren,
            ExprKind::Try(..) => ExprPrecedence::Try,
            ExprKind::Yield(..) => ExprPrecedence::Yield,
            ExprKind::Err => ExprPrecedence::Err,
        }
    }
}

/// Limit types of a range (inclusive or exclusive)
#[derive(Copy, Clone, PartialEq, Encodable, Decodable, Debug)]
pub enum RangeLimits {
    /// Inclusive at the beginning, exclusive at the end
    HalfOpen,
    /// Inclusive at the beginning and end
    Closed,
}

#[derive(Clone, Encodable, Decodable, Debug)]
pub enum ExprKind {
    /// A `box x` expression.
    Box(P<Expr>),
    /// An array (`[a, b, c, d]`)
    Array(Vec<P<Expr>>),
    /// A function call
    ///
    /// The first field resolves to the function itself,
    /// and the second field is the list of arguments.
    /// This also represents calling the constructor of
    /// tuple-like ADTs such as tuple structs and enum variants.
    Call(P<Expr>, Vec<P<Expr>>),
    /// A method call (`x.foo::<'static, Bar, Baz>(a, b, c, d)`)
    ///
    /// The `PathSegment` represents the method name and its generic arguments
    /// (within the angle brackets).
    /// The first element of the vector of an `Expr` is the expression that evaluates
    /// to the object on which the method is being called on (the receiver),
    /// and the remaining elements are the rest of the arguments.
    /// Thus, `x.foo::<Bar, Baz>(a, b, c, d)` is represented as
    /// `ExprKind::MethodCall(PathSegment { foo, [Bar, Baz] }, [x, a, b, c, d])`.
    /// This `Span` is the span of the function, without the dot and receiver
    /// (e.g. `foo(a, b)` in `x.foo(a, b)`
    MethodCall(PathSegment, Vec<P<Expr>>, Span),
    /// A tuple (e.g., `(a, b, c, d)`).
    Tup(Vec<P<Expr>>),
    /// A binary operation (e.g., `a + b`, `a * b`).
    Binary(BinOp, P<Expr>, P<Expr>),
    /// A unary operation (e.g., `!x`, `*x`).
    Unary(UnOp, P<Expr>),
    /// A literal (e.g., `1`, `"foo"`).
    Lit(Lit),
    /// A cast (e.g., `foo as f64`).
    Cast(P<Expr>, P<Ty>),
    /// A type ascription (e.g., `42: usize`).
    Type(P<Expr>, P<Ty>),
    /// A `let pat = expr` expression that is only semantically allowed in the condition
    /// of `if` / `while` expressions. (e.g., `if let 0 = x { .. }`).
    Let(P<Pat>, P<Expr>),
    /// An `if` block, with an optional `else` block.
    ///
    /// `if expr { block } else { expr }`
    If(P<Expr>, P<Block>, Option<P<Expr>>),
    /// A while loop, with an optional label.
    ///
    /// `'label: while expr { block }`
    While(P<Expr>, P<Block>, Option<Label>),
    /// A `for` loop, with an optional label.
    ///
    /// `'label: for pat in expr { block }`
    ///
    /// This is desugared to a combination of `loop` and `match` expressions.
    ForLoop(P<Pat>, P<Expr>, P<Block>, Option<Label>),
    /// Conditionless loop (can be exited with `break`, `continue`, or `return`).
    ///
    /// `'label: loop { block }`
    Loop(P<Block>, Option<Label>),
    /// A `match` block.
    Match(P<Expr>, Vec<Arm>),
    /// A closure (e.g., `move |a, b, c| a + b + c`).
    ///
    /// The final span is the span of the argument block `|...|`.
    Closure(CaptureBy, Async, Movability, P<FnDecl>, P<Expr>, Span),
    /// A block (`'label: { ... }`).
    Block(P<Block>, Option<Label>),
    /// An async block (`async move { ... }`).
    ///
    /// The `NodeId` is the `NodeId` for the closure that results from
    /// desugaring an async block, just like the NodeId field in the
    /// `Async::Yes` variant. This is necessary in order to create a def for the
    /// closure which can be used as a parent of any child defs. Defs
    /// created during lowering cannot be made the parent of any other
    /// preexisting defs.
    Async(CaptureBy, NodeId, P<Block>),
    /// An await expression (`my_future.await`).
    Await(P<Expr>),

    /// A try block (`try { ... }`).
    TryBlock(P<Block>),

    /// An assignment (`a = foo()`).
    /// The `Span` argument is the span of the `=` token.
    Assign(P<Expr>, P<Expr>, Span),
    /// An assignment with an operator.
    ///
    /// E.g., `a += 1`.
    AssignOp(BinOp, P<Expr>, P<Expr>),
    /// Access of a named (e.g., `obj.foo`) or unnamed (e.g., `obj.0`) struct field.
    Field(P<Expr>, Ident),
    /// An indexing operation (e.g., `foo[2]`).
    Index(P<Expr>, P<Expr>),
    /// A range (e.g., `1..2`, `1..`, `..2`, `1..=2`, `..=2`).
    Range(Option<P<Expr>>, Option<P<Expr>>, RangeLimits),

    /// Variable reference, possibly containing `::` and/or type
    /// parameters (e.g., `foo::bar::<baz>`).
    ///
    /// Optionally "qualified" (e.g., `<Vec<T> as SomeTrait>::SomeType`).
    Path(Option<QSelf>, Path),

    /// A referencing operation (`&a`, `&mut a`, `&raw const a` or `&raw mut a`).
    AddrOf(BorrowKind, Mutability, P<Expr>),
    /// A `break`, with an optional label to break, and an optional expression.
    Break(Option<Label>, Option<P<Expr>>),
    /// A `continue`, with an optional label.
    Continue(Option<Label>),
    /// A `return`, with an optional value to be returned.
    Ret(Option<P<Expr>>),

    /// Output of the `asm!()` macro.
    InlineAsm(P<InlineAsm>),
    /// Output of the `llvm_asm!()` macro.
    LlvmInlineAsm(P<LlvmInlineAsm>),

    /// A macro invocation; pre-expansion.
    MacCall(MacCall),

    /// A struct literal expression.
    ///
    /// E.g., `Foo {x: 1, y: 2}`, or `Foo {x: 1, .. base}`,
    /// where `base` is the `Option<Expr>`.
    Struct(Path, Vec<Field>, Option<P<Expr>>),

    /// An array literal constructed from one repeated element.
    ///
    /// E.g., `[1; 5]`. The expression is the element to be
    /// repeated; the constant is the number of times to repeat it.
    Repeat(P<Expr>, AnonConst),

    /// No-op: used solely so we can pretty-print faithfully.
    Paren(P<Expr>),

    /// A try expression (`expr?`).
    Try(P<Expr>),

    /// A `yield`, with an optional value to be yielded.
    Yield(Option<P<Expr>>),

    /// Placeholder for an expression that wasn't syntactically well formed in some way.
    Err,
}

