rustc_ap_rustc_graphviz/
lib.rs

1//! Generate files suitable for use with [Graphviz](https://www.graphviz.org/)
2//!
3//! The `render` function generates output (e.g., an `output.dot` file) for
4//! use with [Graphviz](https://www.graphviz.org/) by walking a labeled
5//! graph. (Graphviz can then automatically lay out the nodes and edges
6//! of the graph, and also optionally render the graph as an image or
7//! other [output formats](
8//! https://www.graphviz.org/content/output-formats), such as SVG.)
9//!
10//! Rather than impose some particular graph data structure on clients,
11//! this library exposes two traits that clients can implement on their
12//! own structs before handing them over to the rendering function.
13//!
14//! Note: This library does not yet provide access to the full
15//! expressiveness of the [DOT language](
16//! https://www.graphviz.org/doc/info/lang.html). For example, there are
17//! many [attributes](https://www.graphviz.org/content/attrs) related to
18//! providing layout hints (e.g., left-to-right versus top-down, which
19//! algorithm to use, etc). The current intention of this library is to
20//! emit a human-readable .dot file with very regular structure suitable
21//! for easy post-processing.
22//!
23//! # Examples
24//!
25//! The first example uses a very simple graph representation: a list of
26//! pairs of ints, representing the edges (the node set is implicit).
27//! Each node label is derived directly from the int representing the node,
28//! while the edge labels are all empty strings.
29//!
30//! This example also illustrates how to use `Cow<[T]>` to return
31//! an owned vector or a borrowed slice as appropriate: we construct the
32//! node vector from scratch, but borrow the edge list (rather than
33//! constructing a copy of all the edges from scratch).
34//!
35//! The output from this example renders five nodes, with the first four
36//! forming a diamond-shaped acyclic graph and then pointing to the fifth
37//! which is cyclic.
38//!
39//! ```rust
40//! #![feature(rustc_private)]
41//!
42//! use std::io::Write;
43//! use rustc_graphviz as dot;
44//!
45//! type Nd = isize;
46//! type Ed = (isize,isize);
47//! struct Edges(Vec<Ed>);
48//!
49//! pub fn render_to<W: Write>(output: &mut W) {
50//!     let edges = Edges(vec![(0,1), (0,2), (1,3), (2,3), (3,4), (4,4)]);
51//!     dot::render(&edges, output).unwrap()
52//! }
53//!
54//! impl<'a> dot::Labeller<'a> for Edges {
55//!     type Node = Nd;
56//!     type Edge = Ed;
57//!     fn graph_id(&'a self) -> dot::Id<'a> { dot::Id::new("example1").unwrap() }
58//!
59//!     fn node_id(&'a self, n: &Nd) -> dot::Id<'a> {
60//!         dot::Id::new(format!("N{}", *n)).unwrap()
61//!     }
62//! }
63//!
64//! impl<'a> dot::GraphWalk<'a> for Edges {
65//!     type Node = Nd;
66//!     type Edge = Ed;
67//!     fn nodes(&self) -> dot::Nodes<'a,Nd> {
68//!         // (assumes that |N| \approxeq |E|)
69//!         let &Edges(ref v) = self;
70//!         let mut nodes = Vec::with_capacity(v.len());
71//!         for &(s,t) in v {
72//!             nodes.push(s); nodes.push(t);
73//!         }
74//!         nodes.sort();
75//!         nodes.dedup();
76//!         nodes.into()
77//!     }
78//!
79//!     fn edges(&'a self) -> dot::Edges<'a,Ed> {
80//!         let &Edges(ref edges) = self;
81//!         (&edges[..]).into()
82//!     }
83//!
84//!     fn source(&self, e: &Ed) -> Nd { let &(s,_) = e; s }
85//!
86//!     fn target(&self, e: &Ed) -> Nd { let &(_,t) = e; t }
87//! }
88//!
89//! # pub fn main() { render_to(&mut Vec::new()) }
90//! ```
91//!
