use crate::vec::{Idx, IndexVec};
use smallvec::SmallVec;
use std::fmt;
use std::iter;
use std::marker::PhantomData;
use std::mem;
use std::slice;
#[cfg(test)]
mod tests;
pub type Word = u64;
pub const WORD_BYTES: usize = mem::size_of::<Word>();
pub const WORD_BITS: usize = WORD_BYTES * 8;
#[derive(Clone, Eq, PartialEq, RustcDecodable, RustcEncodable)]
pub struct BitSet<T: Idx> {
domain_size: usize,
words: Vec<Word>,
marker: PhantomData<T>,
}
impl<T: Idx> BitSet<T> {
#[inline]
pub fn new_empty(domain_size: usize) -> BitSet<T> {
let num_words = num_words(domain_size);
BitSet { domain_size, words: vec![0; num_words], marker: PhantomData }
}
#[inline]
pub fn new_filled(domain_size: usize) -> BitSet<T> {
let num_words = num_words(domain_size);
let mut result = BitSet { domain_size, words: vec![!0; num_words], marker: PhantomData };
result.clear_excess_bits();
result
}
pub fn domain_size(&self) -> usize {
self.domain_size
}
#[inline]
pub fn clear(&mut self) {
for word in &mut self.words {
*word = 0;
}
}
fn clear_excess_bits(&mut self) {
let num_bits_in_final_word = self.domain_size % WORD_BITS;
if num_bits_in_final_word > 0 {
let mask = (1 << num_bits_in_final_word) - 1;
let final_word_idx = self.words.len() - 1;
self.words[final_word_idx] &= mask;
}
}
pub fn overwrite(&mut self, other: &BitSet<T>) {
assert!(self.domain_size == other.domain_size);
self.words.clone_from_slice(&other.words);
}
pub fn count(&self) -> usize {
self.words.iter().map(|e| e.count_ones() as usize).sum()
}
#[inline]
pub fn contains(&self, elem: T) -> bool {
assert!(elem.index() < self.domain_size);
let (word_index, mask) = word_index_and_mask(elem);
(self.words[word_index] & mask) != 0
}
#[inline]
pub fn superset(&self, other: &BitSet<T>) -> bool {
assert_eq!(self.domain_size, other.domain_size);
self.words.iter().zip(&other.words).all(|(a, b)| (a & b) == *b)
}
#[inline]
pub fn is_empty(&self) -> bool {
self.words.iter().all(|a| *a == 0)
}
#[inline]
pub fn insert(&mut self, elem: T) -> bool {
assert!(elem.index() < self.domain_size);
let (word_index, mask) = word_index_and_mask(elem);
let word_ref = &mut self.words[word_index];
let word = *word_ref;
let new_word = word | mask;
*word_ref = new_word;
new_word != word
}
pub fn insert_all(&mut self) {
for word in &mut self.words {
*word = !0;
}
self.clear_excess_bits();
}
#[inline]
pub fn remove(&mut self, elem: T) -> bool {
assert!(elem.index() < self.domain_size);
let (word_index, mask) = word_index_and_mask(elem);
let word_ref = &mut self.words[word_index];
let word = *word_ref;
let new_word = word & !mask;
*word_ref = new_word;
new_word != word
}
pub fn union(&mut self, other: &impl UnionIntoBitSet<T>) -> bool {
other.union_into(self)
}
pub fn subtract(&mut self, other: &impl SubtractFromBitSet<T>) -> bool {
other.subtract_from(self)
}
pub fn intersect(&mut self, other: &BitSet<T>) -> bool {
assert_eq!(self.domain_size, other.domain_size);
bitwise(&mut self.words, &other.words, |a, b| a & b)
}
pub fn words(&self) -> &[Word] {
&self.words
}
#[inline]
pub fn iter(&self) -> BitIter<'_, T> {