/// The explicit `Self` type in a "qualified path". The actual
/// path, including the trait and the associated item, is stored
/// separately. `position` represents the index of the associated
/// item qualified with this `Self` type.
///
/// ```ignore (only-for-syntax-highlight)
/// <Vec<T> as a::b::Trait>::AssociatedItem
///  ^~~~~     ~~~~~~~~~~~~~~^
///  ty        position = 3
///
/// <Vec<T>>::AssociatedItem
///  ^~~~~    ^
///  ty       position = 0
/// ```
#[derive(Clone, Encodable, Decodable, Debug)]
pub struct QSelf {
    pub ty: P<Ty>,

    /// The span of `a::b::Trait` in a path like `<Vec<T> as
    /// a::b::Trait>::AssociatedItem`; in the case where `position ==
    /// 0`, this is an empty span.
    pub path_span: Span,
    pub position: usize,
}

/// A capture clause used in closures and `async` blocks.
#[derive(Clone, Copy, PartialEq, Encodable, Decodable, Debug, HashStable_Generic)]
pub enum CaptureBy {
    /// `move |x| y + x`.
    Value,
    /// `move` keyword was not specified.
    Ref,
}

/// The movability of a generator / closure literal:
/// whether a generator contains self-references, causing it to be `!Unpin`.
#[derive(Clone, PartialEq, Eq, PartialOrd, Ord, Hash, Encodable, Decodable, Debug, Copy)]
#[derive(HashStable_Generic)]
pub enum Movability {
    /// May contain self-references, `!Unpin`.
    Static,
    /// Must not contain self-references, `Unpin`.
    Movable,
}

/// Represents a macro invocation. The `path` indicates which macro
/// is being invoked, and the `args` are arguments passed to it.
#[derive(Clone, Encodable, Decodable, Debug)]
pub struct MacCall {
    pub path: Path,
    pub args: P<MacArgs>,
    pub prior_type_ascription: Option<(Span, bool)>,
}

impl MacCall {
    pub fn span(&self) -> Span {
        self.path.span.to(self.args.span().unwrap_or(self.path.span))
    }
}

/// Arguments passed to an attribute or a function-like macro.
#[derive(Clone, Encodable, Decodable, Debug, HashStable_Generic)]
pub enum MacArgs {
    /// No arguments - `#[attr]`.
    Empty,
    /// Delimited arguments - `#[attr()/[]/{}]` or `mac!()/[]/{}`.
    Delimited(DelimSpan, MacDelimiter, TokenStream),
    /// Arguments of a key-value attribute - `#[attr = "value"]`.
    Eq(
        /// Span of the `=` token.
        Span,
        /// Token stream of the "value".
        TokenStream,
    ),
}

impl MacArgs {
    pub fn delim(&self) -> DelimToken {
        match self {
            MacArgs::Delimited(_, delim, _) => delim.to_token(),
            MacArgs::Empty | MacArgs::Eq(..) => token::NoDelim,
        }
    }

    pub fn span(&self) -> Option<Span> {
        match *self {
            MacArgs::Empty => None,
            MacArgs::Delimited(dspan, ..) => Some(dspan.entire()),
            MacArgs::Eq(eq_span, ref tokens) => Some(eq_span.to(tokens.span().unwrap_or(eq_span))),
        }
    }

    /// Tokens inside the delimiters or after `=`.
    /// Proc macros see these tokens, for example.
    pub fn inner_tokens(&self) -> TokenStream {
        match self {
            MacArgs::Empty => TokenStream::default(),
            MacArgs::Delimited(.., tokens) | MacArgs::Eq(.., tokens) => tokens.clone(),
        }
    }

    /// Tokens together with the delimiters or `=`.
    /// Use of this method generally means that something suboptimal or hacky is happening.
    pub fn outer_tokens(&self) -> TokenStream {
        match *self {
            MacArgs::Empty => TokenStream::default(),
            MacArgs::Delimited(dspan, delim, ref tokens) => {
                TokenTree::Delimited(dspan, delim.to_token(), tokens.clone()).into()
            }
            MacArgs::Eq(eq_span, ref tokens) => {
                iter::once(TokenTree::token(token::Eq, eq_span)).chain(tokens.trees()).collect()
            }
        }
    }

    /// Whether a macro with these arguments needs a semicolon
    /// when used as a standalone item or statement.
    pub fn need_semicolon(&self) -> bool {
        !matches!(self, MacArgs::Delimited(_, MacDelimiter::Brace, _))
    }
}

#[derive(Copy, Clone, PartialEq, Eq, Encodable, Decodable, Debug, HashStable_Generic)]
pub enum MacDelimiter {
    Parenthesis,
    Bracket,
    Brace,
}

impl MacDelimiter {
    pub fn to_token(self) -> DelimToken {
        match self {
            MacDelimiter::Parenthesis => DelimToken::Paren,
            MacDelimiter::Bracket => DelimToken::Bracket,
            MacDelimiter::Brace => DelimToken::Brace,
        }
    }

    pub fn from_token(delim: DelimToken) -> Option<MacDelimiter> {
        match delim {
            token::Paren => Some(MacDelimiter::Parenthesis),
            token::Bracket => Some(MacDelimiter::Bracket),
            token::Brace => Some(MacDelimiter::Brace),
            token::NoDelim => None,
        }
    }
}

/// Represents a macro definition.
#[derive(Clone, Encodable, Decodable, Debug, HashStable_Generic)]
pub struct MacroDef {
    pub body: P<MacArgs>,
    /// `true` if macro was defined with `macro_rules`.
    pub macro_rules: bool,
}

#[derive(Clone, Encodable, Decodable, Debug, Copy, Hash, Eq, PartialEq)]
#[derive(HashStable_Generic)]
pub enum StrStyle {
    /// A regular string, like `"foo"`.
    Cooked,
    /// A raw string, like `r##"foo"##`.
    ///
    /// The value is the number of `#` symbols used.
    Raw(u16),
}

/// An AST literal.
#[derive(Clone, Encodable, Decodable, Debug, HashStable_Generic)]
pub struct Lit {
    /// The original literal token as written in source code.
    pub token: token::Lit,
    /// The "semantic" representation of the literal lowered from the original tokens.
    /// Strings are unescaped, hexadecimal forms are eliminated, etc.
    /// FIXME: Remove this and only create the semantic representation during lowering to HIR.
    pub kind: LitKind,
    pub span: Span,
}

/// Same as `Lit`, but restricted to string literals.
#[derive(Clone, Copy, Encodable, Decodable, Debug)]
pub struct StrLit {
    /// The original literal token as written in source code.
    pub style: StrStyle,
    pub symbol: Symbol,
    pub suffix: Option<Symbol>,
    pub span: Span,
    /// The unescaped "semantic" representation of the literal lowered from the original token.
    /// FIXME: Remove this and only create the semantic representation during lowering to HIR.
    pub symbol_unescaped: Symbol,
}

impl StrLit {
    pub fn as_lit(&self) -> Lit {
        let token_kind = match self.style {
            StrStyle::Cooked => token::Str,
            StrStyle::Raw(n) => token::StrRaw(n),
        };
        Lit {
            token: token::Lit::new(token_kind, self.symbol, self.suffix),
            span: self.span,
            kind: LitKind::Str(self.symbol_unescaped, self.style),
        }
    }
}

