1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
use crate::fx::FxIndexSet; use crate::sync::Lock; use rustc_index::bit_set::BitMatrix; use std::fmt::Debug; use std::hash::Hash; use std::mem; #[cfg(test)] mod tests; #[derive(Clone, Debug)] pub struct TransitiveRelation<T: Eq + Hash> { // List of elements. This is used to map from a T to a usize. elements: FxIndexSet<T>, // List of base edges in the graph. Require to compute transitive // closure. edges: Vec<Edge>, // This is a cached transitive closure derived from the edges. // Currently, we build it lazilly and just throw out any existing // copy whenever a new edge is added. (The Lock is to permit // the lazy computation.) This is kind of silly, except for the // fact its size is tied to `self.elements.len()`, so I wanted to // wait before building it up to avoid reallocating as new edges // are added with new elements. Perhaps better would be to ask the // user for a batch of edges to minimize this effect, but I // already wrote the code this way. :P -nmatsakis closure: Lock<Option<BitMatrix<usize, usize>>>, } // HACK(eddyb) manual impl avoids `Default` bound on `T`. impl<T: Eq + Hash> Default for TransitiveRelation<T> { fn default() -> Self { TransitiveRelation { elements: Default::default(), edges: Default::default(), closure: Default::default(), } } } #[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Debug)] struct Index(usize); #[derive(Clone, PartialEq, Eq, Debug)] struct Edge { source: Index, target: Index, } impl<T: Clone + Debug + Eq + Hash> TransitiveRelation<T> { pub fn is_empty(&self) -> bool { self.edges.is_empty() } pub fn elements(&self) -> impl Iterator<Item = &T> { self.elements.iter() } fn index(&self, a: &T) -> Option<Index> { self.elements.get_index_of(a).map(Index) } fn add_index(&mut self, a: T) -> Index { let (index, added) = self.elements.insert_full(a); if added { // if we changed the dimensions, clear the cache *self.closure.get_mut() = None; } Index(index) } /// Applies the (partial) function to each edge and returns a new /// relation. If `f` returns `None` for any end-point, returns /// `None`. pub fn maybe_map<F, U>(&self, mut f: F) -> Option<TransitiveRelation<U>> where F: FnMut(&T) -> Option<U>, U: Clone + Debug + Eq + Hash + Clone, { let mut result = TransitiveRelation::default(); for edge in &self.edges { result.add(f(&self.elements[edge.source.0])?, f(&self.elements[edge.target.0])?); } Some(result) } /// Indicate that `a < b` (where `<` is this relation) pub fn add(&mut self, a: T, b: T) { let a = self.add_index(a); let b = self.add_index(b); let edge = Edge { source: a, target: b }; if !self.edges.contains(&edge) { self.edges.push(edge); // added an edge, clear the cache *self.closure.get_mut() = None; } } /// Checks whether `a < target` (transitively) pub fn contains(&self, a: &T, b: &T) -> bool { match (self.index(a), self.index(b)) { (Some(a), Some(b)) => self.with_closure(|closure| closure.contains(a.0, b.0)), (None, _) | (_, None) => false, } } /// Thinking of `x R y` as an edge `x -> y` in a graph, this /// returns all things reachable from `a`. /// /// Really this probably ought to be `impl Iterator<Item = &T>`, but /// I'm too lazy to make that work, and -- given the caching /// strategy -- it'd be a touch tricky anyhow. pub fn reachable_from(&self, a: &T) -> Vec<&T> { match self.index(a) { Some(a) => { self.with_closure(|closure| closure.iter(a.0).map(|i| &self.elements[i]).collect()) } None => vec![], } } /// Picks what I am referring to as the "postdominating" /// upper-bound for `a` and `b`. This is usually the least upper /// bound, but in cases where there is no single least upper /// bound, it is the "mutual immediate postdominator", if you /// imagine a graph where `a < b` means `a -> b`. /// /// This function is needed because region inference currently /// requires that we produce a single "UB", and there is no best /// choice for the LUB. Rather than pick arbitrarily, I pick a /// less good, but predictable choice. This should help