92//! ```no_run
93//! # pub fn render_to<W:std::io::Write>(output: &mut W) { unimplemented!() }
94//! pub fn main() {
95//!     use std::fs::File;
96//!     let mut f = File::create("example1.dot").unwrap();
97//!     render_to(&mut f)
98//! }
99//! ```
100//!
101//! Output from first example (in `example1.dot`):
102//!
103//! ```dot
104//! digraph example1 {
105//!     N0[label="N0"];
106//!     N1[label="N1"];
107//!     N2[label="N2"];
108//!     N3[label="N3"];
109//!     N4[label="N4"];
110//!     N0 -> N1[label=""];
111//!     N0 -> N2[label=""];
112//!     N1 -> N3[label=""];
113//!     N2 -> N3[label=""];
114//!     N3 -> N4[label=""];
115//!     N4 -> N4[label=""];
116//! }
117//! ```
118//!
119//! The second example illustrates using `node_label` and `edge_label` to
120//! add labels to the nodes and edges in the rendered graph. The graph
121//! here carries both `nodes` (the label text to use for rendering a
122//! particular node), and `edges` (again a list of `(source,target)`
123//! indices).
124//!
125//! This example also illustrates how to use a type (in this case the edge
126//! type) that shares substructure with the graph: the edge type here is a
127//! direct reference to the `(source,target)` pair stored in the graph's
128//! internal vector (rather than passing around a copy of the pair
129//! itself). Note that this implies that `fn edges(&'a self)` must
130//! construct a fresh `Vec<&'a (usize,usize)>` from the `Vec<(usize,usize)>`
131//! edges stored in `self`.
132//!
133//! Since both the set of nodes and the set of edges are always
134//! constructed from scratch via iterators, we use the `collect()` method
135//! from the `Iterator` trait to collect the nodes and edges into freshly
136//! constructed growable `Vec` values (rather than using `Cow` as in the
137//! first example above).
138//!
139//! The output from this example renders four nodes that make up the
140//! Hasse-diagram for the subsets of the set `{x, y}`. Each edge is
141//! labeled with the &sube; character (specified using the HTML character
142//! entity `&sube`).
143//!
144//! ```rust
145//! #![feature(rustc_private)]
146//!
147//! use std::io::Write;
148//! use rustc_graphviz as dot;
149//!
150//! type Nd = usize;
151//! type Ed<'a> = &'a (usize, usize);
152//! struct Graph { nodes: Vec<&'static str>, edges: Vec<(usize,usize)> }
153//!
154//! pub fn render_to<W: Write>(output: &mut W) {
155//!     let nodes = vec!["{x,y}","{x}","{y}","{}"];
156//!     let edges = vec![(0,1), (0,2), (1,3), (2,3)];
157//!     let graph = Graph { nodes: nodes, edges: edges };
158//!
159//!     dot::render(&graph, output).unwrap()
160//! }
161//!
162//! impl<'a> dot::Labeller<'a> for Graph {
163//!     type Node = Nd;
164//!     type Edge = Ed<'a>;
165//!     fn graph_id(&'a self) -> dot::Id<'a> { dot::Id::new("example2").unwrap() }
166//!     fn node_id(&'a self, n: &Nd) -> dot::Id<'a> {
167//!         dot::Id::new(format!("N{}", n)).unwrap()
168//!     }
169//!     fn node_label<'b>(&'b self, n: &Nd) -> dot::LabelText<'b> {
170//!         dot::LabelText::LabelStr(self.nodes[*n].into())
171//!     }
172//!     fn edge_label<'b>(&'b self, _: &Ed) -> dot::LabelText<'b> {
173//!         dot::LabelText::LabelStr("&sube;".into())
174//!     }
175//! }
176//!
177//! impl<'a> dot::GraphWalk<'a> for Graph {
178//!     type Node = Nd;
179//!     type Edge = Ed<'a>;
180//!     fn nodes(&self) -> dot::Nodes<'a,Nd> { (0..self.nodes.len()).collect() }
181//!     fn edges(&'a self) -> dot::Edges<'a,Ed<'a>> { self.edges.iter().collect() }
182//!     fn source(&self, e: &Ed) -> Nd { let & &(s,_) = e; s }
183//!     fn target(&self, e: &Ed) -> Nd { let & &(_,t) = e; t }
184//! }
185//!