/// Type of the integer literal based on provided suffix.
#[derive(Clone, Copy, Encodable, Decodable, Debug, Hash, Eq, PartialEq)]
#[derive(HashStable_Generic)]
pub enum LitIntType {
    /// e.g. `42_i32`.
    Signed(IntTy),
    /// e.g. `42_u32`.
    Unsigned(UintTy),
    /// e.g. `42`.
    Unsuffixed,
}

/// Type of the float literal based on provided suffix.
#[derive(Clone, Copy, Encodable, Decodable, Debug, Hash, Eq, PartialEq)]
#[derive(HashStable_Generic)]
pub enum LitFloatType {
    /// A float literal with a suffix (`1f32` or `1E10f32`).
    Suffixed(FloatTy),
    /// A float literal without a suffix (`1.0 or 1.0E10`).
    Unsuffixed,
}

/// Literal kind.
///
/// E.g., `"foo"`, `42`, `12.34`, or `bool`.
#[derive(Clone, Encodable, Decodable, Debug, Hash, Eq, PartialEq, HashStable_Generic)]
pub enum LitKind {
    /// A string literal (`"foo"`).
    Str(Symbol, StrStyle),
    /// A byte string (`b"foo"`).
    ByteStr(Lrc<Vec<u8>>),
    /// A byte char (`b'f'`).
    Byte(u8),
    /// A character literal (`'a'`).
    Char(char),
    /// An integer literal (`1`).
    Int(u128, LitIntType),
    /// A float literal (`1f64` or `1E10f64`).
    Float(Symbol, LitFloatType),
    /// A boolean literal.
    Bool(bool),
    /// Placeholder for a literal that wasn't well-formed in some way.
    Err(Symbol),
}

impl LitKind {
    /// Returns `true` if this literal is a string.
    pub fn is_str(&self) -> bool {
        match *self {
            LitKind::Str(..) => true,
            _ => false,
        }
    }

    /// Returns `true` if this literal is byte literal string.
    pub fn is_bytestr(&self) -> bool {
        match self {
            LitKind::ByteStr(_) => true,
            _ => false,
        }
    }

    /// Returns `true` if this is a numeric literal.
    pub fn is_numeric(&self) -> bool {
        match *self {
            LitKind::Int(..) | LitKind::Float(..) => true,
            _ => false,
        }
    }

    /// Returns `true` if this literal has no suffix.
    /// Note: this will return true for literals with prefixes such as raw strings and byte strings.
    pub fn is_unsuffixed(&self) -> bool {
        !self.is_suffixed()
    }

    /// Returns `true` if this literal has a suffix.
    pub fn is_suffixed(&self) -> bool {
        match *self {
            // suffixed variants
            LitKind::Int(_, LitIntType::Signed(..) | LitIntType::Unsigned(..))
            | LitKind::Float(_, LitFloatType::Suffixed(..)) => true,
            // unsuffixed variants
            LitKind::Str(..)
            | LitKind::ByteStr(..)
            | LitKind::Byte(..)
            | LitKind::Char(..)
            | LitKind::Int(_, LitIntType::Unsuffixed)
            | LitKind::Float(_, LitFloatType::Unsuffixed)
            | LitKind::Bool(..)
            | LitKind::Err(..) => false,
        }
    }
}

// N.B., If you change this, you'll probably want to change the corresponding
// type structure in `middle/ty.rs` as well.
#[derive(Clone, Encodable, Decodable, Debug)]
pub struct MutTy {
    pub ty: P<Ty>,
    pub mutbl: Mutability,
}

/// Represents a function's signature in a trait declaration,
/// trait implementation, or free function.
#[derive(Clone, Encodable, Decodable, Debug)]
pub struct FnSig {
    pub header: FnHeader,
    pub decl: P<FnDecl>,
    pub span: Span,
}

#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, Debug)]
#[derive(Encodable, Decodable, HashStable_Generic)]
pub enum FloatTy {
    F32,
    F64,
}

impl FloatTy {
    pub fn name_str(self) -> &'static str {
        match self {
            FloatTy::F32 => "f32",
            FloatTy::F64 => "f64",
        }
    }

    pub fn name(self) -> Symbol {
        match self {
            FloatTy::F32 => sym::f32,
            FloatTy::F64 => sym::f64,
        }
    }

    pub fn bit_width(self) -> u64 {
        match self {
            FloatTy::F32 => 32,
            FloatTy::F64 => 64,
        }
    }
}

#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, Debug)]
#[derive(Encodable, Decodable, HashStable_Generic)]
pub enum IntTy {
    Isize,
    I8,
    I16,
    I32,
    I64,
    I128,
}

impl IntTy {
    pub fn name_str(&self) -> &'static str {
        match *self {
            IntTy::Isize => "isize",
            IntTy::I8 => "i8",
            IntTy::I16 => "i16",
            IntTy::I32 => "i32",
            IntTy::I64 => "i64",
            IntTy::I128 => "i128",
        }
    }

    pub fn name(&self) -> Symbol {
        match *self {
            IntTy::Isize => sym::isize,
            IntTy::I8 => sym::i8,
            IntTy::I16 => sym::i16,
            IntTy::I32 => sym::i32,
            IntTy::I64 => sym::i64,
            IntTy::I128 => sym::i128,
        }
    }

    pub fn val_to_string(&self, val: i128) -> String {
        // Cast to a `u128` so we can correctly print `INT128_MIN`. All integral types
        // are parsed as `u128`, so we wouldn't want to print an extra negative
        // sign.
        format!("{}{}", val as u128, self.name_str())
    }

    pub fn bit_width(&self) -> Option<u64> {
        Some(match *self {
            IntTy::Isize => return None,
            IntTy::I8 => 8,
            IntTy::I16 => 16,
            IntTy::I32 => 32,
            IntTy::I64 => 64,
            IntTy::I128 => 128,
        })
    }

    pub fn normalize(&self, target_width: u32) -> Self {
        match self {
            IntTy::Isize => match target_width {
                16 => IntTy::I16,
                32 => IntTy::I32,
                64 => IntTy::I64,
                _ => unreachable!(),
            },
            _ => *self,
        }
    }
}

#[derive(Clone, PartialEq, Eq, PartialOrd, Ord, Hash, Copy, Debug)]
#[derive(Encodable, Decodable, HashStable_Generic)]
pub enum UintTy {
    Usize,
    U8,
    U16,
    U32,
    U64,
    U128,
}

impl UintTy {
    pub fn name_str(&self) -> &'static str {
        match *self {
            UintTy::Usize => "usize",
            UintTy::U8 => "u8",
            UintTy::U16 => "u16",
            UintTy::U32 => "u32",
            UintTy::U64 => "u64",
            UintTy::U128 => "u128",
        }
    }

    pub fn name(&self) -> Symbol {
        match *self {
            UintTy::Usize => sym::usize,
            UintTy::U8 => sym::u8,
            UintTy::U16 => sym::u16,
            UintTy::U32 => sym::u32,
            UintTy::U64 => sym::u64,
            UintTy::U128 => sym::u128,
        }
    }

    pub fn val_to_string(&self, val: u128) -> String {
        format!("{}{}", val, self.name_str())
    }

    pub fn bit_width(&self) -> Option<u64> {
        Some(match *self {
            UintTy::Usize => return None,
            UintTy::U8 => 8,
            UintTy::U16 => 16,
            UintTy::U32 => 32,
            UintTy::U64 => 64,
            UintTy::U128 => 128,
        })
    }

    pub fn normalize(&self, target_width: u32) -> Self {
        match self {
            UintTy::Usize => match target_width {
                16 => UintTy::U16,
                32 => UintTy::U32,
                64 => UintTy::U64,
                _ => unreachable!(),
            },
            _ => *self,
        }
    }
}

