1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
use super::ty::{AllowPlus, RecoverQPath}; use super::{Parser, TokenType}; use crate::maybe_whole; use rustc_ast::ptr::P; use rustc_ast::token::{self, Token}; use rustc_ast::{ self as ast, AngleBracketedArg, AngleBracketedArgs, GenericArg, ParenthesizedArgs, }; use rustc_ast::{AnonConst, AssocTyConstraint, AssocTyConstraintKind, BlockCheckMode}; use rustc_ast::{Path, PathSegment, QSelf}; use rustc_errors::{pluralize, Applicability, PResult}; use rustc_span::source_map::{BytePos, Span}; use rustc_span::symbol::{kw, sym, Ident}; use std::mem; use tracing::debug; /// Specifies how to parse a path. #[derive(Copy, Clone, PartialEq)] pub enum PathStyle { /// In some contexts, notably in expressions, paths with generic arguments are ambiguous /// with something else. For example, in expressions `segment < ....` can be interpreted /// as a comparison and `segment ( ....` can be interpreted as a function call. /// In all such contexts the non-path interpretation is preferred by default for practical /// reasons, but the path interpretation can be forced by the disambiguator `::`, e.g. /// `x<y>` - comparisons, `x::<y>` - unambiguously a path. Expr, /// In other contexts, notably in types, no ambiguity exists and paths can be written /// without the disambiguator, e.g., `x<y>` - unambiguously a path. /// Paths with disambiguators are still accepted, `x::<Y>` - unambiguously a path too. Type, /// A path with generic arguments disallowed, e.g., `foo::bar::Baz`, used in imports, /// visibilities or attributes. /// Technically, this variant is unnecessary and e.g., `Expr` can be used instead /// (paths in "mod" contexts have to be checked later for absence of generic arguments /// anyway, due to macros), but it is used to avoid weird suggestions about expected /// tokens when something goes wrong. Mod, } impl<'a> Parser<'a> { /// Parses a qualified path. /// Assumes that the leading `<` has been parsed already. /// /// `qualified_path = <type [as trait_ref]>::path` /// /// # Examples /// `<T>::default` /// `<T as U>::a` /// `<T as U>::F::a<S>` (without disambiguator) /// `<T as U>::F::a::<S>` (with disambiguator) pub(super) fn parse_qpath(&mut self, style: PathStyle) -> PResult<'a, (QSelf, Path)> { let lo = self.prev_token.span; let ty = self.parse_ty()?; // `path` will contain the prefix of the path up to the `>`, // if any (e.g., `U` in the `<T as U>::*` examples // above). `path_span` has the span of that path, or an empty // span in the case of something like `<T>::Bar`. let (mut path, path_span); if self.eat_keyword(kw::As) { let path_lo = self.token.span; path = self.parse_path(PathStyle::Type)?; path_span = path_lo.to(self.prev_token.span); } else { path_span = self.token.span.to(self.token.span); path = ast::Path { segments: Vec::new(), span: path_span }; } // See doc comment for `unmatched_angle_bracket_count`. self.expect(&token::Gt)?; if self.unmatched_angle_bracket_count > 0 { self.unmatched_angle_bracket_count -= 1; debug!("parse_qpath: (decrement) count={:?}", self.unmatched_angle_bracket_count); } if !self.recover_colon_before_qpath_proj() { self.expect(&token::ModSep)?; } let qself = QSelf { ty, path_span, position: path.segments.len() }; self.parse_path_segments(&mut path.segments, style)?; Ok((qself, Path { segments: path.segments, span: lo.to(self.prev_token.span) })) } /// Recover from an invalid single colon, when the user likely meant a qualified path. /// We avoid emitting this if not followed by an identifier, as our assumption that the user /// intended this to be a qualified path may not be correct. /// /// ```ignore (diagnostics) /// <Bar as Baz<T>>:Qux /// ^ help: use double colon /// ``` fn recover_colon_before_qpath_proj(&mut self) -> bool { if self.token.kind != token::Colon || self.look_ahead(1, |t| !t.is_ident() || t.is_reserved_ident()) { return false; } self.bump(); // colon self.diagnostic() .struct_span_err( self.prev_token.span, "found single colon before projection in qualified path", ) .span_suggestion( self.prev_token.span, "use double colon", "::".to_string(), Applicability::MachineApplicable, ) .emit(); true } /// Parses simple paths. /// /// `path = [::] segment+` /// `segment = ident | ident[::]<args> | ident[::](args) [-> type]` /// /// # Examples /// `a::b::C<D>` (without disambiguator) /// `a::b::C::<D>` (with disambiguator) /// `Fn(Args)` (without disambiguator) /// `Fn::(Args)` (with disambiguator) pub(super) fn parse_path(&mut self, style: PathStyle) -> PResult<'a, Path> { maybe_whole!