186//! # pub fn main() { render_to(&mut Vec::new()) }
187//! ```
188//!
189//! ```no_run
190//! # pub fn render_to<W:std::io::Write>(output: &mut W) { unimplemented!() }
191//! pub fn main() {
192//!     use std::fs::File;
193//!     let mut f = File::create("example2.dot").unwrap();
194//!     render_to(&mut f)
195//! }
196//! ```
197//!
198//! The third example is similar to the second, except now each node and
199//! edge now carries a reference to the string label for each node as well
200//! as that node's index. (This is another illustration of how to share
201//! structure with the graph itself, and why one might want to do so.)
202//!
203//! The output from this example is the same as the second example: the
204//! Hasse-diagram for the subsets of the set `{x, y}`.
205//!
206//! ```rust
207//! #![feature(rustc_private)]
208//!
209//! use std::io::Write;
210//! use rustc_graphviz as dot;
211//!
212//! type Nd<'a> = (usize, &'a str);
213//! type Ed<'a> = (Nd<'a>, Nd<'a>);
214//! struct Graph { nodes: Vec<&'static str>, edges: Vec<(usize,usize)> }
215//!
216//! pub fn render_to<W: Write>(output: &mut W) {
217//!     let nodes = vec!["{x,y}","{x}","{y}","{}"];
218//!     let edges = vec![(0,1), (0,2), (1,3), (2,3)];
219//!     let graph = Graph { nodes: nodes, edges: edges };
220//!
221//!     dot::render(&graph, output).unwrap()
222//! }
223//!
224//! impl<'a> dot::Labeller<'a> for Graph {
225//!     type Node = Nd<'a>;
226//!     type Edge = Ed<'a>;
227//!     fn graph_id(&'a self) -> dot::Id<'a> { dot::Id::new("example3").unwrap() }
228//!     fn node_id(&'a self, n: &Nd<'a>) -> dot::Id<'a> {
229//!         dot::Id::new(format!("N{}", n.0)).unwrap()
230//!     }
231//!     fn node_label<'b>(&'b self, n: &Nd<'b>) -> dot::LabelText<'b> {
232//!         let &(i, _) = n;
233//!         dot::LabelText::LabelStr(self.nodes[i].into())
234//!     }
235//!     fn edge_label<'b>(&'b self, _: &Ed<'b>) -> dot::LabelText<'b> {
236//!         dot::LabelText::LabelStr("&sube;".into())
237//!     }
238//! }
239//!
240//! impl<'a> dot::GraphWalk<'a> for Graph {
241//!     type Node = Nd<'a>;
242//!     type Edge = Ed<'a>;
243//!     fn nodes(&'a self) -> dot::Nodes<'a,Nd<'a>> {
244//!         self.nodes.iter().map(|s| &s[..]).enumerate().collect()
245//!     }
246//!     fn edges(&'a self) -> dot::Edges<'a,Ed<'a>> {
247//!         self.edges.iter()
248//!             .map(|&(i,j)|((i, &self.nodes[i][..]),
249//!                           (j, &self.nodes[j][..])))
250//!             .collect()
251//!     }
252//!     fn source(&self, e: &Ed<'a>) -> Nd<'a> { let &(s,_) = e; s }
253//!     fn target(&self, e: &Ed<'a>) -> Nd<'a> { let &(_,t) = e; t }
254//! }
255//!
256//! # pub fn main() { render_to(&mut Vec::new()) }
257//! ```
258//!
259//! ```no_run
260//! # pub fn render_to<W:std::io::Write>(output: &mut W) { unimplemented!() }
261//! pub fn main() {
262//!     use std::fs::File;
263//!     let mut f = File::create("example3.dot").unwrap();
264//!     render_to(&mut f)
265//! }
266//! ```
267//!
268//! # References
269//!
270//! * [Graphviz](https://www.graphviz.org/)
271//!
