1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
#![warn(missing_docs)]

/*!
# An owning reference.

This crate provides the _owning reference_ types `OwningRef` and `OwningRefMut`
that enables it to bundle a reference together with the owner of the data it points to.
This allows moving and dropping of a `OwningRef` without needing to recreate the reference.

This can sometimes be useful because Rust borrowing rules normally prevent
moving a type that has been moved from. For example, this kind of code gets rejected:

```compile_fail,E0515
fn return_owned_and_referenced<'a>() -> (Vec<u8>, &'a [u8]) {
    let v = vec![1, 2, 3, 4];
    let s = &v[1..3];
    (v, s)
}
```

Even though, from a memory-layout point of view, this can be entirely safe
if the new location of the vector still lives longer than the lifetime `'a`
of the reference because the backing allocation of the vector does not change.

This library enables this safe usage by keeping the owner and the reference
bundled together in a wrapper type that ensure that lifetime constraint:

```rust
# extern crate owning_ref;
# use owning_ref::OwningRef;
# fn main() {
fn return_owned_and_referenced() -> OwningRef<Vec<u8>, [u8]> {
    let v = vec![1, 2, 3, 4];
    let or = OwningRef::new(v);
    let or = or.map(|v| &v[1..3]);
    or
}
# }
```

It works by requiring owner types to dereference to stable memory locations
and preventing mutable access to root containers, which in practice requires heap allocation
as provided by `Box<T>`, `Rc<T>`, etc.

Also provided are typedefs for common owner type combinations,
which allow for less verbose type signatures.
For example, `BoxRef<T>` instead of `OwningRef<Box<T>, T>`.

The crate also provides the more advanced `OwningHandle` type,
which allows more freedom in bundling a dependent handle object
along with the data it depends on, at the cost of some unsafe needed in the API.
See the documentation around `OwningHandle` for more details.

# Examples

## Basics

```
extern crate owning_ref;
use owning_ref::BoxRef;

fn main() {
    // Create an array owned by a Box.
    let arr = Box::new([1, 2, 3, 4]) as Box<[i32]>;

    // Transfer into a BoxRef.
    let arr: BoxRef<[i32]> = BoxRef::new(arr);
    assert_eq!(&*arr, &[1, 2, 3, 4]);

    // We can slice the array without losing ownership or changing type.
    let arr: BoxRef<[i32]> = arr.map(|arr| &arr[1..3]);
    assert_eq!(&*arr, &[2, 3]);

    // Also works for Arc, Rc, String and Vec!
}
```

## Caching a reference to a struct field

```
extern crate owning_ref;
use owning_ref::BoxRef;

fn main() {
    struct Foo {
        tag: u32,
        x: u16,
        y: u16,
        z: u16,
    }
    let foo = Foo { tag: 1, x: 100, y: 200, z: 300 };

    let or = BoxRef::new(Box::new(foo)).map(|foo| {
        match foo.tag {
            0 => &foo.x,
            1 => &foo.y,
            2 => &foo.z,
            _ => panic!(),
        }
    });

    assert_eq!(*or, 200);
}
```

## Caching a reference to an entry in a vector

```
extern crate owning_ref;
use owning_ref::VecRef;

fn main() {
    let v = VecRef::new(vec![1, 2, 3, 4, 5]).map(|v| &v[3]);
    assert_eq!(*v, 4);
}
```

## Caching a subslice of a String

```
extern crate owning_ref;
use owning_ref::StringRef;

fn main() {
    let s = StringRef::new("hello world".to_owned())
        .map(|s| s.split(' ').nth(1).unwrap());

    assert_eq!(&*s, "world");
}
```

## Reference counted slices that share ownership of the backing storage

```
extern crate owning_ref;
use owning_ref::RcRef;
use std::rc::Rc;

fn main() {
    let rc: RcRef<[i32]> = RcRef::new(Rc::new([1, 2, 3, 4]) as Rc<[i32]>);
    assert_eq!(&*rc, &[1, 2, 3, 4]);

    let rc_a: RcRef<[i32]> = rc.clone().map(|s| &s[0..2]);
    let rc_b = rc.clone().map(|s| &s[1..3]);
    let rc_c = rc.clone().map(|s| &s[2..4]);
    assert_eq!(&*rc_a, &[1, 2]);
    assert_eq!(&*rc_b, &[2, 3]);
    assert_eq!(&*rc_c, &[3, 4]);

    let rc_c_a = rc_c.clone().map(|s| &s[1]);
    assert_eq!(&*rc_c_a, &4);
}
```

## Atomic reference counted slices that share ownership of the backing storage

```
extern crate owning_ref;
use owning_ref::ArcRef;
use std::sync::Arc;

fn main() {
    use std::thread;

    fn par_sum(rc: ArcRef<[i32]>) -> i32 {
        if rc.len() == 0 {
            return 0;
        } else if rc.len() == 1 {
            return rc[0];
        }
        let mid = rc.len() / 2;
        let left = rc.clone().map(|s| &s[..mid]);
        let right = rc.map(|s| &s[mid..]);

        let left = thread::spawn(move || par_sum(left));
        let right = thread::spawn(move || par_sum(right));

        left.join().unwrap() + right.join().unwrap()
    }

    let rc: Arc<[i32]> = Arc::new([1, 2, 3, 4]);
    let rc: ArcRef<[i32]> = rc.into();

    assert_eq!(par_sum(rc), 10);
}
```