(self, NtPath, |path| { if style == PathStyle::Mod && path.segments.iter().any(|segment| segment.args.is_some()) { self.struct_span_err(path.span, "unexpected generic arguments in path").emit(); } path }); let lo = self.token.span; let mut segments = Vec::new(); let mod_sep_ctxt = self.token.span.ctxt(); if self.eat(&token::ModSep) { segments.push(PathSegment::path_root(lo.shrink_to_lo().with_ctxt(mod_sep_ctxt))); } self.parse_path_segments(&mut segments, style)?; Ok(Path { segments, span: lo.to(self.prev_token.span) }) } pub(super) fn parse_path_segments( &mut self, segments: &mut Vec<PathSegment>, style: PathStyle, ) -> PResult<'a, ()> { loop { let segment = self.parse_path_segment(style)?; if style == PathStyle::Expr { // In order to check for trailing angle brackets, we must have finished // recursing (`parse_path_segment` can indirectly call this function), // that is, the next token must be the highlighted part of the below example: // // `Foo::<Bar as Baz<T>>::Qux` // ^ here // // As opposed to the below highlight (if we had only finished the first // recursion): // // `Foo::<Bar as Baz<T>>::Qux` // ^ here // // `PathStyle::Expr` is only provided at the root invocation and never in // `parse_path_segment` to recurse and therefore can be checked to maintain // this invariant. self.check_trailing_angle_brackets(&segment, &[&token::ModSep]); } segments.push(segment); if self.is_import_coupler() || !self.eat(&token::ModSep) { return Ok(()); } } } pub(super) fn parse_path_segment(&mut self, style: PathStyle) -> PResult<'a, PathSegment> { let ident = self.parse_path_segment_ident()?; let is_args_start = |token: &Token| match token.kind { token::Lt | token::BinOp(token::Shl) | token::OpenDelim(token::Paren) | token::LArrow => true, _ => false, }; let check_args_start = |this: &mut Self| { this.expected_tokens.extend_from_slice(&[ TokenType::Token(token::Lt), TokenType::Token(token::OpenDelim(token::Paren)), ]); is_args_start(&this.token) }; Ok( if style == PathStyle::Type && check_args_start(self) || style != PathStyle::Mod && self.check(&token::ModSep) && self.look_ahead(1, |t| is_args_start(t)) { // We use `style == PathStyle::Expr` to check if this is in a recursion or not. If // it isn't, then we reset the unmatched angle bracket count as we're about to start // parsing a new path. if style == PathStyle::Expr { self.unmatched_angle_bracket_count = 0; self.max_angle_bracket_count = 0; } // Generic arguments are found - `<`, `(`, `::<` or `::(`. self.eat(&token::ModSep); let lo = self.token.span; let args = if self.eat_lt() { // `<'a, T, A = U>` let args = self.parse_angle_args_with_leading_angle_bracket_recovery(style, lo)?; self.expect_gt()?; let span = lo.to(self.prev_token.span); AngleBracketedArgs { args, span }.into() } else { // `(T, U) -> R` let (inputs, _) = self.parse_paren_comma_seq(|p| p.parse_ty())?; let span = ident.span.to(self.prev_token.span); let output = self.parse_ret_ty(AllowPlus::No, RecoverQPath::No)?; ParenthesizedArgs { inputs, output, span }.into() }; PathSegment { ident, args, id: ast::DUMMY_NODE_ID } } else { // Generic arguments are not found. PathSegment::from_ident(ident) }, ) } pub(super) fn parse_path_segment_ident(&mut self) -> PResult<'a, Ident> { match self.token.ident() { Some((ident, false)) if ident.is_path_segment_keyword() => { self.bump(); Ok(ident) } _ => self.parse_ident(), } } /// Parses generic args (within a path segment) with recovery for extra leading angle brackets. /// For the purposes of understanding the parsing logic of generic arguments, this function /// can be thought of being the same as just calling `self.parse_angle_args()` if the source /// had the correct amount of leading angle brackets. /// /// ```ignore (diagnostics) /// bar::<<<<T as Foo>::Output>(); /// ^^ help: remove extra angle brackets /// ``` fn parse_angle_args_with_leading_angle_bracket_recovery( &mut self, style: PathStyle, lo: Span, ) -> PResult<'a, Vec<AngleBracketedArg>> { // We need to detect whether there are extra leading left angle brackets and produce an // appropriate error and suggestion. This