272//! * [DOT language](https://www.graphviz.org/doc/info/lang.html)
273
274#![doc(
275    html_root_url = "https://doc.rust-lang.org/nightly/nightly-rustc/",
276    test(attr(allow(unused_variables), deny(warnings)))
277)]
278#![feature(nll)]
279
280use LabelText::*;
281
282use std::borrow::Cow;
283use std::io;
284use std::io::prelude::*;
285
286/// The text for a graphviz label on a node or edge.
287pub enum LabelText<'a> {
288    /// This kind of label preserves the text directly as is.
289    ///
290    /// Occurrences of backslashes (`\`) are escaped, and thus appear
291    /// as backslashes in the rendered label.
292    LabelStr(Cow<'a, str>),
293
294    /// This kind of label uses the graphviz label escString type:
295    /// <https://www.graphviz.org/content/attrs#kescString>
296    ///
297    /// Occurrences of backslashes (`\`) are not escaped; instead they
298    /// are interpreted as initiating an escString escape sequence.
299    ///
300    /// Escape sequences of particular interest: in addition to `\n`
301    /// to break a line (centering the line preceding the `\n`), there
302    /// are also the escape sequences `\l` which left-justifies the
303    /// preceding line and `\r` which right-justifies it.
304    EscStr(Cow<'a, str>),
305
306    /// This uses a graphviz [HTML string label][html]. The string is
307    /// printed exactly as given, but between `<` and `>`. **No
308    /// escaping is performed.**
309    ///
310    /// [html]: https://www.graphviz.org/content/node-shapes#html
311    HtmlStr(Cow<'a, str>),
312}
313
314/// The style for a node or edge.
315/// See <https://www.graphviz.org/doc/info/attrs.html#k:style> for descriptions.
316/// Note that some of these are not valid for edges.
317#[derive(Copy, Clone, PartialEq, Eq, Debug)]
318pub enum Style {
319    None,
320    Solid,
321    Dashed,
322    Dotted,
323    Bold,
324    Rounded,
325    Diagonals,
326    Filled,
327    Striped,
328    Wedged,
329}
330
331impl Style {
332    pub fn as_slice(self) -> &'static str {
333        match self {
334            Style::None => "",
335            Style::Solid => "solid",
336            Style::Dashed => "dashed",
337            Style::Dotted => "dotted",
338            Style::Bold => "bold",
339            Style::Rounded => "rounded",
340            Style::Diagonals => "diagonals",
341            Style::Filled => "filled",
342            Style::Striped => "striped",
343            Style::Wedged => "wedged",
344        }
345    }
346}
347
348// There is a tension in the design of the labelling API.
349//
350// For example, I considered making a `Labeller<T>` trait that
351// provides labels for `T`, and then making the graph type `G`
352// implement `Labeller<Node>` and `Labeller<Edge>`. However, this is
353// not possible without functional dependencies. (One could work
354// around that, but I did not explore that avenue heavily.)
355//
356// Another approach that I actually used for a while was to make a
357// `Label<Context>` trait that is implemented by the client-specific
358// Node and Edge types (as well as an implementation on Graph itself
359// for the overall name for the graph). The main disadvantage of this
360// second approach (compared to having the `G` type parameter
361// implement a Labelling service) that I have encountered is that it
362// makes it impossible to use types outside of the current crate
363// directly as Nodes/Edges; you need to wrap them in newtype'd
364// structs. See e.g., the `No` and `Ed` structs in the examples. (In
365// practice clients using a graph in some other crate would need to
366// provide some sort of adapter shim over the graph anyway to
367// interface with this library).
368//
369// Another approach would be to make a single `Labeller<N,E>` trait
370// that provides three methods (graph_label, node_label, edge_label),
371// and then make `G` implement `Labeller<N,E>`. At first this did not
372// appeal to me, since I had thought I would need separate methods on
373// each data variant for dot-internal identifiers versus user-visible
374// labels. However, the identifier/label distinction only arises for
375// nodes; graphs themselves only have identifiers, and edges only have
376// labels.
377//
378// So in the end I decided to use the third approach described above.
379
380/// `Id` is a Graphviz `ID`.
