1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
//! Routine to compute the strongly connected components (SCCs) of a
//! graph, as well as the resulting DAG if each SCC is replaced with a
//! node in the graph. This uses Tarjan's algorithm that completes in
//! O(n) time.

use crate::fx::FxHashSet;
use crate::graph::vec_graph::VecGraph;
use crate::graph::{DirectedGraph, GraphSuccessors, WithNumEdges, WithNumNodes, WithSuccessors};
use rustc_index::vec::{Idx, IndexVec};
use std::ops::Range;

#[cfg(test)]
mod tests;

/// Strongly connected components (SCC) of a graph. The type `N` is
/// the index type for the graph nodes and `S` is the index type for
/// the SCCs. We can map from each node to the SCC that it
/// participates in, and we also have the successors of each SCC.
pub struct Sccs<N: Idx, S: Idx> {
    /// For each node, what is the SCC index of the SCC to which it
    /// belongs.
    scc_indices: IndexVec<N, S>,

    /// Data about each SCC.
    scc_data: SccData<S>,
}

struct SccData<S: Idx> {
    /// For each SCC, the range of `all_successors` where its
    /// successors can be found.
    ranges: IndexVec<S, Range<usize>>,

    /// Contains the successors for all the Sccs, concatenated. The
    /// range of indices corresponding to a given SCC is found in its
    /// SccData.
    all_successors: Vec<S>,
}

impl<N: Idx, S: Idx> Sccs<N, S> {
    pub fn new(graph: &(impl DirectedGraph<Node = N> + WithNumNodes + WithSuccessors)) -> Self {
        SccsConstruction::construct(graph)
    }

    /// Returns the number of SCCs in the graph.
    pub fn num_sccs(&self) -> usize {
        self.scc_data.len()
    }

    /// Returns an iterator over the SCCs in the graph.
    ///
    /// The SCCs will be iterated in **dependency order** (or **post order**),
    /// meaning that if `S1 -> S2`, we will visit `S2` first and `S1` after.
    /// This is convenient when the edges represent dependencies: when you visit
    /// `S1`, the value for `S2` will already have been computed.
    pub fn all_sccs(&self) -> impl Iterator<Item = S> {
        (0..self.scc_data.len()).map(S::new)
    }

    /// Returns the SCC to which a node `r` belongs.
    pub fn scc(&self, r: N) -> S {
        self.scc_indices[r]
    }

    /// Returns the successors of the given SCC.
    pub fn successors(&self, scc: S) -> &[S] {
        self.scc_data.successors(scc)
    }

    /// Construct the reverse graph of the SCC graph.
    pub fn reverse(&self) -> VecGraph<S> {
        VecGraph::new(
            self.num_sccs(),
            self.all_sccs()
                .flat_map(|source| {
                    self.successors(source).iter().map(move |&target| (target, source))
                })
                .collect(),
        )
    }
}

impl<N: Idx, S: Idx> DirectedGraph for Sccs<N, S> {
    type Node = S;
}

impl<N: Idx, S: Idx> WithNumNodes for Sccs<N, S> {
    fn num_nodes(&self) -> usize {
        self.num_sccs()
    }
}

impl<N: Idx, S: Idx> WithNumEdges for Sccs<N, S> {
    fn num_edges(&self) -> usize {
        self.scc_data.all_successors.len()
    }
}

impl<N: Idx, S: Idx> GraphSuccessors<'graph> for Sccs<N, S> {
    type Item = S;

    type Iter = std::iter::Cloned<std::slice::Iter<'graph, S>>;
}

impl<N: Idx, S: Idx> WithSuccessors for Sccs<N, S> {
    fn successors(&self, node: S) -> <Self as GraphSuccessors<'_>>::Iter {
        self.successors(node).iter().cloned()
    }
}

impl<S: Idx> SccData<S> {
    /// Number of SCCs,
    fn len(&self) -> usize {
        self.ranges.len()
    }

    /// Returns the successors of the given SCC.
    fn successors(&self, scc: S) -> &[S] {
        // Annoyingly, `range` does not implement `Copy`, so we have
        // to do `range.start..range.end`:
        let range = &self.ranges[scc];
        &self.all_successors[range.start..range.end]
    }

    /// Creates a new SCC with `successors` as its successors and
    /// returns the resulting index.
    fn create_scc(&mut self, successors: impl IntoIterator<Item = S>) -> S {
        // Store the successors on `scc_successors_vec`, remembering
        // the range of indices.
        let all_successors_start = self.all_successors.len();
        self.all_successors.extend(successors);
        let all_successors_end = self.all_successors.len();

        debug!(
            "create_scc({:?}) successors={:?}",
            self.ranges.len(),
            &self.all_successors[all_successors_start..all_successors_end],
        );

        self.ranges.push(all_successors_start..all_successors_end)
    }
}

struct SccsConstruction<'c, G: DirectedGraph + WithNumNodes + WithSuccessors, S: Idx> {
    graph: &'c G,