/// A constraint on an associated type (e.g., `A = Bar` in `Foo<A = Bar>` or
/// `A: TraitA + TraitB` in `Foo<A: TraitA + TraitB>`).
#[derive(Clone, Encodable, Decodable, Debug)]
pub struct AssocTyConstraint {
    pub id: NodeId,
    pub ident: Ident,
    pub kind: AssocTyConstraintKind,
    pub span: Span,
}

/// The kinds of an `AssocTyConstraint`.
#[derive(Clone, Encodable, Decodable, Debug)]
pub enum AssocTyConstraintKind {
    /// E.g., `A = Bar` in `Foo<A = Bar>`.
    Equality { ty: P<Ty> },
    /// E.g. `A: TraitA + TraitB` in `Foo<A: TraitA + TraitB>`.
    Bound { bounds: GenericBounds },
}

#[derive(Clone, Encodable, Decodable, Debug)]
pub struct Ty {
    pub id: NodeId,
    pub kind: TyKind,
    pub span: Span,
}

#[derive(Clone, Encodable, Decodable, Debug)]
pub struct BareFnTy {
    pub unsafety: Unsafe,
    pub ext: Extern,
    pub generic_params: Vec<GenericParam>,
    pub decl: P<FnDecl>,
}

/// The various kinds of type recognized by the compiler.
#[derive(Clone, Encodable, Decodable, Debug)]
pub enum TyKind {
    /// A variable-length slice (`[T]`).
    Slice(P<Ty>),
    /// A fixed length array (`[T; n]`).
    Array(P<Ty>, AnonConst),
    /// A raw pointer (`*const T` or `*mut T`).
    Ptr(MutTy),
    /// A reference (`&'a T` or `&'a mut T`).
    Rptr(Option<Lifetime>, MutTy),
    /// A bare function (e.g., `fn(usize) -> bool`).
    BareFn(P<BareFnTy>),
    /// The never type (`!`).
    Never,
    /// A tuple (`(A, B, C, D,...)`).
    Tup(Vec<P<Ty>>),
    /// A path (`module::module::...::Type`), optionally
    /// "qualified", e.g., `<Vec<T> as SomeTrait>::SomeType`.
    ///
    /// Type parameters are stored in the `Path` itself.
    Path(Option<QSelf>, Path),
    /// A trait object type `Bound1 + Bound2 + Bound3`
    /// where `Bound` is a trait or a lifetime.
    TraitObject(GenericBounds, TraitObjectSyntax),
    /// An `impl Bound1 + Bound2 + Bound3` type
    /// where `Bound` is a trait or a lifetime.
    ///
    /// The `NodeId` exists to prevent lowering from having to
    /// generate `NodeId`s on the fly, which would complicate
    /// the generation of opaque `type Foo = impl Trait` items significantly.
    ImplTrait(NodeId, GenericBounds),
    /// No-op; kept solely so that we can pretty-print faithfully.
    Paren(P<Ty>),
    /// Unused for now.
    Typeof(AnonConst),
    /// This means the type should be inferred instead of it having been
    /// specified. This can appear anywhere in a type.
    Infer,
    /// Inferred type of a `self` or `&self` argument in a method.
    ImplicitSelf,
    /// A macro in the type position.
    MacCall(MacCall),
    /// Placeholder for a kind that has failed to be defined.
    Err,
    /// Placeholder for a `va_list`.
    CVarArgs,
}

impl TyKind {
    pub fn is_implicit_self(&self) -> bool {
        if let TyKind::ImplicitSelf = *self { true } else { false }
    }

    pub fn is_unit(&self) -> bool {
        if let TyKind::Tup(ref tys) = *self { tys.is_empty() } else { false }
    }
}

/// Syntax used to declare a trait object.
#[derive(Clone, Copy, PartialEq, Encodable, Decodable, Debug)]
pub enum TraitObjectSyntax {
    Dyn,
    None,
}

/// Inline assembly operand explicit register or register class.
///
/// E.g., `"eax"` as in `asm!("mov eax, 2", out("eax") result)`.
#[derive(Clone, Copy, Encodable, Decodable, Debug)]
pub enum InlineAsmRegOrRegClass {
    Reg(Symbol),
    RegClass(Symbol),
}

bitflags::bitflags! {
    #[derive(Encodable, Decodable, HashStable_Generic)]
    pub struct InlineAsmOptions: u8 {
        const PURE = 1 << 0;
        const NOMEM = 1 << 1;
        const READONLY = 1 << 2;
        const PRESERVES_FLAGS = 1 << 3;
        const NORETURN = 1 << 4;
        const NOSTACK = 1 << 5;
        const ATT_SYNTAX = 1 << 6;
    }
}

#[derive(Clone, PartialEq, Encodable, Decodable, Debug, HashStable_Generic)]
pub enum InlineAsmTemplatePiece {
    String(String),
    Placeholder { operand_idx: usize, modifier: Option<char>, span: Span },
}

impl fmt::Display for InlineAsmTemplatePiece {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        match self {
            Self::String(s) => {
                for c in s.chars() {
                    match c {
                        '{' => f.write_str("{{")?,
                        '}' => f.write_str("}}")?,
                        _ => c.fmt(f)?,
                    }
                }
                Ok(())
            }
            Self::Placeholder { operand_idx, modifier: Some(modifier), .. } => {
                write!(f, "{{{}:{}}}", operand_idx, modifier)
            }
            Self::Placeholder { operand_idx, modifier: None, .. } => {
                write!(f, "{{{}}}", operand_idx)
            }
        }
    }
}

impl InlineAsmTemplatePiece {
    /// Rebuilds the asm template string from its pieces.
    pub fn to_string(s: &[Self]) -> String {
        use fmt::Write;
        let mut out = String::new();
        for p in s.iter() {
            let _ = write!(out, "{}", p);
        }
        out
    }
}

/// Inline assembly operand.
///
/// E.g., `out("eax") result` as in `asm!("mov eax, 2", out("eax") result)`.
#[derive(Clone, Encodable, Decodable, Debug)]
pub enum InlineAsmOperand {
    In {
        reg: InlineAsmRegOrRegClass,
        expr: P<Expr>,
    },
    Out {
        reg: InlineAsmRegOrRegClass,
        late: bool,
        expr: Option<P<Expr>>,
    },
    InOut {
        reg: InlineAsmRegOrRegClass,
        late: bool,
        expr: P<Expr>,
    },
    SplitInOut {
        reg: InlineAsmRegOrRegClass,
        late: bool,
        in_expr: P<Expr>,
        out_expr: Option<P<Expr>>,
    },
    Const {
        expr: P<Expr>,
    },
    Sym {
        expr: P<Expr>,
    },
}