BitIter::new(&self.words)
}
pub fn to_hybrid(&self) -> HybridBitSet<T> {
HybridBitSet::Dense(self.to_owned())
}
fn reverse_union_sparse(&mut self, sparse: &SparseBitSet<T>) -> bool {
assert!(sparse.domain_size == self.domain_size);
self.clear_excess_bits();
let mut not_already = false;
let mut current_index = 0;
let mut new_bit_mask = 0;
for (word_index, mask) in sparse.iter().map(|x| word_index_and_mask(*x)) {
if word_index > current_index {
self.words[current_index] |= new_bit_mask;
not_already |= (self.words[current_index] ^ new_bit_mask) != 0;
not_already |= self.words[current_index + 1..word_index].iter().any(|&x| x != 0);
current_index = word_index;
new_bit_mask = 0;
}
new_bit_mask |= mask;
}
self.words[current_index] |= new_bit_mask;
not_already |= (self.words[current_index] ^ new_bit_mask) != 0;
not_already |= self.words[current_index + 1..].iter().any(|&x| x != 0);
not_already
}
}
pub trait UnionIntoBitSet<T: Idx> {
fn union_into(&self, other: &mut BitSet<T>) -> bool;
}
pub trait SubtractFromBitSet<T: Idx> {
fn subtract_from(&self, other: &mut BitSet<T>) -> bool;
}
impl<T: Idx> UnionIntoBitSet<T> for BitSet<T> {
fn union_into(&self, other: &mut BitSet<T>) -> bool {
assert_eq!(self.domain_size, other.domain_size);
bitwise(&mut other.words, &self.words, |a, b| a | b)
}
}
impl<T: Idx> SubtractFromBitSet<T> for BitSet<T> {
fn subtract_from(&self, other: &mut BitSet<T>) -> bool {
assert_eq!(self.domain_size, other.domain_size);
bitwise(&mut other.words, &self.words, |a, b| a & !b)
}
}
impl<T: Idx> fmt::Debug for BitSet<T> {
fn fmt(&self, w: &mut fmt::Formatter<'_>) -> fmt::Result {
w.debug_list().entries(self.iter()).finish()
}
}
impl<T: Idx> ToString for BitSet<T> {
fn to_string(&self) -> String {
let mut result = String::new();
let mut sep = '[';
let mut i = 0;
for word in &self.words {
let mut word = *word;
for _ in 0..WORD_BYTES {
let remain = self.domain_size - i;
let mask = if remain <= 8 { (1 << remain) - 1 } else { 0xFF };
assert!(mask <= 0xFF);
let byte = word & mask;
result.push_str(&format!("{}{:02x}", sep, byte));
if remain <= 8 {
break;
}
word >>= 8;
i += 8;
sep = '-';
}
sep = '|';
}
result.push(']');
result
}
}
pub struct BitIter<'a, T: Idx> {
word: Word,
offset: usize,
iter: slice::Iter<'a, Word>,
marker: PhantomData<T>,
}
impl<'a, T: Idx> BitIter<'a, T> {
#[inline]
fn new(words: &'a [Word]) -> BitIter<'a, T> {
BitIter {
word: 0,
offset: usize::MAX - (WORD_BITS - 1),
iter: words.iter(),
marker: PhantomData,
}
}
}
impl<'a, T: Idx> Iterator for BitIter<'a, T> {
type Item = T;
fn next(&mut self) -> Option<T> {
loop {
if self.word != 0 {
let bit_pos = self.word.trailing_zeros() as usize;
let bit = 1 << bit_pos;
self.word ^= bit;
return Some(T::new(bit_pos + self.offset));
}
let word = self.iter.next()?;
self.word = *word;
self.offset = self.offset.wrapping_add(WORD_BITS);
}
}
}
#[inline]
fn bitwise<Op>(out_vec: &mut [Word], in_vec: &[Word], op: Op) -> bool
where
Op: Fn(Word, Word) -> Word,
{
assert_eq!(out_vec.len(), in_vec.len());
let mut changed = false;
for (out_elem, in_elem) in out_vec.iter_mut().zip(in_vec.iter()) {