381pub struct Id<'a> {
382    name: Cow<'a, str>,
383}
384
385impl<'a> Id<'a> {
386    /// Creates an `Id` named `name`.
387    ///
388    /// The caller must ensure that the input conforms to an
389    /// identifier format: it must be a non-empty string made up of
390    /// alphanumeric or underscore characters, not beginning with a
391    /// digit (i.e., the regular expression `[a-zA-Z_][a-zA-Z_0-9]*`).
392    ///
393    /// (Note: this format is a strict subset of the `ID` format
394    /// defined by the DOT language. This function may change in the
395    /// future to accept a broader subset, or the entirety, of DOT's
396    /// `ID` format.)
397    ///
398    /// Passing an invalid string (containing spaces, brackets,
399    /// quotes, ...) will return an empty `Err` value.
400    pub fn new<Name: Into<Cow<'a, str>>>(name: Name) -> Result<Id<'a>, ()> {
401        let name = name.into();
402        match name.chars().next() {
403            Some(c) if c.is_ascii_alphabetic() || c == '_' => {}
404            _ => return Err(()),
405        }
406        if !name.chars().all(|c| c.is_ascii_alphanumeric() || c == '_') {
407            return Err(());
408        }
409
410        Ok(Id { name })
411    }
412
413    pub fn as_slice(&'a self) -> &'a str {
414        &*self.name
415    }
416}
417
418/// Each instance of a type that implements `Label<C>` maps to a
419/// unique identifier with respect to `C`, which is used to identify
420/// it in the generated .dot file. They can also provide more
421/// elaborate (and non-unique) label text that is used in the graphviz
422/// rendered output.
423
424/// The graph instance is responsible for providing the DOT compatible
425/// identifiers for the nodes and (optionally) rendered labels for the nodes and
426/// edges, as well as an identifier for the graph itself.
427pub trait Labeller<'a> {
428    type Node;
429    type Edge;
430
431    /// Must return a DOT compatible identifier naming the graph.
432    fn graph_id(&'a self) -> Id<'a>;
433
434    /// Maps `n` to a unique identifier with respect to `self`. The
435    /// implementor is responsible for ensuring that the returned name
436    /// is a valid DOT identifier.
437    fn node_id(&'a self, n: &Self::Node) -> Id<'a>;
438
439    /// Maps `n` to one of the [graphviz `shape` names][1]. If `None`
440    /// is returned, no `shape` attribute is specified.
441    ///
442    /// [1]: https://www.graphviz.org/content/node-shapes
443    fn node_shape(&'a self, _node: &Self::Node) -> Option<LabelText<'a>> {
444        None
445    }
446
447    /// Maps `n` to a label that will be used in the rendered output.
448    /// The label need not be unique, and may be the empty string; the
449    /// default is just the output from `node_id`.
450    fn node_label(&'a self, n: &Self::Node) -> LabelText<'a> {
451        LabelStr(self.node_id(n).name)
452    }
453
454    /// Maps `e` to a label that will be used in the rendered output.
455    /// The label need not be unique, and may be the empty string; the
456    /// default is in fact the empty string.
457    fn edge_label(&'a self, _e: &Self::Edge) -> LabelText<'a> {
458        LabelStr("".into())
459    }
460
461    /// Maps `n` to a style that will be used in the rendered output.
462    fn node_style(&'a self, _n: &Self::Node) -> Style {
463        Style::None
464    }
465
466    /// Maps `e` to a style that will be used in the rendered output.
467    fn edge_style(&'a self, _e: &Self::Edge) -> Style {
468        Style::None
469    }
470}
471
472/// Escape tags in such a way that it is suitable for inclusion in a
473/// Graphviz HTML label.
474pub fn escape_html(s: &str) -> String {
475    s.replace("&", "&amp;").replace("\"", "&quot;").replace("<", "&lt;").replace(">", "&gt;")
476}
477
478impl<'a> LabelText<'a> {
479    pub fn label<S: Into<Cow<'a, str>>>(s: S) -> LabelText<'a> {
480        LabelStr(s.into())
481    }
482
483    pub fn html<S: Into<Cow<'a, str>>>(s: S) -> LabelText<'a> {
484        HtmlStr(s.into())
485    }
486
487    fn escape_char<F>(c: char, mut f: F)
488    where
489        F: FnMut(char),
490    {
491        match c {
492            // not escaping \\, since Graphviz escString needs to
493            // interpret backslashes; see EscStr above.