## References into RAII locks

```
extern crate owning_ref;
use owning_ref::RefRef;
use std::cell::{RefCell, Ref};

fn main() {
    let refcell = RefCell::new((1, 2, 3, 4));
    // Also works with Mutex and RwLock

    let refref = {
        let refref = RefRef::new(refcell.borrow()).map(|x| &x.3);
        assert_eq!(*refref, 4);

        // We move the RAII lock and the reference to one of
        // the subfields in the data it guards here:
        refref
    };

    assert_eq!(*refref, 4);

    drop(refref);

    assert_eq!(*refcell.borrow(), (1, 2, 3, 4));
}
```

## Mutable reference

When the owned container implements `DerefMut`, it is also possible to make
a _mutable owning reference_. (e.g., with `Box`, `RefMut`, `MutexGuard`)

```
extern crate owning_ref;
use owning_ref::RefMutRefMut;
use std::cell::{RefCell, RefMut};

fn main() {
    let refcell = RefCell::new((1, 2, 3, 4));

    let mut refmut_refmut = {
        let mut refmut_refmut = RefMutRefMut::new(refcell.borrow_mut()).map_mut(|x| &mut x.3);
        assert_eq!(*refmut_refmut, 4);
        *refmut_refmut *= 2;

        refmut_refmut
    };

    assert_eq!(*refmut_refmut, 8);
    *refmut_refmut *= 2;

    drop(refmut_refmut);

    assert_eq!(*refcell.borrow(), (1, 2, 3, 16));
}
```
*/

pub use stable_deref_trait::{
    CloneStableDeref as CloneStableAddress, StableDeref as StableAddress,
};
use std::mem;

/// An owning reference.
///
/// This wraps an owner `O` and a reference `&T` pointing
/// at something reachable from `O::Target` while keeping
/// the ability to move `self` around.
///
/// The owner is usually a pointer that points at some base type.
///
/// For more details and examples, see the module and method docs.
pub struct OwningRef<O, T: ?Sized> {
    owner: O,
    reference: *const T,
}

/// An mutable owning reference.
///
/// This wraps an owner `O` and a reference `&mut T` pointing
/// at something reachable from `O::Target` while keeping
/// the ability to move `self` around.
///
/// The owner is usually a pointer that points at some base type.
///
/// For more details and examples, see the module and method docs.
pub struct OwningRefMut<O, T: ?Sized> {
    owner: O,
    reference: *mut T,
}

/// Helper trait for an erased concrete type an owner dereferences to.
/// This is used in form of a trait object for keeping
/// something around to (virtually) call the destructor.
pub trait Erased {}
impl<T> Erased for T {}

/// Helper trait for erasing the concrete type of what an owner dereferences to,
/// for example `Box<T> -> Box<Erased>`. This would be unneeded with
/// higher kinded types support in the language.
#[allow(unused_lifetimes)]
pub unsafe trait IntoErased<'a> {
    /// Owner with the dereference type substituted to `Erased`.
    type Erased;
    /// Performs the type erasure.
    fn into_erased(self) -> Self::Erased;
}

/// Helper trait for erasing the concrete type of what an owner dereferences to,
/// for example `Box<T> -> Box<Erased + Send>`. This would be unneeded with
/// higher kinded types support in the language.
#[allow(unused_lifetimes)]
pub unsafe trait IntoErasedSend<'a> {
    /// Owner with the dereference type substituted to `Erased + Send`.
    type Erased: Send;
    /// Performs the type erasure.
    fn into_erased_send(self) -> Self::Erased;
}

/// Helper trait for erasing the concrete type of what an owner dereferences to,
/// for example `Box<T> -> Box<Erased + Send + Sync>`. This would be unneeded with
/// higher kinded types support in the language.
#[allow(unused_lifetimes)]
pub unsafe trait IntoErasedSendSync<'a> {
    /// Owner with the dereference type substituted to `Erased + Send + Sync`.
    type Erased: Send + Sync;
    /// Performs the type erasure.
    fn into_erased_send_sync(self) -> Self::Erased;
}

/////////////////////////////////////////////////////////////////////////////
// OwningRef
/////////////////////////////////////////////////////////////////////////////

impl<O, T: ?Sized> OwningRef<O, T> {
    /// Creates a new owning reference from a owner
    /// initialized to the direct dereference of it.
    ///
    /// # Example
    /// ```
    /// extern crate owning_ref;
    /// use owning_ref::OwningRef;
    ///
    /// fn main() {
    ///     let owning_ref = OwningRef::new(Box::new(42));
    ///     assert_eq!(*owning_ref, 42);
    /// }
    /// ```
    pub fn new(o: O) -> Self
    where
        O: StableAddress,
        O: Deref<Target = T>,
    {
        OwningRef { reference: &*o, owner: o }
    }

    /// Like `new`, but doesn’t require `O` to implement the `StableAddress` trait.
    /// Instead, the caller is responsible to make the same promises as implementing the trait.
    ///
    /// This is useful for cases where coherence rules prevents implementing the trait
    /// without adding a dependency to this crate in a third-party library.
    pub unsafe fn new_assert_stable_address(o: O) -> Self
    where
        O: Deref<Target = T>,
    {
        OwningRef { reference: &*o, owner: o }
    }