/// Inline assembly.
///
/// E.g., `asm!("NOP");`.
#[derive(Clone, Encodable, Decodable, Debug)]
pub struct InlineAsm {
    pub template: Vec<InlineAsmTemplatePiece>,
    pub operands: Vec<(InlineAsmOperand, Span)>,
    pub options: InlineAsmOptions,
    pub line_spans: Vec<Span>,
}

/// Inline assembly dialect.
///
/// E.g., `"intel"` as in `llvm_asm!("mov eax, 2" : "={eax}"(result) : : : "intel")`.
#[derive(Clone, PartialEq, Encodable, Decodable, Debug, Copy, HashStable_Generic)]
pub enum LlvmAsmDialect {
    Att,
    Intel,
}

/// LLVM-style inline assembly.
///
/// E.g., `"={eax}"(result)` as in `llvm_asm!("mov eax, 2" : "={eax}"(result) : : : "intel")`.
#[derive(Clone, Encodable, Decodable, Debug)]
pub struct LlvmInlineAsmOutput {
    pub constraint: Symbol,
    pub expr: P<Expr>,
    pub is_rw: bool,
    pub is_indirect: bool,
}

/// LLVM-style inline assembly.
///
/// E.g., `llvm_asm!("NOP");`.
#[derive(Clone, Encodable, Decodable, Debug)]
pub struct LlvmInlineAsm {
    pub asm: Symbol,
    pub asm_str_style: StrStyle,
    pub outputs: Vec<LlvmInlineAsmOutput>,
    pub inputs: Vec<(Symbol, P<Expr>)>,
    pub clobbers: Vec<Symbol>,
    pub volatile: bool,
    pub alignstack: bool,
    pub dialect: LlvmAsmDialect,
}

/// A parameter in a function header.
///
/// E.g., `bar: usize` as in `fn foo(bar: usize)`.
#[derive(Clone, Encodable, Decodable, Debug)]
pub struct Param {
    pub attrs: AttrVec,
    pub ty: P<Ty>,
    pub pat: P<Pat>,
    pub id: NodeId,
    pub span: Span,
    pub is_placeholder: bool,
}

/// Alternative representation for `Arg`s describing `self` parameter of methods.
///
/// E.g., `&mut self` as in `fn foo(&mut self)`.
#[derive(Clone, Encodable, Decodable, Debug)]
pub enum SelfKind {
    /// `self`, `mut self`
    Value(Mutability),
    /// `&'lt self`, `&'lt mut self`
    Region(Option<Lifetime>, Mutability),
    /// `self: TYPE`, `mut self: TYPE`
    Explicit(P<Ty>, Mutability),
}

pub type ExplicitSelf = Spanned<SelfKind>;

impl Param {
    /// Attempts to cast parameter to `ExplicitSelf`.
    pub fn to_self(&self) -> Option<ExplicitSelf> {
        if let PatKind::Ident(BindingMode::ByValue(mutbl), ident, _) = self.pat.kind {
            if ident.name == kw::SelfLower {
                return match self.ty.kind {
                    TyKind::ImplicitSelf => Some(respan(self.pat.span, SelfKind::Value(mutbl))),
                    TyKind::Rptr(lt, MutTy { ref ty, mutbl }) if ty.kind.is_implicit_self() => {
                        Some(respan(self.pat.span, SelfKind::Region(lt, mutbl)))
                    }
                    _ => Some(respan(
                        self.pat.span.to(self.ty.span),
                        SelfKind::Explicit(self.ty.clone(), mutbl),
                    )),
                };
            }
        }
        None
    }

    /// Returns `true` if parameter is `self`.
    pub fn is_self(&self) -> bool {
        if let PatKind::Ident(_, ident, _) = self.pat.kind {
            ident.name == kw::SelfLower
        } else {
            false
        }
    }

    /// Builds a `Param` object from `ExplicitSelf`.
    pub fn from_self(attrs: AttrVec, eself: ExplicitSelf, eself_ident: Ident) -> Param {
        let span = eself.span.to(eself_ident.span);
        let infer_ty = P(Ty { id: DUMMY_NODE_ID, kind: TyKind::ImplicitSelf, span });
        let param = |mutbl, ty| Param {
            attrs,
            pat: P(Pat {
                id: DUMMY_NODE_ID,
                kind: PatKind::Ident(BindingMode::ByValue(mutbl), eself_ident, None),
                span,
                tokens: None,
            }),
            span,
            ty,
            id: DUMMY_NODE_ID,
            is_placeholder: false,
        };
        match eself.node {
            SelfKind::Explicit(ty, mutbl) => param(mutbl, ty),
            SelfKind::Value(mutbl) => param(mutbl, infer_ty),
            SelfKind::Region(lt, mutbl) => param(
                Mutability::Not,
                P(Ty {
                    id: DUMMY_NODE_ID,
                    kind: TyKind::Rptr(lt, MutTy { ty: infer_ty, mutbl }),
                    span,
                }),
            ),
        }
    }
}

/// A signature (not the body) of a function declaration.
///
/// E.g., `fn foo(bar: baz)`.
///
/// Please note that it's different from `FnHeader` structure
/// which contains metadata about function safety, asyncness, constness and ABI.
#[derive(Clone, Encodable, Decodable, Debug)]
pub struct FnDecl {
    pub inputs: Vec<Param>,
    pub output: FnRetTy,
}

impl FnDecl {
    pub fn get_self(&self) -> Option<ExplicitSelf> {
        self.inputs.get(0).and_then(Param::to_self)
    }
    pub fn has_self(&self) -> bool {
        self.inputs.get(0).map_or(false, Param::is_self)
    }
    pub fn c_variadic(&self) -> bool {
        self.inputs.last().map_or(false, |arg| match arg.ty.kind {
            TyKind::CVarArgs => true,
            _ => false,
        })
    }
}

/// Is the trait definition an auto trait?
#[derive(Copy, Clone, PartialEq, Encodable, Decodable, Debug, HashStable_Generic)]
pub enum IsAuto {
    Yes,
    No,
}

#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash, Encodable, Decodable, Debug)]
#[derive(HashStable_Generic)]
pub enum Unsafe {
    Yes(Span),
    No,
}

#[derive(Copy, Clone, Encodable, Decodable, Debug)]
pub enum Async {
    Yes { span: Span, closure_id: NodeId, return_impl_trait_id: NodeId },
    No,
}

impl Async {
    pub fn is_async(self) -> bool {
        if let Async::Yes { .. } = self { true } else { false }
    }

    /// In this case this is an `async` return, the `NodeId` for the generated `impl Trait` item.
    pub fn opt_return_id(self) -> Option<NodeId> {
        match self {
            Async::Yes { return_impl_trait_id, .. } => Some(return_impl_trait_id),
            Async::No => None,
        }
    }
}

#[derive(Copy, Clone, PartialEq, Eq, Hash, Encodable, Decodable, Debug)]
#[derive(HashStable_Generic)]
pub enum Const {
    Yes(Span),
    No,
}

/// Item defaultness.
/// For details see the [RFC #2532](https://github.com/rust-lang/rfcs/pull/2532).
#[derive(Copy, Clone, PartialEq, Encodable, Decodable, Debug, HashStable_Generic)]
pub enum Defaultness {
    Default(Span),
    Final,
}