ensure /// that region inference yields predictable results (though it /// itself is not fully sufficient). /// /// Examples are probably clearer than any prose I could write /// (there are corresponding tests below, btw). In each case, /// the query is `postdom_upper_bound(a, b)`: /// /// ```text /// // Returns Some(x), which is also LUB. /// a -> a1 -> x /// ^ /// | /// b -> b1 ---+ /// /// // Returns `Some(x)`, which is not LUB (there is none) /// // diagonal edges run left-to-right. /// a -> a1 -> x /// \/ ^ /// /\ | /// b -> b1 ---+ /// /// // Returns `None`. /// a -> a1 /// b -> b1 /// ``` pub fn postdom_upper_bound(&self, a: &T, b: &T) -> Option<&T> { let mubs = self.minimal_upper_bounds(a, b); self.mutual_immediate_postdominator(mubs) } /// Viewing the relation as a graph, computes the "mutual /// immediate postdominator" of a set of points (if one /// exists). See `postdom_upper_bound` for details. pub fn mutual_immediate_postdominator<'a>(&'a self, mut mubs: Vec<&'a T>) -> Option<&'a T> { loop { match mubs.len() { 0 => return None, 1 => return Some(mubs[0]), _ => { let m = mubs.pop().unwrap(); let n = mubs.pop().unwrap(); mubs.extend(self.minimal_upper_bounds(n, m)); } } } } /// Returns the set of bounds `X` such that: /// /// - `a < X` and `b < X` /// - there is no `Y != X` such that `a < Y` and `Y < X` /// - except for the case where `X < a` (i.e., a strongly connected /// component in the graph). In that case, the smallest /// representative of the SCC is returned (as determined by the /// internal indices). /// /// Note that this set can, in principle, have any size. pub fn minimal_upper_bounds(&self, a: &T, b: &T) -> Vec<&T> { let (mut a, mut b) = match (self.index(a), self.index(b)) { (Some(a), Some(b)) => (a, b), (None, _) | (_, None) => { return vec![]; } }; // in some cases, there are some arbitrary choices to be made; // it doesn't really matter what we pick, as long as we pick // the same thing consistently when queried, so ensure that // (a, b) are in a consistent relative order if a > b { mem::swap(&mut a, &mut b); } let lub_indices = self.with_closure(|closure| { // Easy case is when either a < b or b < a: if closure.contains(a.0, b.0) { return vec![b.0]; } if closure.contains(b.0, a.0) { return vec![a.0]; } // Otherwise, the tricky part is that there may be some c // where a < c and b < c. In fact, there may be many such // values. So here is what we do: // // 1. Find the vector `[X | a < X && b < X]` of all values // `X` where `a < X` and `b < X`. In terms of the // graph, this means all values reachable from both `a` // and `b`. Note that this vector is also a set, but we // use the term vector because the order matters // to the steps below. // - This vector contains upper bounds, but they are // not minimal upper bounds. So you may have e.g. // `[x, y, tcx, z]` where `x < tcx` and `y < tcx` and // `z < x` and `z < y`: // // z --+---> x ----+----> tcx // | | // | | // +---> y ----+ // // In this case, we really want to return just `[z]`. // The following steps below achieve this by gradually // reducing the list. // 2. Pare down the vector using `pare_down`. This will // remove elements from the vector that can be reached // by an earlier element. // - In the example above, this would convert `[x, y, // tcx, z]` to `[x, y, z]`. Note that `x` and `y` are // still in the vector; this is because while `z < x` // (and `z < y`) holds, `z` comes after them in the // vector. // 3. Reverse the vector and repeat the pare down process. // - In the example above, we would reverse to // `[z, y, x]` and then pare down to `[z]`. // 4. Reverse once more just so that we yield a vector in // increasing order of index. Not necessary, but why not. // // I believe this algorithm yields a minimal set. The // argument is that, after step 2, we know that no element // can reach its successors (in the vector, not the graph). // After step 3, we know that no element can reach any of // its predecesssors (because of step 2) nor successors // (because