    /// The state of each node; used during walk to record the stack
    /// and after walk to record what cycle each node ended up being
    /// in.
    node_states: IndexVec<G::Node, NodeState<G::Node, S>>,

    /// The stack of nodes that we are visiting as part of the DFS.
    node_stack: Vec<G::Node>,

    /// The stack of successors: as we visit a node, we mark our
    /// position in this stack, and when we encounter a successor SCC,
    /// we push it on the stack. When we complete an SCC, we can pop
    /// everything off the stack that was found along the way.
    successors_stack: Vec<S>,

    /// A set used to strip duplicates. As we accumulate successors
    /// into the successors_stack, we sometimes get duplicate entries.
    /// We use this set to remove those -- we also keep its storage
    /// around between successors to amortize memory allocation costs.
    duplicate_set: FxHashSet<S>,

    scc_data: SccData<S>,
}

#[derive(Copy, Clone, Debug)]
enum NodeState<N, S> {
    /// This node has not yet been visited as part of the DFS.
    ///
    /// After SCC construction is complete, this state ought to be
    /// impossible.
    NotVisited,

    /// This node is currently being walk as part of our DFS. It is on
    /// the stack at the depth `depth`.
    ///
    /// After SCC construction is complete, this state ought to be
    /// impossible.
    BeingVisited { depth: usize },

    /// Indicates that this node is a member of the given cycle.
    InCycle { scc_index: S },

    /// Indicates that this node is a member of whatever cycle
    /// `parent` is a member of. This state is transient: whenever we
    /// see it, we try to overwrite it with the current state of
    /// `parent` (this is the "path compression" step of a union-find
    /// algorithm).
    InCycleWith { parent: N },
}

#[derive(Copy, Clone, Debug)]
enum WalkReturn<S> {
    Cycle { min_depth: usize },
    Complete { scc_index: S },
}

impl<'c, G, S> SccsConstruction<'c, G, S>
where
    G: DirectedGraph + WithNumNodes + WithSuccessors,
    S: Idx,
{
    /// Identifies SCCs in the graph `G` and computes the resulting
    /// DAG. This uses a variant of [Tarjan's
    /// algorithm][wikipedia]. The high-level summary of the algorithm
    /// is that we do a depth-first search. Along the way, we keep a
    /// stack of each node whose successors are being visited. We
    /// track the depth of each node on this stack (there is no depth
    /// if the node is not on the stack). When we find that some node
    /// N with depth D can reach some other node N' with lower depth
    /// D' (i.e., D' < D), we know that N, N', and all nodes in
    /// between them on the stack are part of an SCC.
    ///
    /// [wikipedia]: https://bit.ly/2EZIx84
    fn construct(graph: &'c G) -> Sccs<G::Node, S> {
        let num_nodes = graph.num_nodes();

        let mut this = Self {
            graph,
            node_states: IndexVec::from_elem_n(NodeState::NotVisited, num_nodes),
            node_stack: Vec::with_capacity(num_nodes),
            successors_stack: Vec::new(),
            scc_data: SccData { ranges: IndexVec::new(), all_successors: Vec::new() },
            duplicate_set: FxHashSet::default(),
        };

        let scc_indices = (0..num_nodes)
            .map(G::Node::new)
            .map(|node| match this.walk_node(0, node) {
                WalkReturn::Complete { scc_index } => scc_index,
                WalkReturn::Cycle { min_depth } => {
                    panic!("`walk_node(0, {:?})` returned cycle with depth {:?}", node, min_depth)
                }
            })
            .collect();

        Sccs { scc_indices, scc_data: this.scc_data }
    }

    /// Visits a node during the DFS. We first examine its current
    /// state -- if it is not yet visited (`NotVisited`), we can push
    /// it onto the stack and start walking its successors.
    ///
    /// If it is already on the DFS stack it will be in the state
    /// `BeingVisited`. In that case, we have found a cycle and we
    /// return the depth from the stack.
    ///
    /// Otherwise, we are looking at a node that has already been
    /// completely visited. We therefore return `WalkReturn::Complete`
    /// with its associated SCC index.
    fn walk_node(&mut self, depth: usize, node: G::Node) -> WalkReturn<S> {
        debug!("walk_node(depth = {:?}, node = {:?})", depth, node);
        match self.find_state(node) {
            NodeState::InCycle { scc_index } => WalkReturn::Complete { scc_index },