#[derive(Copy, Clone, PartialEq, Encodable, Decodable, HashStable_Generic)]
pub enum ImplPolarity {
    /// `impl Trait for Type`
    Positive,
    /// `impl !Trait for Type`
    Negative(Span),
}

impl fmt::Debug for ImplPolarity {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        match *self {
            ImplPolarity::Positive => "positive".fmt(f),
            ImplPolarity::Negative(_) => "negative".fmt(f),
        }
    }
}

#[derive(Clone, Encodable, Decodable, Debug)]
pub enum FnRetTy {
    /// Returns type is not specified.
    ///
    /// Functions default to `()` and closures default to inference.
    /// Span points to where return type would be inserted.
    Default(Span),
    /// Everything else.
    Ty(P<Ty>),
}

impl FnRetTy {
    pub fn span(&self) -> Span {
        match *self {
            FnRetTy::Default(span) => span,
            FnRetTy::Ty(ref ty) => ty.span,
        }
    }
}

/// Module declaration.
///
/// E.g., `mod foo;` or `mod foo { .. }`.
#[derive(Clone, Encodable, Decodable, Debug, Default)]
pub struct Mod {
    /// A span from the first token past `{` to the last token until `}`.
    /// For `mod foo;`, the inner span ranges from the first token
    /// to the last token in the external file.
    pub inner: Span,
    pub items: Vec<P<Item>>,
    /// `true` for `mod foo { .. }`; `false` for `mod foo;`.
    pub inline: bool,
}

/// Foreign module declaration.
///
/// E.g., `extern { .. }` or `extern C { .. }`.
#[derive(Clone, Encodable, Decodable, Debug)]
pub struct ForeignMod {
    pub abi: Option<StrLit>,
    pub items: Vec<P<ForeignItem>>,
}

/// Global inline assembly.
///
/// Also known as "module-level assembly" or "file-scoped assembly".
#[derive(Clone, Encodable, Decodable, Debug, Copy)]
pub struct GlobalAsm {
    pub asm: Symbol,
}

#[derive(Clone, Encodable, Decodable, Debug)]
pub struct EnumDef {
    pub variants: Vec<Variant>,
}
/// Enum variant.
#[derive(Clone, Encodable, Decodable, Debug)]
pub struct Variant {
    /// Attributes of the variant.
    pub attrs: Vec<Attribute>,
    /// Id of the variant (not the constructor, see `VariantData::ctor_id()`).
    pub id: NodeId,
    /// Span
    pub span: Span,
    /// The visibility of the variant. Syntactically accepted but not semantically.
    pub vis: Visibility,
    /// Name of the variant.
    pub ident: Ident,

    /// Fields and constructor id of the variant.
    pub data: VariantData,
    /// Explicit discriminant, e.g., `Foo = 1`.
    pub disr_expr: Option<AnonConst>,
    /// Is a macro placeholder
    pub is_placeholder: bool,
}

/// Part of `use` item to the right of its prefix.
#[derive(Clone, Encodable, Decodable, Debug)]
pub enum UseTreeKind {
    /// `use prefix` or `use prefix as rename`
    ///
    /// The extra `NodeId`s are for HIR lowering, when additional statements are created for each
    /// namespace.
    Simple(Option<Ident>, NodeId, NodeId),
    /// `use prefix::{...}`
    Nested(Vec<(UseTree, NodeId)>),
    /// `use prefix::*`
    Glob,
}

/// A tree of paths sharing common prefixes.
/// Used in `use` items both at top-level and inside of braces in import groups.
#[derive(Clone, Encodable, Decodable, Debug)]
pub struct UseTree {
    pub prefix: Path,
    pub kind: UseTreeKind,
    pub span: Span,
}

impl UseTree {
    pub fn ident(&self) -> Ident {
        match self.kind {
            UseTreeKind::Simple(Some(rename), ..) => rename,
            UseTreeKind::Simple(None, ..) => {
                self.prefix.segments.last().expect("empty prefix in a simple import").ident
            }
            _ => panic!("`UseTree::ident` can only be used on a simple import"),
        }
    }
}

/// Distinguishes between `Attribute`s that decorate items and Attributes that
/// are contained as statements within items. These two cases need to be
/// distinguished for pretty-printing.
#[derive(Clone, PartialEq, Encodable, Decodable, Debug, Copy, HashStable_Generic)]
pub enum AttrStyle {
    Outer,
    Inner,
}

rustc_index::newtype_index! {
    pub struct AttrId {
        ENCODABLE = custom
        DEBUG_FORMAT = "AttrId({})"
    }
}

impl<S: Encoder> rustc_serialize::Encodable<S> for AttrId {
    fn encode(&self, s: &mut S) -> Result<(), S::Error> {
        s.emit_unit()
    }
}

impl<D: Decoder> rustc_serialize::Decodable<D> for AttrId {
    fn decode(d: &mut D) -> Result<AttrId, D::Error> {
        d.read_nil().map(|_| crate::attr::mk_attr_id())
    }
}

#[derive(Clone, Encodable, Decodable, Debug, HashStable_Generic)]
pub struct AttrItem {
    pub path: Path,
    pub args: MacArgs,
}

/// A list of attributes.
pub type AttrVec = ThinVec<Attribute>;

/// Metadata associated with an item.
#[derive(Clone, Encodable, Decodable, Debug)]
pub struct Attribute {
    pub kind: AttrKind,
    pub id: AttrId,
    /// Denotes if the attribute decorates the following construct (outer)
    /// or the construct this attribute is contained within (inner).
    pub style: AttrStyle,
    pub span: Span,
}

#[derive(Clone, Encodable, Decodable, Debug)]
pub enum AttrKind {
    /// A normal attribute.
    Normal(AttrItem),

    /// A doc comment (e.g. `/// ...`, `//! ...`, `/** ... */`, `/*! ... */`).
    /// Doc attributes (e.g. `#[doc="..."]`) are represented with the `Normal`
    /// variant (which is much less compact and thus more expensive).
    DocComment(CommentKind, Symbol),
}

/// `TraitRef`s appear in impls.
///
/// Resolution maps each `TraitRef`'s `ref_id` to its defining trait; that's all
/// that the `ref_id` is for. The `impl_id` maps to the "self type" of this impl.
/// If this impl is an `ItemKind::Impl`, the `impl_id` is redundant (it could be the
/// same as the impl's `NodeId`).
#[derive(Clone, Encodable, Decodable, Debug)]
pub struct TraitRef {
    pub path: Path,
    pub ref_id: NodeId,
}

#[derive(Clone, Encodable, Decodable, Debug)]
pub struct PolyTraitRef {
    /// The `'a` in `<'a> Foo<&'a T>`.
    pub bound_generic_params: Vec<GenericParam>,

    /// The `Foo<&'a T>` in `<'a> Foo<&'a T>`.
    pub trait_ref: TraitRef,

    pub span: Span,
}

impl PolyTraitRef {
    pub fn new(generic_params: Vec<GenericParam>, path: Path, span: Span) -> Self {
        PolyTraitRef {
            bound_generic_params: generic_params,
            trait_ref: TraitRef { path, ref_id: DUMMY_NODE_ID },
            span,
        }
    }
}