    /// Converts `self` into a new owning reference that points at something reachable
    /// from the previous one.
    ///
    /// This can be a reference to a field of `U`, something reachable from a field of
    /// `U`, or even something unrelated with a `'static` lifetime.
    ///
    /// # Example
    /// ```
    /// extern crate owning_ref;
    /// use owning_ref::OwningRef;
    ///
    /// fn main() {
    ///     let owning_ref = OwningRef::new(Box::new([1, 2, 3, 4]));
    ///
    ///     // create a owning reference that points at the
    ///     // third element of the array.
    ///     let owning_ref = owning_ref.map(|array| &array[2]);
    ///     assert_eq!(*owning_ref, 3);
    /// }
    /// ```
    pub fn map<F, U: ?Sized>(self, f: F) -> OwningRef<O, U>
    where
        O: StableAddress,
        F: FnOnce(&T) -> &U,
    {
        OwningRef { reference: f(&self), owner: self.owner }
    }

    /// Tries to convert `self` into a new owning reference that points
    /// at something reachable from the previous one.
    ///
    /// This can be a reference to a field of `U`, something reachable from a field of
    /// `U`, or even something unrelated with a `'static` lifetime.
    ///
    /// # Example
    /// ```
    /// extern crate owning_ref;
    /// use owning_ref::OwningRef;
    ///
    /// fn main() {
    ///     let owning_ref = OwningRef::new(Box::new([1, 2, 3, 4]));
    ///
    ///     // create a owning reference that points at the
    ///     // third element of the array.
    ///     let owning_ref = owning_ref.try_map(|array| {
    ///         if array[2] == 3 { Ok(&array[2]) } else { Err(()) }
    ///     });
    ///     assert_eq!(*owning_ref.unwrap(), 3);
    /// }
    /// ```
    pub fn try_map<F, U: ?Sized, E>(self, f: F) -> Result<OwningRef<O, U>, E>
    where
        O: StableAddress,
        F: FnOnce(&T) -> Result<&U, E>,
    {
        Ok(OwningRef { reference: f(&self)?, owner: self.owner })
    }

    /// Converts `self` into a new owning reference with a different owner type.
    ///
    /// The new owner type needs to still contain the original owner in some way
    /// so that the reference into it remains valid. This function is marked unsafe
    /// because the user needs to manually uphold this guarantee.
    pub unsafe fn map_owner<F, P>(self, f: F) -> OwningRef<P, T>
    where
        O: StableAddress,
        P: StableAddress,
        F: FnOnce(O) -> P,
    {
        OwningRef { reference: self.reference, owner: f(self.owner) }
    }

    /// Converts `self` into a new owning reference where the owner is wrapped
    /// in an additional `Box<O>`.
    ///
    /// This can be used to safely erase the owner of any `OwningRef<O, T>`
    /// to a `OwningRef<Box<Erased>, T>`.
    pub fn map_owner_box(self) -> OwningRef<Box<O>, T> {
        OwningRef { reference: self.reference, owner: Box::new(self.owner) }
    }

    /// Erases the concrete base type of the owner with a trait object.
    ///
    /// This allows mixing of owned references with different owner base types.
    ///
    /// # Example
    /// ```
    /// extern crate owning_ref;
    /// use owning_ref::{OwningRef, Erased};
    ///
    /// fn main() {
    ///     // N.B., using the concrete types here for explicitness.
    ///     // For less verbose code type aliases like `BoxRef` are provided.
    ///
    ///     let owning_ref_a: OwningRef<Box<[i32; 4]>, [i32; 4]>
    ///         = OwningRef::new(Box::new([1, 2, 3, 4]));
    ///
    ///     let owning_ref_b: OwningRef<Box<Vec<(i32, bool)>>, Vec<(i32, bool)>>
    ///         = OwningRef::new(Box::new(vec![(0, false), (1, true)]));
    ///
    ///     let owning_ref_a: OwningRef<Box<[i32; 4]>, i32>
    ///         = owning_ref_a.map(|a| &a[0]);
    ///
    ///     let owning_ref_b: OwningRef<Box<Vec<(i32, bool)>>, i32>
    ///         = owning_ref_b.map(|a| &a[1].0);
    ///
    ///     let owning_refs: [OwningRef<Box<Erased>, i32>; 2]
    ///         = [owning_ref_a.erase_owner(), owning_ref_b.erase_owner()];
    ///
    ///     assert_eq!(*owning_refs[0], 1);
    ///     assert_eq!(*owning_refs[1], 1);
    /// }
    /// ```
    pub fn erase_owner<'a>(self) -> OwningRef<O::Erased, T>
    where
        O: IntoErased<'a>,
    {
        OwningRef { reference: self.reference, owner: self.owner.into_erased() }
    }

    /// Erases the concrete base type of the owner with a trait object which implements `Send`.
    ///
    /// This allows mixing of owned references with different owner base types.
    pub fn erase_send_owner<'a>(self) -> OwningRef<O::Erased, T>
    where
        O: IntoErasedSend<'a>,
    {
        OwningRef { reference: self.reference, owner: self.owner.into_erased_send() }
    }