494            '\\' => f(c),
495            _ => {
496                for c in c.escape_default() {
497                    f(c)
498                }
499            }
500        }
501    }
502    fn escape_str(s: &str) -> String {
503        let mut out = String::with_capacity(s.len());
504        for c in s.chars() {
505            LabelText::escape_char(c, |c| out.push(c));
506        }
507        out
508    }
509
510    /// Renders text as string suitable for a label in a .dot file.
511    /// This includes quotes or suitable delimiters.
512    pub fn to_dot_string(&self) -> String {
513        match *self {
514            LabelStr(ref s) => format!("\"{}\"", s.escape_default()),
515            EscStr(ref s) => format!("\"{}\"", LabelText::escape_str(&s)),
516            HtmlStr(ref s) => format!("<{}>", s),
517        }
518    }
519
520    /// Decomposes content into string suitable for making EscStr that
521    /// yields same content as self. The result obeys the law
522    /// render(`lt`) == render(`EscStr(lt.pre_escaped_content())`) for
523    /// all `lt: LabelText`.
524    fn pre_escaped_content(self) -> Cow<'a, str> {
525        match self {
526            EscStr(s) => s,
527            LabelStr(s) => {
528                if s.contains('\\') {
529                    (&*s).escape_default().to_string().into()
530                } else {
531                    s
532                }
533            }
534            HtmlStr(s) => s,
535        }
536    }
537
538    /// Puts `suffix` on a line below this label, with a blank line separator.
539    pub fn suffix_line(self, suffix: LabelText<'_>) -> LabelText<'static> {
540        let mut prefix = self.pre_escaped_content().into_owned();
541        let suffix = suffix.pre_escaped_content();
542        prefix.push_str(r"\n\n");
543        prefix.push_str(&suffix);
544        EscStr(prefix.into())
545    }
546}
547
548pub type Nodes<'a, N> = Cow<'a, [N]>;
549pub type Edges<'a, E> = Cow<'a, [E]>;
550
551// (The type parameters in GraphWalk should be associated items,
552// when/if Rust supports such.)
553
554/// GraphWalk is an abstraction over a directed graph = (nodes,edges)
555/// made up of node handles `N` and edge handles `E`, where each `E`
556/// can be mapped to its source and target nodes.
557///
558/// The lifetime parameter `'a` is exposed in this trait (rather than
559/// introduced as a generic parameter on each method declaration) so
560/// that a client impl can choose `N` and `E` that have substructure
561/// that is bound by the self lifetime `'a`.
562///
563/// The `nodes` and `edges` method each return instantiations of
564/// `Cow<[T]>` to leave implementors the freedom to create
565/// entirely new vectors or to pass back slices into internally owned
566/// vectors.
567pub trait GraphWalk<'a> {
568    type Node: Clone;
569    type Edge: Clone;
570
571    /// Returns all the nodes in this graph.
572    fn nodes(&'a self) -> Nodes<'a, Self::Node>;
573    /// Returns all of the edges in this graph.
574    fn edges(&'a self) -> Edges<'a, Self::Edge>;
575    /// The source node for `edge`.
576    fn source(&'a self, edge: &Self::Edge) -> Self::Node;
577    /// The target node for `edge`.
578    fn target(&'a self, edge: &Self::Edge) -> Self::Node;
579}
580
581#[derive(Clone, PartialEq, Eq, Debug)]
582pub enum RenderOption {
583    NoEdgeLabels,
584    NoNodeLabels,
585    NoEdgeStyles,
586    NoNodeStyles,
587
588    Fontname(String),
589    DarkTheme,
590}
591
592/// Renders directed graph `g` into the writer `w` in DOT syntax.
593/// (Simple wrapper around `render_opts` that passes a default set of options.)