#[derive(Copy, Clone, Encodable, Decodable, Debug, HashStable_Generic)]
pub enum CrateSugar {
    /// Source is `pub(crate)`.
    PubCrate,

    /// Source is (just) `crate`.
    JustCrate,
}

pub type Visibility = Spanned<VisibilityKind>;

#[derive(Clone, Encodable, Decodable, Debug)]
pub enum VisibilityKind {
    Public,
    Crate(CrateSugar),
    Restricted { path: P<Path>, id: NodeId },
    Inherited,
}

impl VisibilityKind {
    pub fn is_pub(&self) -> bool {
        if let VisibilityKind::Public = *self { true } else { false }
    }
}

/// Field of a struct.
///
/// E.g., `bar: usize` as in `struct Foo { bar: usize }`.
#[derive(Clone, Encodable, Decodable, Debug)]
pub struct StructField {
    pub attrs: Vec<Attribute>,
    pub id: NodeId,
    pub span: Span,
    pub vis: Visibility,
    pub ident: Option<Ident>,

    pub ty: P<Ty>,
    pub is_placeholder: bool,
}

/// Fields and constructor ids of enum variants and structs.
#[derive(Clone, Encodable, Decodable, Debug)]
pub enum VariantData {
    /// Struct variant.
    ///
    /// E.g., `Bar { .. }` as in `enum Foo { Bar { .. } }`.
    Struct(Vec<StructField>, bool),
    /// Tuple variant.
    ///
    /// E.g., `Bar(..)` as in `enum Foo { Bar(..) }`.
    Tuple(Vec<StructField>, NodeId),
    /// Unit variant.
    ///
    /// E.g., `Bar = ..` as in `enum Foo { Bar = .. }`.
    Unit(NodeId),
}

impl VariantData {
    /// Return the fields of this variant.
    pub fn fields(&self) -> &[StructField] {
        match *self {
            VariantData::Struct(ref fields, ..) | VariantData::Tuple(ref fields, _) => fields,
            _ => &[],
        }
    }

    /// Return the `NodeId` of this variant's constructor, if it has one.
    pub fn ctor_id(&self) -> Option<NodeId> {
        match *self {
            VariantData::Struct(..) => None,
            VariantData::Tuple(_, id) | VariantData::Unit(id) => Some(id),
        }
    }
}

/// An item definition.
#[derive(Clone, Encodable, Decodable, Debug)]
pub struct Item<K = ItemKind> {
    pub attrs: Vec<Attribute>,
    pub id: NodeId,
    pub span: Span,
    pub vis: Visibility,
    /// The name of the item.
    /// It might be a dummy name in case of anonymous items.
    pub ident: Ident,

    pub kind: K,

    /// Original tokens this item was parsed from. This isn't necessarily
    /// available for all items, although over time more and more items should
    /// have this be `Some`. Right now this is primarily used for procedural
    /// macros, notably custom attributes.
    ///
    /// Note that the tokens here do not include the outer attributes, but will
    /// include inner attributes.
    pub tokens: Option<TokenStream>,
}

impl Item {
    /// Return the span that encompasses the attributes.
    pub fn span_with_attributes(&self) -> Span {
        self.attrs.iter().fold(self.span, |acc, attr| acc.to(attr.span))
    }
}

impl<K: Into<ItemKind>> Item<K> {
    pub fn into_item(self) -> Item {
        let Item { attrs, id, span, vis, ident, kind, tokens } = self;
        Item { attrs, id, span, vis, ident, kind: kind.into(), tokens }
    }
}

/// `extern` qualifier on a function item or function type.
#[derive(Clone, Copy, Encodable, Decodable, Debug)]
pub enum Extern {
    None,
    Implicit,
    Explicit(StrLit),
}

impl Extern {
    pub fn from_abi(abi: Option<StrLit>) -> Extern {
        abi.map_or(Extern::Implicit, Extern::Explicit)
    }
}

/// A function header.
///
/// All the information between the visibility and the name of the function is
/// included in this struct (e.g., `async unsafe fn` or `const extern "C" fn`).
#[derive(Clone, Copy, Encodable, Decodable, Debug)]
pub struct FnHeader {
    pub unsafety: Unsafe,
    pub asyncness: Async,
    pub constness: Const,
    pub ext: Extern,
}

impl FnHeader {
    /// Does this function header have any qualifiers or is it empty?
    pub fn has_qualifiers(&self) -> bool {
        let Self { unsafety, asyncness, constness, ext } = self;
        matches!(unsafety, Unsafe::Yes(_))
            || asyncness.is_async()
            || matches!(constness, Const::Yes(_))
            || !matches!(ext, Extern::None)
    }
}

impl Default for FnHeader {
    fn default() -> FnHeader {
        FnHeader {
            unsafety: Unsafe::No,
            asyncness: Async::No,
            constness: Const::No,
            ext: Extern::None,
        }
    }
}

#[derive(Clone, Encodable, Decodable, Debug)]
pub enum ItemKind {
    /// An `extern crate` item, with the optional *original* crate name if the crate was renamed.
    ///
    /// E.g., `extern crate foo` or `extern crate foo_bar as foo`.
    ExternCrate(Option<Symbol>),
    /// A use declaration item (`use`).
    ///
    /// E.g., `use foo;`, `use foo::bar;` or `use foo::bar as FooBar;`.
    Use(P<UseTree>),
    /// A static item (`static`).
    ///
    /// E.g., `static FOO: i32 = 42;` or `static FOO: &'static str = "bar";`.
    Static(P<Ty>, Mutability, Option<P<Expr>>),
    /// A constant item (`const`).
    ///
    /// E.g., `const FOO: i32 = 42;`.
    Const(Defaultness, P<Ty>, Option<P<Expr>>),
    /// A function declaration (`fn`).
    ///
    /// E.g., `fn foo(bar: usize) -> usize { .. }`.
    Fn(Defaultness, FnSig, Generics, Option<P<Block>>),
    /// A module declaration (`mod`).
    ///
    /// E.g., `mod foo;` or `mod foo { .. }`.
    Mod(Mod),
    /// An external module (`extern`).
    ///
    /// E.g., `extern {}` or `extern "C" {}`.
    ForeignMod(ForeignMod),
    /// Module-level inline assembly (from `global_asm!()`).
    GlobalAsm(P<GlobalAsm>),
    /// A type alias (`type`).
    ///
    /// E.g., `type Foo = Bar<u8>;`.
    TyAlias(Defaultness, Generics, GenericBounds, Option<P<Ty>>),
    /// An enum definition (`enum`).
    ///
    /// E.g., `enum Foo<A, B> { C<A>, D<B> }`.
    Enum(EnumDef, Generics),
    /// A struct definition (`struct`).
    ///
    /// E.g., `struct Foo<A> { x: A }`.
    Struct(VariantData, Generics),
    /// A union definition (`union`).
    ///
    /// E.g., `union Foo<A, B> { x: A, y: B }`.
    Union(VariantData, Generics),
    /// A trait declaration (`trait`).
    ///
    /// E.g., `trait Foo { .. }`, `trait Foo<T> { .. }` or `auto trait Foo {}`.
    Trait(IsAuto, Unsafe, Generics, GenericBounds, Vec<P<AssocItem>>),
    /// Trait alias
    ///
    /// E.g., `trait Foo = Bar + Quux;`.
    TraitAlias(Generics, GenericBounds),
    /// An implementation.
    ///
    /// E.g., `impl<A> Foo<A> { .. }` or `impl<A> Trait for Foo<A> { .. }`.
    Impl {
        unsafety: Unsafe,
        polarity: ImplPolarity,
        defaultness: Defaultness,
        constness: Const,
        generics: Generics,