    /// Erases the concrete base type of the owner with a trait object
    /// which implements `Send` and `Sync`.
    ///
    /// This allows mixing of owned references with different owner base types.
    pub fn erase_send_sync_owner<'a>(self) -> OwningRef<O::Erased, T>
    where
        O: IntoErasedSendSync<'a>,
    {
        OwningRef { reference: self.reference, owner: self.owner.into_erased_send_sync() }
    }

    // UNIMPLEMENTED: wrap_owner

    // FIXME: Naming convention?
    /// A getter for the underlying owner.
    pub fn owner(&self) -> &O {
        &self.owner
    }

    // FIXME: Naming convention?
    /// Discards the reference and retrieves the owner.
    pub fn into_inner(self) -> O {
        self.owner
    }
}

impl<O, T: ?Sized> OwningRefMut<O, T> {
    /// Creates a new owning reference from a owner
    /// initialized to the direct dereference of it.
    ///
    /// # Example
    /// ```
    /// extern crate owning_ref;
    /// use owning_ref::OwningRefMut;
    ///
    /// fn main() {
    ///     let owning_ref_mut = OwningRefMut::new(Box::new(42));
    ///     assert_eq!(*owning_ref_mut, 42);
    /// }
    /// ```
    pub fn new(mut o: O) -> Self
    where
        O: StableAddress,
        O: DerefMut<Target = T>,
    {
        OwningRefMut { reference: &mut *o, owner: o }
    }

    /// Like `new`, but doesn’t require `O` to implement the `StableAddress` trait.
    /// Instead, the caller is responsible to make the same promises as implementing the trait.
    ///
    /// This is useful for cases where coherence rules prevents implementing the trait
    /// without adding a dependency to this crate in a third-party library.
    pub unsafe fn new_assert_stable_address(mut o: O) -> Self
    where
        O: DerefMut<Target = T>,
    {
        OwningRefMut { reference: &mut *o, owner: o }
    }

    /// Converts `self` into a new _shared_ owning reference that points at
    /// something reachable from the previous one.
    ///
    /// This can be a reference to a field of `U`, something reachable from a field of
    /// `U`, or even something unrelated with a `'static` lifetime.
    ///
    /// # Example
    /// ```
    /// extern crate owning_ref;
    /// use owning_ref::OwningRefMut;
    ///
    /// fn main() {
    ///     let owning_ref_mut = OwningRefMut::new(Box::new([1, 2, 3, 4]));
    ///
    ///     // create a owning reference that points at the
    ///     // third element of the array.
    ///     let owning_ref = owning_ref_mut.map(|array| &array[2]);
    ///     assert_eq!(*owning_ref, 3);
    /// }
    /// ```
    pub fn map<F, U: ?Sized>(mut self, f: F) -> OwningRef<O, U>
    where
        O: StableAddress,
        F: FnOnce(&mut T) -> &U,
    {
        OwningRef { reference: f(&mut self), owner: self.owner }
    }

    /// Converts `self` into a new _mutable_ owning reference that points at
    /// something reachable from the previous one.
    ///
    /// This can be a reference to a field of `U`, something reachable from a field of
    /// `U`, or even something unrelated with a `'static` lifetime.
    ///
    /// # Example
    /// ```
    /// extern crate owning_ref;
    /// use owning_ref::OwningRefMut;
    ///
    /// fn main() {
    ///     let owning_ref_mut = OwningRefMut::new(Box::new([1, 2, 3, 4]));
    ///
    ///     // create a owning reference that points at the
    ///     // third element of the array.
    ///     let owning_ref_mut = owning_ref_mut.map_mut(|array| &mut array[2]);
    ///     assert_eq!(*owning_ref_mut, 3);
    /// }
    /// ```
    pub fn map_mut<F, U: ?Sized>(mut self, f: F) -> OwningRefMut<O, U>
    where
        O: StableAddress,
        F: FnOnce(&mut T) -> &mut U,
    {
        OwningRefMut { reference: f(&mut self), owner: self.owner }
    }

    /// Tries to convert `self` into a new _shared_ owning reference that points
    /// at something reachable from the previous one.
    ///
    /// This can be a reference to a field of `U`, something reachable from a field of
    /// `U`, or even something unrelated with a `'static` lifetime.
    ///
    /// # Example
    /// ```
    /// extern crate owning_ref;
    /// use owning_ref::OwningRefMut;
    ///
    /// fn main() {
    ///     let owning_ref_mut = OwningRefMut::new(Box::new([1, 2, 3, 4]));
    ///
    ///     // create a owning reference that points at the
    ///     // third element of the array.
    ///     let owning_ref = owning_ref_mut.try_map(|array| {
    ///         if array[2] == 3 { Ok(&array[2]) } else { Err(()) }
    ///     });
    ///     assert_eq!(*owning_ref.unwrap(), 3);
    /// }
    /// ```
    pub fn try_map<F, U: ?Sized, E>(mut self, f: F) -> Result<OwningRef<O, U>, E>
    where
        O: StableAddress,
        F: FnOnce(&mut T) -> Result<&U, E>,
    {
        Ok(OwningRef { reference: f(&mut self)?, owner: self.owner })
    }