we just called `pare_down`) // // This same algorithm is used in `parents` below. let mut candidates = closure.intersect_rows(a.0, b.0); // (1) pare_down(&mut candidates, closure); // (2) candidates.reverse(); // (3a) pare_down(&mut candidates, closure); // (3b) candidates }); lub_indices .into_iter() .rev() // (4) .map(|i| &self.elements[i]) .collect() } /// Given an element A, returns the maximal set {B} of elements B /// such that /// /// - A != B /// - A R B is true /// - for each i, j: `B[i]` R `B[j]` does not hold /// /// The intuition is that this moves "one step up" through a lattice /// (where the relation is encoding the `<=` relation for the lattice). /// So e.g., if the relation is `->` and we have /// /// ``` /// a -> b -> d -> f /// | ^ /// +--> c -> e ---+ /// ``` /// /// then `parents(a)` returns `[b, c]`. The `postdom_parent` function /// would further reduce this to just `f`. pub fn parents(&self, a: &T) -> Vec<&T> { let a = match self.index(a) { Some(a) => a, None => return vec![], }; // Steal the algorithm for `minimal_upper_bounds` above, but // with a slight tweak. In the case where `a R a`, we remove // that from the set of candidates. let ancestors = self.with_closure(|closure| { let mut ancestors = closure.intersect_rows(a.0, a.0); // Remove anything that can reach `a`. If this is a // reflexive relation, this will include `a` itself. ancestors.retain(|&e| !closure.contains(e, a.0)); pare_down(&mut ancestors, closure); // (2) ancestors.reverse(); // (3a) pare_down(&mut ancestors, closure); // (3b) ancestors }); ancestors .into_iter() .rev() // (4) .map(|i| &self.elements[i]) .collect() } /// A "best" parent in some sense. See `parents` and /// `postdom_upper_bound` for more details. pub fn postdom_parent(&self, a: &T) -> Option<&T> { self.mutual_immediate_postdominator(self.parents(a)) } fn with_closure<OP, R>(&self, op: OP) -> R where OP: FnOnce(&BitMatrix<usize, usize>) -> R, { let mut closure_cell = self.closure.borrow_mut(); let mut closure = closure_cell.take(); if closure.is_none() { closure = Some(self.compute_closure()); } let result = op(closure.as_ref().unwrap()); *closure_cell = closure; result } fn compute_closure(&self) -> BitMatrix<usize, usize> { let mut matrix = BitMatrix::new(self.elements.len(), self.elements.len()); let mut changed = true; while changed { changed = false; for edge in &self.edges { // add an edge from S -> T changed |= matrix.insert(edge.source.0, edge.target.0); // add all outgoing edges from T into S changed |= matrix.union_rows(edge.target.0, edge.source.0); } } matrix } /// Lists all the base edges in the graph: the initial _non-transitive_ set of element /// relations, which will be later used as the basis for the transitive closure computation. pub fn base_edges(&self) -> impl Iterator<Item = (&T, &T)> { self.edges .iter() .map(move |edge| (&self.elements[edge.source.0], &self.elements[edge.target.0])) } } /// Pare down is used as a step in the LUB computation. It edits the /// candidates array in place by removing any element j for which /// there exists an earlier element i<j such that i -> j. That is, /// after you run `pare_down`, you know that for all elements that /// remain in candidates, they cannot reach any of the elements that /// come after them. /// /// Examples follow. Assume that a -> b -> c and x -> y -> z. /// /// - Input: `[a, b, x]`. Output: `[a, x]`. /// - Input: `[b, a, x]`. Output: `[b, a, x]`. /// - Input: `[a, x, b, y]`. Output: `[a, x]`. fn pare_down(candidates: &mut Vec<usize>, closure: &BitMatrix<usize, usize>) { let mut i = 0; while let Some(&candidate_i) = candidates.get(i) { i += 1; let mut j = i; let mut dead = 0; while let Some(&candidate_j) = candidates.get(j) { if closure.contains(candidate_i, candidate_j) { // If `i` can reach `j`, then we can remove `j`. So just // mark it as dead and move on; subsequent indices will be // shifted into its place. dead += 1; } else { candidates[j - dead] = candidate_j; } j += 1; } candidates.truncate(j - dead); } }