            NodeState::BeingVisited { depth: min_depth } => WalkReturn::Cycle { min_depth },

            NodeState::NotVisited => self.walk_unvisited_node(depth, node),

            NodeState::InCycleWith { parent } => panic!(
                "`find_state` returned `InCycleWith({:?})`, which ought to be impossible",
                parent
            ),
        }
    }

    /// Fetches the state of the node `r`. If `r` is recorded as being
    /// in a cycle with some other node `r2`, then fetches the state
    /// of `r2` (and updates `r` to reflect current result). This is
    /// basically the "find" part of a standard union-find algorithm
    /// (with path compression).
    fn find_state(&mut self, r: G::Node) -> NodeState<G::Node, S> {
        debug!("find_state(r = {:?} in state {:?})", r, self.node_states[r]);
        match self.node_states[r] {
            NodeState::InCycle { scc_index } => NodeState::InCycle { scc_index },
            NodeState::BeingVisited { depth } => NodeState::BeingVisited { depth },
            NodeState::NotVisited => NodeState::NotVisited,
            NodeState::InCycleWith { parent } => {
                let parent_state = self.find_state(parent);
                debug!("find_state: parent_state = {:?}", parent_state);
                match parent_state {
                    NodeState::InCycle { .. } => {
                        self.node_states[r] = parent_state;
                        parent_state
                    }

                    NodeState::BeingVisited { depth } => {
                        self.node_states[r] =
                            NodeState::InCycleWith { parent: self.node_stack[depth] };
                        parent_state
                    }

                    NodeState::NotVisited | NodeState::InCycleWith { .. } => {
                        panic!("invalid parent state: {:?}", parent_state)
                    }
                }
            }
        }
    }

    /// Walks a node that has never been visited before.
    fn walk_unvisited_node(&mut self, depth: usize, node: G::Node) -> WalkReturn<S> {
        debug!("walk_unvisited_node(depth = {:?}, node = {:?})", depth, node);

        debug_assert!(match self.node_states[node] {
            NodeState::NotVisited => true,
            _ => false,
        });

        // Push `node` onto the stack.
        self.node_states[node] = NodeState::BeingVisited { depth };
        self.node_stack.push(node);

        // Walk each successor of the node, looking to see if any of
        // them can reach a node that is presently on the stack. If
        // so, that means they can also reach us.
        let mut min_depth = depth;
        let mut min_cycle_root = node;
        let successors_len = self.successors_stack.len();
        for successor_node in self.graph.successors(node) {
            debug!("walk_unvisited_node: node = {:?} successor_ode = {:?}", node, successor_node);
            match self.walk_node(depth + 1, successor_node) {
                WalkReturn::Cycle { min_depth: successor_min_depth } => {
                    // Track the minimum depth we can reach.
                    assert!(successor_min_depth <= depth);
                    if successor_min_depth < min_depth {
                        debug!(
                            "walk_unvisited_node: node = {:?} successor_min_depth = {:?}",
                            node, successor_min_depth
                        );
                        min_depth = successor_min_depth;
                        min_cycle_root = successor_node;
                    }
                }

                WalkReturn::Complete { scc_index: successor_scc_index } => {
                    // Push the completed SCC indices onto
                    // the `successors_stack` for later.
                    debug!(
                        "walk_unvisited_node: node = {:?} successor_scc_index = {:?}",
                        node, successor_scc_index
                    );
                    self.successors_stack.push(successor_scc_index);
                }
            }
        }

        // Completed walk, remove `node` from the stack.
        let r = self.node_stack.pop();
        debug_assert_eq!(r, Some(node));

        // If `min_depth == depth`, then we are the root of the
        // cycle: we can't reach anyone further down the stack.
        if min_depth == depth {
            // Note that successor stack may have duplicates, so we
            // want to remove those:
            let deduplicated_successors = {
                let duplicate_set = &mut self.duplicate_set;
                duplicate_set.clear();
                self.successors_stack
                    .drain(successors_len..)
                    .filter(move |&i| duplicate_set.insert(i))
            };
            let scc_index = self.scc_data.create_scc(deduplicated_successors);
            self.node_states[node] = NodeState::InCycle { scc_index };
            WalkReturn::Complete { scc_index }
        } else {
            // We are not the head of the cycle. Return back to our
            // caller. They will take ownership of the
            // `self.successors` data that we pushed.
            self.node_states[node] = NodeState::InCycleWith { parent: min_cycle_root };
            WalkReturn::Cycle { min_depth }
        }
    }
}