let old_val = *out_elem;
let new_val = op(old_val, *in_elem);
*out_elem = new_val;
changed |= old_val != new_val;
}
changed
}
const SPARSE_MAX: usize = 8;
#[derive(Clone, Debug)]
pub struct SparseBitSet<T: Idx> {
domain_size: usize,
elems: SmallVec<[T; SPARSE_MAX]>,
}
impl<T: Idx> SparseBitSet<T> {
fn new_empty(domain_size: usize) -> Self {
SparseBitSet { domain_size, elems: SmallVec::new() }
}
fn len(&self) -> usize {
self.elems.len()
}
fn is_empty(&self) -> bool {
self.elems.len() == 0
}
fn contains(&self, elem: T) -> bool {
assert!(elem.index() < self.domain_size);
self.elems.contains(&elem)
}
fn insert(&mut self, elem: T) -> bool {
assert!(elem.index() < self.domain_size);
let changed = if let Some(i) = self.elems.iter().position(|&e| e >= elem) {
if self.elems[i] == elem {
false
} else {
self.elems.insert(i, elem);
true
}
} else {
self.elems.push(elem);
true
};
assert!(self.len() <= SPARSE_MAX);
changed
}
fn remove(&mut self, elem: T) -> bool {
assert!(elem.index() < self.domain_size);
if let Some(i) = self.elems.iter().position(|&e| e == elem) {
self.elems.remove(i);
true
} else {
false
}
}
fn to_dense(&self) -> BitSet<T> {
let mut dense = BitSet::new_empty(self.domain_size);
for elem in self.elems.iter() {
dense.insert(*elem);
}
dense
}
fn iter(&self) -> slice::Iter<'_, T> {
self.elems.iter()
}
}
impl<T: Idx> UnionIntoBitSet<T> for SparseBitSet<T> {
fn union_into(&self, other: &mut BitSet<T>) -> bool {
assert_eq!(self.domain_size, other.domain_size);
let mut changed = false;
for elem in self.iter() {
changed |= other.insert(*elem);
}
changed
}
}
impl<T: Idx> SubtractFromBitSet<T> for SparseBitSet<T> {
fn subtract_from(&self, other: &mut BitSet<T>) -> bool {
assert_eq!(self.domain_size, other.domain_size);
let mut changed = false;
for elem in self.iter() {
changed |= other.remove(*elem);
}
changed
}
}
#[derive(Clone, Debug)]
pub enum HybridBitSet<T: Idx> {
Sparse(SparseBitSet<T>),
Dense(BitSet<T>),
}
impl<T: Idx> HybridBitSet<T> {
pub fn new_empty(domain_size: usize) -> Self {
HybridBitSet::Sparse(SparseBitSet::new_empty(domain_size))
}
fn domain_size(&self) -> usize {
match self {
HybridBitSet::Sparse(sparse) => sparse.domain_size,
HybridBitSet::Dense(dense) => dense.domain_size,
}
}
pub fn clear(&mut self) {
let domain_size = self.domain_size();
*self = HybridBitSet::new_empty(domain_size);
}
pub fn contains(&self, elem: T) -> bool {
match self {
HybridBitSet::Sparse(sparse) => sparse.contains(elem),
HybridBitSet::Dense(dense) => dense.contains(elem),
}
}
pub fn superset(&self, other: &HybridBitSet<T>) -> bool {
match (self, other) {
(HybridBitSet::Dense(self_dense), HybridBitSet::Dense(other_dense)) => {
self_dense.superset(other_dense)
}
_ => {
assert!(self.domain_size() == other.domain_size());
other.iter().all(|elem| self.contains(elem))
}
}
}
pub fn is_empty(&self) -> bool {
match self {
HybridBitSet::Sparse(sparse) => sparse.is_empty(),
HybridBitSet::Dense(dense) => dense.is_empty(),
}
}
pub fn insert(&mut self, elem: T) -> bool {
match self {
HybridBitSet::Sparse(sparse) if sparse.len() < SPARSE_MAX => {