    /// Tries to convert `self` into a new _mutable_ owning reference that points
    /// at something reachable from the previous one.
    ///
    /// This can be a reference to a field of `U`, something reachable from a field of
    /// `U`, or even something unrelated with a `'static` lifetime.
    ///
    /// # Example
    /// ```
    /// extern crate owning_ref;
    /// use owning_ref::OwningRefMut;
    ///
    /// fn main() {
    ///     let owning_ref_mut = OwningRefMut::new(Box::new([1, 2, 3, 4]));
    ///
    ///     // create a owning reference that points at the
    ///     // third element of the array.
    ///     let owning_ref_mut = owning_ref_mut.try_map_mut(|array| {
    ///         if array[2] == 3 { Ok(&mut array[2]) } else { Err(()) }
    ///     });
    ///     assert_eq!(*owning_ref_mut.unwrap(), 3);
    /// }
    /// ```
    pub fn try_map_mut<F, U: ?Sized, E>(mut self, f: F) -> Result<OwningRefMut<O, U>, E>
    where
        O: StableAddress,
        F: FnOnce(&mut T) -> Result<&mut U, E>,
    {
        Ok(OwningRefMut { reference: f(&mut self)?, owner: self.owner })
    }

    /// Converts `self` into a new owning reference with a different owner type.
    ///
    /// The new owner type needs to still contain the original owner in some way
    /// so that the reference into it remains valid. This function is marked unsafe
    /// because the user needs to manually uphold this guarantee.
    pub unsafe fn map_owner<F, P>(self, f: F) -> OwningRefMut<P, T>
    where
        O: StableAddress,
        P: StableAddress,
        F: FnOnce(O) -> P,
    {
        OwningRefMut { reference: self.reference, owner: f(self.owner) }
    }

    /// Converts `self` into a new owning reference where the owner is wrapped
    /// in an additional `Box<O>`.
    ///
    /// This can be used to safely erase the owner of any `OwningRefMut<O, T>`
    /// to a `OwningRefMut<Box<Erased>, T>`.
    pub fn map_owner_box(self) -> OwningRefMut<Box<O>, T> {
        OwningRefMut { reference: self.reference, owner: Box::new(self.owner) }
    }

    /// Erases the concrete base type of the owner with a trait object.
    ///
    /// This allows mixing of owned references with different owner base types.
    ///
    /// # Example
    /// ```
    /// extern crate owning_ref;
    /// use owning_ref::{OwningRefMut, Erased};
    ///
    /// fn main() {
    ///     // N.B., using the concrete types here for explicitness.
    ///     // For less verbose code type aliases like `BoxRef` are provided.
    ///
    ///     let owning_ref_mut_a: OwningRefMut<Box<[i32; 4]>, [i32; 4]>
    ///         = OwningRefMut::new(Box::new([1, 2, 3, 4]));
    ///
    ///     let owning_ref_mut_b: OwningRefMut<Box<Vec<(i32, bool)>>, Vec<(i32, bool)>>
    ///         = OwningRefMut::new(Box::new(vec![(0, false), (1, true)]));
    ///
    ///     let owning_ref_mut_a: OwningRefMut<Box<[i32; 4]>, i32>
    ///         = owning_ref_mut_a.map_mut(|a| &mut a[0]);
    ///
    ///     let owning_ref_mut_b: OwningRefMut<Box<Vec<(i32, bool)>>, i32>
    ///         = owning_ref_mut_b.map_mut(|a| &mut a[1].0);
    ///
    ///     let owning_refs_mut: [OwningRefMut<Box<Erased>, i32>; 2]
    ///         = [owning_ref_mut_a.erase_owner(), owning_ref_mut_b.erase_owner()];
    ///
    ///     assert_eq!(*owning_refs_mut[0], 1);
    ///     assert_eq!(*owning_refs_mut[1], 1);
    /// }
    /// ```
    pub fn erase_owner<'a>(self) -> OwningRefMut<O::Erased, T>
    where
        O: IntoErased<'a>,
    {
        OwningRefMut { reference: self.reference, owner: self.owner.into_erased() }
    }

    // UNIMPLEMENTED: wrap_owner

    // FIXME: Naming convention?
    /// A getter for the underlying owner.
    pub fn owner(&self) -> &O {
        &self.owner
    }

    // FIXME: Naming convention?
    /// Discards the reference and retrieves the owner.
    pub fn into_inner(self) -> O {
        self.owner
    }
}

/////////////////////////////////////////////////////////////////////////////
// OwningHandle
/////////////////////////////////////////////////////////////////////////////

use std::ops::{Deref, DerefMut};

/// `OwningHandle` is a complement to `OwningRef`. Where `OwningRef` allows
/// consumers to pass around an owned object and a dependent reference,
/// `OwningHandle` contains an owned object and a dependent _object_.
///
/// `OwningHandle` can encapsulate a `RefMut` along with its associated
/// `RefCell`, or an `RwLockReadGuard` along with its associated `RwLock`.
/// However, the API is completely generic and there are no restrictions on
/// what types of owning and dependent objects may be used.
///
/// `OwningHandle` is created by passing an owner object (which dereferences
/// to a stable address) along with a callback which receives a pointer to
/// that stable location. The callback may then dereference the pointer and
/// mint a dependent object, with the guarantee that the returned object will
/// not outlive the referent of the pointer.
///
/// Since the callback needs to dereference a raw pointer, it requires `unsafe`
/// code. To avoid forcing this unsafety on most callers, the `ToHandle` trait is
/// implemented for common data structures. Types that implement `ToHandle` can
/// be wrapped into an `OwningHandle` without passing a callback.
pub struct OwningHandle<O, H>
where
    O: StableAddress,
    H: Deref,
{
    handle: H,
    _owner: O,
}