cannot be implemented by looking ahead at // upcoming tokens for a matching `>` character - if there are unmatched `<` tokens // then there won't be matching `>` tokens to find. // // To explain how this detection works, consider the following example: // // ```ignore (diagnostics) // bar::<<<<T as Foo>::Output>(); // ^^ help: remove extra angle brackets // ``` // // Parsing of the left angle brackets starts in this function. We start by parsing the // `<` token (incrementing the counter of unmatched angle brackets on `Parser` via // `eat_lt`): // // *Upcoming tokens:* `<<<<T as Foo>::Output>;` // *Unmatched count:* 1 // *`parse_path_segment` calls deep:* 0 // // This has the effect of recursing as this function is called if a `<` character // is found within the expected generic arguments: // // *Upcoming tokens:* `<<<T as Foo>::Output>;` // *Unmatched count:* 2 // *`parse_path_segment` calls deep:* 1 // // Eventually we will have recursed until having consumed all of the `<` tokens and // this will be reflected in the count: // // *Upcoming tokens:* `T as Foo>::Output>;` // *Unmatched count:* 4 // `parse_path_segment` calls deep:* 3 // // The parser will continue until reaching the first `>` - this will decrement the // unmatched angle bracket count and return to the parent invocation of this function // having succeeded in parsing: // // *Upcoming tokens:* `::Output>;` // *Unmatched count:* 3 // *`parse_path_segment` calls deep:* 2 // // This will continue until the next `>` character which will also return successfully // to the parent invocation of this function and decrement the count: // // *Upcoming tokens:* `;` // *Unmatched count:* 2 // *`parse_path_segment` calls deep:* 1 // // At this point, this function will expect to find another matching `>` character but // won't be able to and will return an error. This will continue all the way up the // call stack until the first invocation: // // *Upcoming tokens:* `;` // *Unmatched count:* 2 // *`parse_path_segment` calls deep:* 0 // // In doing this, we have managed to work out how many unmatched leading left angle // brackets there are, but we cannot recover as the unmatched angle brackets have // already been consumed. To remedy this, we keep a snapshot of the parser state // before we do the above. We can then inspect whether we ended up with a parsing error // and unmatched left angle brackets and if so, restore the parser state before we // consumed any `<` characters to emit an error and consume the erroneous tokens to // recover by attempting to parse again. // // In practice, the recursion of this function is indirect and there will be other // locations that consume some `<` characters - as long as we update the count when // this happens, it isn't an issue. let is_first_invocation = style == PathStyle::Expr; // Take a snapshot before attempting to parse - we can restore this later. let snapshot = if is_first_invocation { Some(self.clone()) } else { None }; debug!("parse_generic_args_with_leading_angle_bracket_recovery: (snapshotting)"); match self.parse_angle_args() { Ok(args) => Ok(args), Err(ref mut e) if is_first_invocation && self.unmatched_angle_bracket_count > 0 => { // Cancel error from being unable to find `>`. We know the error // must have been this due to a non-zero unmatched angle bracket // count. e.cancel(); // Swap `self` with our backup of the parser state before attempting to parse // generic arguments. let snapshot = mem::replace(self, snapshot.unwrap()); debug!( "parse_generic_args_with_leading_angle_bracket_recovery: (snapshot failure) \ snapshot.count={:?}", snapshot.unmatched_angle_bracket_count, ); // Eat the unmatched angle brackets. for _ in 0..snapshot.unmatched_angle_bracket_count { self.eat_lt(); } // Make a span over ${unmatched angle bracket count} characters. let span = lo.with_hi(lo.lo() + BytePos(snapshot.unmatched_angle_bracket_count)); self.struct_span_err( span, &format!( "unmatched angle bracket{}", pluralize!(snapshot.unmatched_angle_bracket_count) ), ) .span_suggestion( span, &format!( "remove extra angle bracket{}", pluralize!