sparse.insert(elem)
}
HybridBitSet::Sparse(sparse) if sparse.contains(elem) => {
false
}
HybridBitSet::Sparse(sparse) => {
let mut dense = sparse.to_dense();
let changed = dense.insert(elem);
assert!(changed);
*self = HybridBitSet::Dense(dense);
changed
}
HybridBitSet::Dense(dense) => dense.insert(elem),
}
}
pub fn insert_all(&mut self) {
let domain_size = self.domain_size();
match self {
HybridBitSet::Sparse(_) => {
*self = HybridBitSet::Dense(BitSet::new_filled(domain_size));
}
HybridBitSet::Dense(dense) => dense.insert_all(),
}
}
pub fn remove(&mut self, elem: T) -> bool {
match self {
HybridBitSet::Sparse(sparse) => sparse.remove(elem),
HybridBitSet::Dense(dense) => dense.remove(elem),
}
}
pub fn union(&mut self, other: &HybridBitSet<T>) -> bool {
match self {
HybridBitSet::Sparse(self_sparse) => {
match other {
HybridBitSet::Sparse(other_sparse) => {
assert_eq!(self.domain_size(), other.domain_size());
let mut changed = false;
for elem in other_sparse.iter() {
changed |= self.insert(*elem);
}
changed
}
HybridBitSet::Dense(other_dense) => {
let mut new_dense = other_dense.clone();
let changed = new_dense.reverse_union_sparse(self_sparse);
*self = HybridBitSet::Dense(new_dense);
changed
}
}
}
HybridBitSet::Dense(self_dense) => self_dense.union(other),
}
}
pub fn to_dense(self) -> BitSet<T> {
match self {
HybridBitSet::Sparse(sparse) => sparse.to_dense(),
HybridBitSet::Dense(dense) => dense,
}
}
pub fn iter(&self) -> HybridIter<'_, T> {
match self {
HybridBitSet::Sparse(sparse) => HybridIter::Sparse(sparse.iter()),
HybridBitSet::Dense(dense) => HybridIter::Dense(dense.iter()),
}
}
}
impl<T: Idx> UnionIntoBitSet<T> for HybridBitSet<T> {
fn union_into(&self, other: &mut BitSet<T>) -> bool {
match self {
HybridBitSet::Sparse(sparse) => sparse.union_into(other),
HybridBitSet::Dense(dense) => dense.union_into(other),
}
}
}
impl<T: Idx> SubtractFromBitSet<T> for HybridBitSet<T> {
fn subtract_from(&self, other: &mut BitSet<T>) -> bool {
match self {
HybridBitSet::Sparse(sparse) => sparse.subtract_from(other),
HybridBitSet::Dense(dense) => dense.subtract_from(other),
}
}
}
pub enum HybridIter<'a, T: Idx> {
Sparse(slice::Iter<'a, T>),
Dense(BitIter<'a, T>),
}
impl<'a, T: Idx> Iterator for HybridIter<'a, T> {
type Item = T;
fn next(&mut self) -> Option<T> {
match self {
HybridIter::Sparse(sparse) => sparse.next().copied(),
HybridIter::Dense(dense) => dense.next(),
}
}
}
#[derive(Clone, Debug, PartialEq)]
pub struct GrowableBitSet<T: Idx> {
bit_set: BitSet<T>,
}
impl<T: Idx> GrowableBitSet<T> {
pub fn ensure(&mut self, min_domain_size: usize) {
if self.bit_set.domain_size < min_domain_size {
self.bit_set.domain_size = min_domain_size;
}
let min_num_words = num_words(min_domain_size);
if self.bit_set.words.len() < min_num_words {
self.bit_set.words.resize(min_num_words, 0)
}
}
pub fn new_empty() -> GrowableBitSet<T> {
GrowableBitSet { bit_set: BitSet::new_empty(0) }
}
pub fn with_capacity(capacity: usize) -> GrowableBitSet<T> {
GrowableBitSet { bit_set: BitSet::new_empty(capacity) }
}
#[inline]
pub fn insert(&mut self, elem: T) -> bool {