594pub fn render<'a, N, E, G, W>(g: &'a G, w: &mut W) -> io::Result<()>
595where
596    N: Clone + 'a,
597    E: Clone + 'a,
598    G: Labeller<'a, Node = N, Edge = E> + GraphWalk<'a, Node = N, Edge = E>,
599    W: Write,
600{
601    render_opts(g, w, &[])
602}
603
604/// Renders directed graph `g` into the writer `w` in DOT syntax.
605/// (Main entry point for the library.)
606pub fn render_opts<'a, N, E, G, W>(g: &'a G, w: &mut W, options: &[RenderOption]) -> io::Result<()>
607where
608    N: Clone + 'a,
609    E: Clone + 'a,
610    G: Labeller<'a, Node = N, Edge = E> + GraphWalk<'a, Node = N, Edge = E>,
611    W: Write,
612{
613    writeln!(w, "digraph {} {{", g.graph_id().as_slice())?;
614
615    // Global graph properties
616    let mut graph_attrs = Vec::new();
617    let mut content_attrs = Vec::new();
618    let font;
619    if let Some(fontname) = options.iter().find_map(|option| {
620        if let RenderOption::Fontname(fontname) = option { Some(fontname) } else { None }
621    }) {
622        font = format!(r#"fontname="{}""#, fontname);
623        graph_attrs.push(&font[..]);
624        content_attrs.push(&font[..]);
625    }
626    if options.contains(&RenderOption::DarkTheme) {
627        graph_attrs.push(r#"bgcolor="black""#);
628        graph_attrs.push(r#"fontcolor="white""#);
629        content_attrs.push(r#"color="white""#);
630        content_attrs.push(r#"fontcolor="white""#);
631    }
632    if !(graph_attrs.is_empty() && content_attrs.is_empty()) {
633        writeln!(w, r#"    graph[{}];"#, graph_attrs.join(" "))?;
634        let content_attrs_str = content_attrs.join(" ");
635        writeln!(w, r#"    node[{}];"#, content_attrs_str)?;
636        writeln!(w, r#"    edge[{}];"#, content_attrs_str)?;
637    }
638
639    let mut text = Vec::new();
640    for n in g.nodes().iter() {
641        write!(w, "    ")?;
642        let id = g.node_id(n);
643
644        let escaped = &g.node_label(n).to_dot_string();
645
646        write!(text, "{}", id.as_slice()).unwrap();
647
648        if !options.contains(&RenderOption::NoNodeLabels) {
649            write!(text, "[label={}]", escaped).unwrap();
650        }
651
652        let style = g.node_style(n);
653        if !options.contains(&RenderOption::NoNodeStyles) && style != Style::None {
654            write!(text, "[style=\"{}\"]", style.as_slice()).unwrap();
655        }
656
657        if let Some(s) = g.node_shape(n) {
658            write!(text, "[shape={}]", &s.to_dot_string()).unwrap();
659        }
660
661        writeln!(text, ";").unwrap();
662        w.write_all(&text[..])?;
663
664        text.clear();
665    }
666
667    for e in g.edges().iter() {
668        let escaped_label = &g.edge_label(e).to_dot_string();
669        write!(w, "    ")?;
670        let source = g.source(e);
671        let target = g.target(e);
672        let source_id = g.node_id(&source);
673        let target_id = g.node_id(&target);
674
675        write!(text, "{} -> {}", source_id.as_slice(), target_id.as_slice()).unwrap();
676
677        if !options.contains(&RenderOption::NoEdgeLabels) {
678            write!(text, "[label={}]", escaped_label).unwrap();
679        }
680
681        let style = g.edge_style(e);
682        if !options.contains(&RenderOption::NoEdgeStyles) && style != Style::None {
683            write!(text, "[style=\"{}\"]", style.as_slice()).unwrap();
684        }
685
686        writeln!(text, ";").unwrap();
687        w.write_all(&text[..])?;
688
689        text.clear();
690    }
691
692    writeln!(w, "}}")
693}
694
695#[cfg(test)]
696mod tests;