        /// The trait being implemented, if any.
        of_trait: Option<TraitRef>,

        self_ty: P<Ty>,
        items: Vec<P<AssocItem>>,
    },
    /// A macro invocation.
    ///
    /// E.g., `foo!(..)`.
    MacCall(MacCall),

    /// A macro definition.
    MacroDef(MacroDef),
}

impl ItemKind {
    pub fn article(&self) -> &str {
        use ItemKind::*;
        match self {
            Use(..) | Static(..) | Const(..) | Fn(..) | Mod(..) | GlobalAsm(..) | TyAlias(..)
            | Struct(..) | Union(..) | Trait(..) | TraitAlias(..) | MacroDef(..) => "a",
            ExternCrate(..) | ForeignMod(..) | MacCall(..) | Enum(..) | Impl { .. } => "an",
        }
    }

    pub fn descr(&self) -> &str {
        match self {
            ItemKind::ExternCrate(..) => "extern crate",
            ItemKind::Use(..) => "`use` import",
            ItemKind::Static(..) => "static item",
            ItemKind::Const(..) => "constant item",
            ItemKind::Fn(..) => "function",
            ItemKind::Mod(..) => "module",
            ItemKind::ForeignMod(..) => "extern block",
            ItemKind::GlobalAsm(..) => "global asm item",
            ItemKind::TyAlias(..) => "type alias",
            ItemKind::Enum(..) => "enum",
            ItemKind::Struct(..) => "struct",
            ItemKind::Union(..) => "union",
            ItemKind::Trait(..) => "trait",
            ItemKind::TraitAlias(..) => "trait alias",
            ItemKind::MacCall(..) => "item macro invocation",
            ItemKind::MacroDef(..) => "macro definition",
            ItemKind::Impl { .. } => "implementation",
        }
    }

    pub fn generics(&self) -> Option<&Generics> {
        match self {
            Self::Fn(_, _, generics, _)
            | Self::TyAlias(_, generics, ..)
            | Self::Enum(_, generics)
            | Self::Struct(_, generics)
            | Self::Union(_, generics)
            | Self::Trait(_, _, generics, ..)
            | Self::TraitAlias(generics, _)
            | Self::Impl { generics, .. } => Some(generics),
            _ => None,
        }
    }
}

/// Represents associated items.
/// These include items in `impl` and `trait` definitions.
pub type AssocItem = Item<AssocItemKind>;

/// Represents associated item kinds.
///
/// The term "provided" in the variants below refers to the item having a default
/// definition / body. Meanwhile, a "required" item lacks a definition / body.
/// In an implementation, all items must be provided.
/// The `Option`s below denote the bodies, where `Some(_)`
/// means "provided" and conversely `None` means "required".
#[derive(Clone, Encodable, Decodable, Debug)]
pub enum AssocItemKind {
    /// An associated constant, `const $ident: $ty $def?;` where `def ::= "=" $expr? ;`.
    /// If `def` is parsed, then the constant is provided, and otherwise required.
    Const(Defaultness, P<Ty>, Option<P<Expr>>),
    /// An associated function.
    Fn(Defaultness, FnSig, Generics, Option<P<Block>>),
    /// An associated type.
    TyAlias(Defaultness, Generics, GenericBounds, Option<P<Ty>>),
    /// A macro expanding to associated items.
    MacCall(MacCall),
}

impl AssocItemKind {
    pub fn defaultness(&self) -> Defaultness {
        match *self {
            Self::Const(def, ..) | Self::Fn(def, ..) | Self::TyAlias(def, ..) => def,
            Self::MacCall(..) => Defaultness::Final,
        }
    }
}

impl From<AssocItemKind> for ItemKind {
    fn from(assoc_item_kind: AssocItemKind) -> ItemKind {
        match assoc_item_kind {
            AssocItemKind::Const(a, b, c) => ItemKind::Const(a, b, c),
            AssocItemKind::Fn(a, b, c, d) => ItemKind::Fn(a, b, c, d),
            AssocItemKind::TyAlias(a, b, c, d) => ItemKind::TyAlias(a, b, c, d),
            AssocItemKind::MacCall(a) => ItemKind::MacCall(a),
        }
    }
}

impl TryFrom<ItemKind> for AssocItemKind {
    type Error = ItemKind;

    fn try_from(item_kind: ItemKind) -> Result<AssocItemKind, ItemKind> {
        Ok(match item_kind {
            ItemKind::Const(a, b, c) => AssocItemKind::Const(a, b, c),
            ItemKind::Fn(a, b, c, d) => AssocItemKind::Fn(a, b, c, d),
            ItemKind::TyAlias(a, b, c, d) => AssocItemKind::TyAlias(a, b, c, d),
            ItemKind::MacCall(a) => AssocItemKind::MacCall(a),
            _ => return Err(item_kind),
        })
    }
}

/// An item in `extern` block.
#[derive(Clone, Encodable, Decodable, Debug)]
pub enum ForeignItemKind {
    /// A foreign static item (`static FOO: u8`).
    Static(P<Ty>, Mutability, Option<P<Expr>>),
    /// A foreign function.
    Fn(Defaultness, FnSig, Generics, Option<P<Block>>),
    /// A foreign type.
    TyAlias(Defaultness, Generics, GenericBounds, Option<P<Ty>>),
    /// A macro expanding to foreign items.
    MacCall(MacCall),
}

impl From<ForeignItemKind> for ItemKind {
    fn from(foreign_item_kind: ForeignItemKind) -> ItemKind {
        match foreign_item_kind {
            ForeignItemKind::Static(a, b, c) => ItemKind::Static(a, b, c),
            ForeignItemKind::Fn(a, b, c, d) => ItemKind::Fn(a, b, c, d),
            ForeignItemKind::TyAlias(a, b, c, d) => ItemKind::TyAlias(a, b, c, d),
            ForeignItemKind::MacCall(a) => ItemKind::MacCall(a),
        }
    }
}

impl TryFrom<ItemKind> for ForeignItemKind {
    type Error = ItemKind;

    fn try_from(item_kind: ItemKind) -> Result<ForeignItemKind, ItemKind> {
        Ok(match item_kind {
            ItemKind::Static(a, b, c) => ForeignItemKind::Static(a, b, c),
            ItemKind::Fn(a, b, c, d) => ForeignItemKind::Fn(a, b, c, d),
            ItemKind::TyAlias(a, b, c, d) => ForeignItemKind::TyAlias(a, b, c, d),
            ItemKind::MacCall(a) => ForeignItemKind::MacCall(a),
            _ => return Err(item_kind),
        })
    }
}

pub type ForeignItem = Item<ForeignItemKind>;