self.ensure(elem.index() + 1);
self.bit_set.insert(elem)
}
#[inline]
pub fn contains(&self, elem: T) -> bool {
let (word_index, mask) = word_index_and_mask(elem);
if let Some(word) = self.bit_set.words.get(word_index) { (word & mask) != 0 } else { false }
}
}
#[derive(Clone, Debug, Eq, PartialEq, RustcDecodable, RustcEncodable)]
pub struct BitMatrix<R: Idx, C: Idx> {
num_rows: usize,
num_columns: usize,
words: Vec<Word>,
marker: PhantomData<(R, C)>,
}
impl<R: Idx, C: Idx> BitMatrix<R, C> {
pub fn new(num_rows: usize, num_columns: usize) -> BitMatrix<R, C> {
let words_per_row = num_words(num_columns);
BitMatrix {
num_rows,
num_columns,
words: vec![0; num_rows * words_per_row],
marker: PhantomData,
}
}
pub fn from_row_n(row: &BitSet<C>, num_rows: usize) -> BitMatrix<R, C> {
let num_columns = row.domain_size();
let words_per_row = num_words(num_columns);
assert_eq!(words_per_row, row.words().len());
BitMatrix {
num_rows,
num_columns,
words: iter::repeat(row.words()).take(num_rows).flatten().cloned().collect(),
marker: PhantomData,
}
}
pub fn rows(&self) -> impl Iterator<Item = R> {
(0..self.num_rows).map(R::new)
}
fn range(&self, row: R) -> (usize, usize) {
let words_per_row = num_words(self.num_columns);
let start = row.index() * words_per_row;
(start, start + words_per_row)
}
pub fn insert(&mut self, row: R, column: C) -> bool {
assert!(row.index() < self.num_rows && column.index() < self.num_columns);
let (start, _) = self.range(row);
let (word_index, mask) = word_index_and_mask(column);
let words = &mut self.words[..];
let word = words[start + word_index];
let new_word = word | mask;
words[start + word_index] = new_word;
word != new_word
}
pub fn contains(&self, row: R, column: C) -> bool {
assert!(row.index() < self.num_rows && column.index() < self.num_columns);
let (start, _) = self.range(row);
let (word_index, mask) = word_index_and_mask(column);
(self.words[start + word_index] & mask) != 0
}
pub fn intersect_rows(&self, row1: R, row2: R) -> Vec<C> {
assert!(row1.index() < self.num_rows && row2.index() < self.num_rows);
let (row1_start, row1_end) = self.range(row1);
let (row2_start, row2_end) = self.range(row2);
let mut result = Vec::with_capacity(self.num_columns);
for (base, (i, j)) in (row1_start..row1_end).zip(row2_start..row2_end).enumerate() {
let mut v = self.words[i] & self.words[j];
for bit in 0..WORD_BITS {
if v == 0 {
break;
}
if v & 0x1 != 0 {
result.push(C::new(base * WORD_BITS + bit));
}
v >>= 1;
}
}
result
}
pub fn union_rows(&mut self, read: R, write: R) -> bool {
assert!(read.index() < self.num_rows && write.index() < self.num_rows);
let (read_start, read_end) = self.range(read);
let (write_start, write_end) = self.range(write);
let words = &mut self.words[..];
let mut changed = false;
for (read_index, write_index) in (read_start..read_end).zip(write_start..write_end) {
let word = words[write_index];
let new_word = word | words[read_index];
words[write_index] = new_word;
changed |= word != new_word;
}
changed
}
pub fn union_row_with(&mut self, with: &BitSet<C>, write: R) -> bool {