impl<O, H> Deref for OwningHandle<O, H>
where
    O: StableAddress,
    H: Deref,
{
    type Target = H::Target;
    fn deref(&self) -> &H::Target {
        self.handle.deref()
    }
}

unsafe impl<O, H> StableAddress for OwningHandle<O, H>
where
    O: StableAddress,
    H: StableAddress,
{
}

impl<O, H> DerefMut for OwningHandle<O, H>
where
    O: StableAddress,
    H: DerefMut,
{
    fn deref_mut(&mut self) -> &mut H::Target {
        self.handle.deref_mut()
    }
}

/// Trait to implement the conversion of owner to handle for common types.
pub trait ToHandle {
    /// The type of handle to be encapsulated by the OwningHandle.
    type Handle: Deref;

    /// Given an appropriately-long-lived pointer to ourselves, create a
    /// handle to be encapsulated by the `OwningHandle`.
    unsafe fn to_handle(x: *const Self) -> Self::Handle;
}

/// Trait to implement the conversion of owner to mutable handle for common types.
pub trait ToHandleMut {
    /// The type of handle to be encapsulated by the OwningHandle.
    type HandleMut: DerefMut;

    /// Given an appropriately-long-lived pointer to ourselves, create a
    /// mutable handle to be encapsulated by the `OwningHandle`.
    unsafe fn to_handle_mut(x: *const Self) -> Self::HandleMut;
}

impl<O, H> OwningHandle<O, H>
where
    O: StableAddress<Target: ToHandle<Handle = H>>,
    H: Deref,
{
    /// Creates a new `OwningHandle` for a type that implements `ToHandle`. For types
    /// that don't implement `ToHandle`, callers may invoke `new_with_fn`, which accepts
    /// a callback to perform the conversion.
    pub fn new(o: O) -> Self {
        OwningHandle::new_with_fn(o, |x| unsafe { O::Target::to_handle(x) })
    }
}

impl<O, H> OwningHandle<O, H>
where
    O: StableAddress<Target: ToHandleMut<HandleMut = H>>,
    H: DerefMut,
{
    /// Creates a new mutable `OwningHandle` for a type that implements `ToHandleMut`.
    pub fn new_mut(o: O) -> Self {
        OwningHandle::new_with_fn(o, |x| unsafe { O::Target::to_handle_mut(x) })
    }
}

impl<O, H> OwningHandle<O, H>
where
    O: StableAddress,
    H: Deref,
{
    /// Creates a new OwningHandle. The provided callback will be invoked with
    /// a pointer to the object owned by `o`, and the returned value is stored
    /// as the object to which this `OwningHandle` will forward `Deref` and
    /// `DerefMut`.
    pub fn new_with_fn<F>(o: O, f: F) -> Self
    where
        F: FnOnce(*const O::Target) -> H,
    {
        let h: H;
        {
            h = f(o.deref() as *const O::Target);
        }

        OwningHandle { handle: h, _owner: o }
    }

    /// Creates a new OwningHandle. The provided callback will be invoked with
    /// a pointer to the object owned by `o`, and the returned value is stored
    /// as the object to which this `OwningHandle` will forward `Deref` and
    /// `DerefMut`.
    pub fn try_new<F, E>(o: O, f: F) -> Result<Self, E>
    where
        F: FnOnce(*const O::Target) -> Result<H, E>,
    {
        let h: H;
        {
            h = f(o.deref() as *const O::Target)?;
        }

        Ok(OwningHandle { handle: h, _owner: o })
    }
}

/////////////////////////////////////////////////////////////////////////////
// std traits
/////////////////////////////////////////////////////////////////////////////

use std::borrow::Borrow;
use std::cmp::{Eq, Ord, Ordering, PartialEq, PartialOrd};
use std::convert::From;
use std::fmt::{self, Debug};
use std::hash::{Hash, Hasher};
use std::marker::{Send, Sync};

impl<O, T: ?Sized> Deref for OwningRef<O, T> {
    type Target = T;

    fn deref(&self) -> &T {
        unsafe { &*self.reference }
    }
}

impl<O, T: ?Sized> Deref for OwningRefMut<O, T> {
    type Target = T;

    fn deref(&self) -> &T {
        unsafe { &*self.reference }
    }
}

impl<O, T: ?Sized> DerefMut for OwningRefMut<O, T> {
    fn deref_mut(&mut self) -> &mut T {
        unsafe { &mut *self.reference }
    }
}

unsafe impl<O, T: ?Sized> StableAddress for OwningRef<O, T> {}

impl<O, T: ?Sized> AsRef<T> for OwningRef<O, T> {
    fn as_ref(&self) -> &T {
        &*self
    }
}

impl<O, T: ?Sized> AsRef<T> for OwningRefMut<O, T> {
    fn as_ref(&self) -> &T {
        &*self
    }
}

impl<O, T: ?Sized> AsMut<T> for OwningRefMut<O, T> {
    fn as_mut(&mut self) -> &mut T {
        &mut *self
    }
}