(snapshot.unmatched_angle_bracket_count) ), String::new(), Applicability::MachineApplicable, ) .emit(); // Try again without unmatched angle bracket characters. self.parse_angle_args() } Err(e) => Err(e), } } /// Parses (possibly empty) list of generic arguments / associated item constraints, /// possibly including trailing comma. pub(super) fn parse_angle_args(&mut self) -> PResult<'a, Vec<AngleBracketedArg>> { let mut args = Vec::new(); while let Some(arg) = self.parse_angle_arg()? { args.push(arg); if !self.eat(&token::Comma) { break; } } Ok(args) } /// Parses a single argument in the angle arguments `<...>` of a path segment. fn parse_angle_arg(&mut self) -> PResult<'a, Option<AngleBracketedArg>> { if self.check_ident() && self.look_ahead(1, |t| matches!(t.kind, token::Eq | token::Colon)) { // Parse associated type constraint. let lo = self.token.span; let ident = self.parse_ident()?; let kind = if self.eat(&token::Eq) { let ty = self.parse_assoc_equality_term(ident, self.prev_token.span)?; AssocTyConstraintKind::Equality { ty } } else if self.eat(&token::Colon) { let bounds = self.parse_generic_bounds(Some(self.prev_token.span))?; AssocTyConstraintKind::Bound { bounds } } else { unreachable!(); }; let span = lo.to(self.prev_token.span); // Gate associated type bounds, e.g., `Iterator<Item: Ord>`. if let AssocTyConstraintKind::Bound { .. } = kind { self.sess.gated_spans.gate(sym::associated_type_bounds, span); } let constraint = AssocTyConstraint { id: ast::DUMMY_NODE_ID, ident, kind, span }; Ok(Some(AngleBracketedArg::Constraint(constraint))) } else { Ok(self.parse_generic_arg()?.map(AngleBracketedArg::Arg)) } } /// Parse the term to the right of an associated item equality constraint. /// That is, parse `<term>` in `Item = <term>`. /// Right now, this only admits types in `<term>`. fn parse_assoc_equality_term(&mut self, ident: Ident, eq: Span) -> PResult<'a, P<ast::Ty>> { let arg = self.parse_generic_arg()?; let span = ident.span.to(self.prev_token.span); match arg { Some(GenericArg::Type(ty)) => return Ok(ty), Some(GenericArg::Const(expr)) => { self.struct_span_err(span, "cannot constrain an associated constant to a value") .span_label(ident.span, "this associated constant...") .span_label(expr.value.span, "...cannot be constrained to this value") .emit(); } Some(GenericArg::Lifetime(lt)) => { self.struct_span_err(span, "associated lifetimes are not supported") .span_label(lt.ident.span, "the lifetime is given here") .help("if you meant to specify a trait object, write `dyn Trait + 'lifetime`") .emit(); } None => { let after_eq = eq.shrink_to_hi(); let before_next = self.token.span.shrink_to_lo(); self.struct_span_err(after_eq.to(before_next), "missing type to the right of `=`") .span_suggestion( self.sess.source_map().next_point(eq).to(before_next), "to constrain the associated type, add a type after `=`", " TheType".to_string(), Applicability::HasPlaceholders, ) .span_suggestion( eq.to(before_next), &format!("remove the `=` if `{}` is a type", ident), String::new(), Applicability::MaybeIncorrect, ) .emit(); } } Ok(self.mk_ty(span, ast::TyKind::Err)) } /// Parse a generic argument in a path segment. /// This does not include constraints, e.g., `Item = u8`, which is handled in `parse_angle_arg`. fn parse_generic_arg(&mut self) -> PResult<'a, Option<GenericArg>> { let arg = if self.check_lifetime() && self.look_ahead(1, |t| !t.is_like_plus()) { // Parse lifetime argument. GenericArg::Lifetime(self.expect_lifetime()) } else if self.check_const_arg() { // Parse const argument. let expr = if let token::OpenDelim(token::Brace) = self.token.kind { self.parse_block_expr( None, self.token.span, BlockCheckMode::Default, ast::AttrVec::new(), )? } else if self.token.is_ident() { // FIXME(const_generics): to distinguish between idents for types and consts, // we should introduce a GenericArg::Ident in the AST and distinguish when // lowering to the HIR. For now, idents for const args are not permitted. if self.token.is_bool_lit() { self.parse_literal_maybe_minus()? } else { let span = self.token.span; let msg = "identifiers may currently not be used for const generics"; self.struct_span_err(span, msg).emit(); let block = self.mk_block_err(span); self.mk_expr(span, ast::ExprKind::Block(block, None), ast::AttrVec::new()) } } else { self.parse_literal_maybe_minus()? }; GenericArg::Const(AnonConst { id: ast::DUMMY_NODE_ID, value: expr }) } else if self.check_type() { // Parse type argument. GenericArg::Type(self.parse_ty()?) } else { return Ok(None); }; Ok(Some(arg)) } }