assert!(write.index() < self.num_rows);
assert_eq!(with.domain_size(), self.num_columns);
let (write_start, write_end) = self.range(write);
let mut changed = false;
for (read_index, write_index) in (0..with.words().len()).zip(write_start..write_end) {
let word = self.words[write_index];
let new_word = word | with.words()[read_index];
self.words[write_index] = new_word;
changed |= word != new_word;
}
changed
}
pub fn insert_all_into_row(&mut self, row: R) {
assert!(row.index() < self.num_rows);
let (start, end) = self.range(row);
let words = &mut self.words[..];
for index in start..end {
words[index] = !0;
}
self.clear_excess_bits(row);
}
fn clear_excess_bits(&mut self, row: R) {
let num_bits_in_final_word = self.num_columns % WORD_BITS;
if num_bits_in_final_word > 0 {
let mask = (1 << num_bits_in_final_word) - 1;
let (_, end) = self.range(row);
let final_word_idx = end - 1;
self.words[final_word_idx] &= mask;
}
}
pub fn words(&self) -> &[Word] {
&self.words
}
pub fn iter(&self, row: R) -> BitIter<'_, C> {
assert!(row.index() < self.num_rows);
let (start, end) = self.range(row);
BitIter::new(&self.words[start..end])
}
pub fn count(&self, row: R) -> usize {
let (start, end) = self.range(row);
self.words[start..end].iter().map(|e| e.count_ones() as usize).sum()
}
}
#[derive(Clone, Debug)]
pub struct SparseBitMatrix<R, C>
where
R: Idx,
C: Idx,
{
num_columns: usize,
rows: IndexVec<R, Option<HybridBitSet<C>>>,
}
impl<R: Idx, C: Idx> SparseBitMatrix<R, C> {
pub fn new(num_columns: usize) -> Self {
Self { num_columns, rows: IndexVec::new() }
}
fn ensure_row(&mut self, row: R) -> &mut HybridBitSet<C> {
self.rows.ensure_contains_elem(row, || None);
let num_columns = self.num_columns;
self.rows[row].get_or_insert_with(|| HybridBitSet::new_empty(num_columns))
}
pub fn insert(&mut self, row: R, column: C) -> bool {
self.ensure_row(row).insert(column)
}
pub fn contains(&self, row: R, column: C) -> bool {
self.row(row).map_or(false, |r| r.contains(column))
}
pub fn union_rows(&mut self, read: R, write: R) -> bool {
if read == write || self.row(read).is_none() {
return false;
}
self.ensure_row(write);
if let (Some(read_row), Some(write_row)) = self.rows.pick2_mut(read, write) {
write_row.union(read_row)
} else {
unreachable!()
}
}
pub fn union_into_row(&mut self, into: R, from: &HybridBitSet<C>) -> bool {
self.ensure_row(into).union(from)
}
pub fn insert_all_into_row(&mut self, row: R) {
self.ensure_row(row).insert_all();
}
pub fn rows(&self) -> impl Iterator<Item = R> {
self.rows.indices()
}
pub fn iter<'a>(&'a self, row: R) -> impl Iterator<Item = C> + 'a {
self.row(row).into_iter().flat_map(|r| r.iter())
}
pub fn row(&self, row: R) -> Option<&HybridBitSet<C>> {
if let Some(Some(row)) = self.rows.get(row) { Some(row) } else { None }
}
}
#[inline]
fn num_words<T: Idx>(domain_size: T) -> usize {
(domain_size.index() + WORD_BITS - 1) / WORD_BITS
}
#[inline]
fn word_index_and_mask<T: Idx>(elem: T) -> (usize, Word) {
let elem = elem.index();
let word_index = elem / WORD_BITS;
let mask = 1 << (elem % WORD_BITS);
(word_index, mask)
}