impl<O, T: ?Sized> Borrow<T> for OwningRef<O, T> {
    fn borrow(&self) -> &T {
        &*self
    }
}

impl<O, T: ?Sized> From<O> for OwningRef<O, T>
where
    O: StableAddress,
    O: Deref<Target = T>,
{
    fn from(owner: O) -> Self {
        OwningRef::new(owner)
    }
}

impl<O, T: ?Sized> From<O> for OwningRefMut<O, T>
where
    O: StableAddress,
    O: DerefMut<Target = T>,
{
    fn from(owner: O) -> Self {
        OwningRefMut::new(owner)
    }
}

impl<O, T: ?Sized> From<OwningRefMut<O, T>> for OwningRef<O, T>
where
    O: StableAddress,
    O: DerefMut<Target = T>,
{
    fn from(other: OwningRefMut<O, T>) -> Self {
        OwningRef { owner: other.owner, reference: other.reference }
    }
}

// ^ FIXME: Is a Into impl for calling into_inner() possible as well?

impl<O, T: ?Sized> Debug for OwningRef<O, T>
where
    O: Debug,
    T: Debug,
{
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "OwningRef {{ owner: {:?}, reference: {:?} }}", self.owner(), &**self)
    }
}

impl<O, T: ?Sized> Debug for OwningRefMut<O, T>
where
    O: Debug,
    T: Debug,
{
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "OwningRefMut {{ owner: {:?}, reference: {:?} }}", self.owner(), &**self)
    }
}

impl<O, T: ?Sized> Clone for OwningRef<O, T>
where
    O: CloneStableAddress,
{
    fn clone(&self) -> Self {
        OwningRef { owner: self.owner.clone(), reference: self.reference }
    }
}

unsafe impl<O, T: ?Sized> CloneStableAddress for OwningRef<O, T> where O: CloneStableAddress {}

unsafe impl<O, T: ?Sized> Send for OwningRef<O, T>
where
    O: Send,
    for<'a> &'a T: Send,
{
}
unsafe impl<O, T: ?Sized> Sync for OwningRef<O, T>
where
    O: Sync,
    for<'a> &'a T: Sync,
{
}

unsafe impl<O, T: ?Sized> Send for OwningRefMut<O, T>
where
    O: Send,
    for<'a> &'a mut T: Send,
{
}
unsafe impl<O, T: ?Sized> Sync for OwningRefMut<O, T>
where
    O: Sync,
    for<'a> &'a mut T: Sync,
{
}

impl Debug for dyn Erased {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "<Erased>",)
    }
}

impl<O, T: ?Sized> PartialEq for OwningRef<O, T>
where
    T: PartialEq,
{
    fn eq(&self, other: &Self) -> bool {
        (&*self as &T).eq(&*other as &T)
    }
}

impl<O, T: ?Sized> Eq for OwningRef<O, T> where T: Eq {}

impl<O, T: ?Sized> PartialOrd for OwningRef<O, T>
where
    T: PartialOrd,
{
    fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
        (&*self as &T).partial_cmp(&*other as &T)
    }
}

impl<O, T: ?Sized> Ord for OwningRef<O, T>
where
    T: Ord,
{
    fn cmp(&self, other: &Self) -> Ordering {
        (&*self as &T).cmp(&*other as &T)
    }
}

impl<O, T: ?Sized> Hash for OwningRef<O, T>
where
    T: Hash,
{
    fn hash<H: Hasher>(&self, state: &mut H) {
        (&*self as &T).hash(state);
    }
}

impl<O, T: ?Sized> PartialEq for OwningRefMut<O, T>
where
    T: PartialEq,
{
    fn eq(&self, other: &Self) -> bool {
        (&*self as &T).eq(&*other as &T)
    }
}

impl<O, T: ?Sized> Eq for OwningRefMut<O, T> where T: Eq {}

impl<O, T: ?Sized> PartialOrd for OwningRefMut<O, T>
where
    T: PartialOrd,
{
    fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
        (&*self as &T).partial_cmp(&*other as &T)
    }
}

impl<O, T: ?Sized> Ord for OwningRefMut<O, T>
where
    T: Ord,
{
    fn cmp(&self, other: &Self) -> Ordering {
        (&*self as &T).cmp(&*other as &T)
    }
}

impl<O, T: ?Sized> Hash for OwningRefMut<O, T>
where
    T: Hash,
{
    fn hash<H: Hasher>(&self, state: &mut H) {
        (&*self as &T).hash(state);
    }
}

/////////////////////////////////////////////////////////////////////////////
// std types integration and convenience type defs
/////////////////////////////////////////////////////////////////////////////

use std::boxed::Box;
use std::cell::{Ref, RefCell, RefMut};
use std::rc::Rc;
use std::sync::Arc;
use std::sync::{MutexGuard, RwLockReadGuard, RwLockWriteGuard};

impl<T: 'static> ToHandle for RefCell<T> {
    type Handle = Ref<'static, T>;
    unsafe fn to_handle(x: *const Self) -> Self::Handle {
        (*x).borrow()
    }
}

impl<T: 'static> ToHandleMut for RefCell<T> {
    type HandleMut = RefMut<'static, T>;
    unsafe fn to_handle_mut(x: *const Self) -> Self::HandleMut {
        (*x).borrow_mut()
    }
}

// N.B., implementing ToHandle{,Mut} for Mutex and RwLock requires a decision
// about which handle creation to use (i.e., read() vs try_read()) as well as
// what to do with error results.

/// Typedef of a owning reference that uses a `Box` as the owner.
pub type BoxRef<T, U = T> = OwningRef<Box<T>, U>;
/// Typedef of a owning reference that uses a `Vec` as the owner.
pub type VecRef<T, U = T> = OwningRef<Vec<T>, U>;
/// Typedef of a owning reference that uses a `String` as the owner.
pub type StringRef = OwningRef<String, str>;

/// Typedef of a owning reference that uses a `Rc` as the owner.
pub type RcRef<T, U = T> = OwningRef<Rc<T>, U>;
/// Typedef of a owning reference that uses a `Arc` as the owner.
pub type ArcRef<T, U = T> = OwningRef<Arc<T>, U>;

/// Typedef of a owning reference that uses a `Ref` as the owner.
pub type RefRef<'a, T, U = T> = OwningRef<Ref<'a, T>, U>;
/// Typedef of a owning reference that uses a `RefMut` as the owner.
pub type RefMutRef<'a, T, U = T> = OwningRef<RefMut<'a, T>, U>;
/// Typedef of a owning reference that uses a `MutexGuard` as the owner.
pub type MutexGuardRef<'a, T, U = T> = OwningRef<MutexGuard<'a, T>, U>;
/// Typedef of a owning reference that uses a `RwLockReadGuard` as the owner.
pub type RwLockReadGuardRef<'a, T, U = T> = OwningRef<RwLockReadGuard<'a, T>, U>;
/// Typedef of a owning reference that uses a `RwLockWriteGuard` as the owner.
pub type RwLockWriteGuardRef<'a, T, U = T> = OwningRef<RwLockWriteGuard<'a, T>, U>;

/// Typedef of a mutable owning reference that uses a `Box` as the owner.
pub type BoxRefMut<T, U = T> = OwningRefMut<Box<T>, U>;
/// Typedef of a mutable owning reference that uses a `Vec` as the owner.
pub type VecRefMut<T, U = T> = OwningRefMut<Vec<T>, U>;
/// Typedef of a mutable owning reference that uses a `String` as the owner.
pub type StringRefMut = OwningRefMut<String, str>;

/// Typedef of a mutable owning reference that uses a `RefMut` as the owner.
pub type RefMutRefMut<'a, T, U = T> = OwningRefMut<RefMut<'a, T>, U>;
/// Typedef of a mutable owning reference that uses a `MutexGuard` as the owner.
pub type MutexGuardRefMut<'a, T, U = T> = OwningRefMut<MutexGuard<'a, T>, U>;
/// Typedef of a mutable owning reference that uses a `RwLockWriteGuard` as the owner.
pub type RwLockWriteGuardRefMut<'a, T, U = T> = OwningRef<RwLockWriteGuard<'a, T>, U>;

unsafe impl<'a, T: 'a> IntoErased<'a> for Box<T> {
    type Erased = Box<dyn Erased + 'a>;
    fn into_erased(self) -> Self::Erased {
        self
    }
}
unsafe impl<'a, T: 'a> IntoErased<'a> for Rc<T> {
    type Erased = Rc<dyn Erased + 'a>;
    fn into_erased(self) -> Self::Erased {
        self
    }
}
unsafe impl<'a, T: 'a> IntoErased<'a> for Arc<T> {
    type Erased = Arc<dyn Erased + 'a>;
    fn into_erased(self) -> Self::Erased {
        self
    }
}

unsafe impl<'a, T: Send + 'a> IntoErasedSend<'a> for Box<T> {
    type Erased = Box<dyn Erased + Send + 'a>;
    fn into_erased_send(self) -> Self::Erased {
        self
    }
}

unsafe impl<'a, T: Send + 'a> IntoErasedSendSync<'a> for Box<T> {
    type Erased = Box<dyn Erased + Sync + Send + 'a>;
    fn into_erased_send_sync(self) -> Self::Erased {
        let result: Box<dyn Erased + Send + 'a> = self;
        // This is safe since Erased can always implement Sync
        // Only the destructor is available and it takes &mut self
        unsafe { mem::transmute(result) }
    }
}

unsafe impl<'a, T: Send + Sync + 'a> IntoErasedSendSync<'a> for Arc<T> {
    type Erased = Arc<dyn Erased + Send + Sync + 'a>;
    fn into_erased_send_sync(self) -> Self::Erased {
        self
    }
}

/// Typedef of a owning reference that uses an erased `Box` as the owner.
pub type ErasedBoxRef<U> = OwningRef<Box<dyn Erased>, U>;
/// Typedef of a owning reference that uses an erased `Rc` as the owner.
pub type ErasedRcRef<U> = OwningRef<Rc<dyn Erased>, U>;
/// Typedef of a owning reference that uses an erased `Arc` as the owner.
pub type ErasedArcRef<U> = OwningRef<Arc<dyn Erased>, U>;

/// Typedef of a mutable owning reference that uses an erased `Box` as the owner.
pub type ErasedBoxRefMut<U> = OwningRefMut<Box<dyn Erased>, U>;

#[cfg(test)]
mod tests;