1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
//! Machinery for hygienic macros.
//!
//! Inspired by Matthew Flatt et al., “Macros That Work Together: Compile-Time Bindings, Partial
//! Expansion, and Definition Contexts,” *Journal of Functional Programming* 22, no. 2
//! (March 1, 2012): 181–216, <https://doi.org/10.1017/S0956796812000093>.

// Hygiene data is stored in a global variable and accessed via TLS, which
// means that accesses are somewhat expensive. (`HygieneData::with`
// encapsulates a single access.) Therefore, on hot code paths it is worth
// ensuring that multiple HygieneData accesses are combined into a single
// `HygieneData::with`.
//
// This explains why `HygieneData`, `SyntaxContext` and `ExpnId` have interfaces
// with a certain amount of redundancy in them. For example,
// `SyntaxContext::outer_expn_data` combines `SyntaxContext::outer` and
// `ExpnId::expn_data` so that two `HygieneData` accesses can be performed within
// a single `HygieneData::with` call.
//
// It also explains why many functions appear in `HygieneData` and again in
// `SyntaxContext` or `ExpnId`. For example, `HygieneData::outer` and
// `SyntaxContext::outer` do the same thing, but the former is for use within a
// `HygieneData::with` call while the latter is for use outside such a call.
// When modifying this file it is important to understand this distinction,
// because getting it wrong can lead to nested `HygieneData::with` calls that
// trigger runtime aborts. (Fortunately these are obvious and easy to fix.)

use crate::edition::Edition;
use crate::symbol::{kw, sym, Symbol};
use crate::SESSION_GLOBALS;
use crate::{BytePos, CachingSourceMapView, ExpnIdCache, SourceFile, Span, DUMMY_SP};

use crate::def_id::{CrateNum, DefId, CRATE_DEF_INDEX, LOCAL_CRATE};
use rustc_data_structures::fingerprint::Fingerprint;
use rustc_data_structures::fx::{FxHashMap, FxHashSet};
use rustc_data_structures::stable_hasher::{HashStable, StableHasher};
use rustc_data_structures::sync::{Lock, Lrc};
use rustc_macros::HashStable_Generic;
use rustc_serialize::{Decodable, Decoder, Encodable, Encoder};
use std::fmt;
use std::hash::Hash;
use std::thread::LocalKey;
use tracing::*;

/// A `SyntaxContext` represents a chain of pairs `(ExpnId, Transparency)` named "marks".
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct SyntaxContext(u32);

#[derive(Debug, Encodable, Decodable, Clone)]
pub struct SyntaxContextData {
    outer_expn: ExpnId,
    outer_transparency: Transparency,
    parent: SyntaxContext,
    /// This context, but with all transparent and semi-transparent expansions filtered away.
    opaque: SyntaxContext,
    /// This context, but with all transparent expansions filtered away.
    opaque_and_semitransparent: SyntaxContext,
    /// Name of the crate to which `$crate` with this context would resolve.
    dollar_crate_name: Symbol,
}

/// A unique ID associated with a macro invocation and expansion.
#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug)]
pub struct ExpnId(u32);

/// A property of a macro expansion that determines how identifiers
/// produced by that expansion are resolved.
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Hash, Debug, Encodable, Decodable)]
#[derive(HashStable_Generic)]
pub enum Transparency {
    /// Identifier produced by a transparent expansion is always resolved at call-site.
    /// Call-site spans in procedural macros, hygiene opt-out in `macro` should use this.
    Transparent,
    /// Identifier produced by a semi-transparent expansion may be resolved
    /// either at call-site or at definition-site.
    /// If it's a local variable, label or `$crate` then it's resolved at def-site.
    /// Otherwise it's resolved at call-site.
    /// `macro_rules` macros behave like this, built-in macros currently behave like this too,
    /// but that's an implementation detail.
    SemiTransparent,
    /// Identifier produced by an opaque expansion is always resolved at definition-site.
    /// Def-site spans in procedural macros, identifiers from `macro` by default use this.
    Opaque,
}

impl ExpnId {
    pub fn fresh(expn_data: Option<ExpnData>) -> Self {
        let has_data = expn_data.is_some();
        let expn_id = HygieneData::with(|data| data.fresh_expn(expn_data));
        if has_data {
            update_disambiguator(expn_id);
        }
        expn_id
    }

    /// The ID of the theoretical expansion that generates freshly parsed, unexpanded AST.
    #[inline]
    pub fn root() -> Self {
        ExpnId(0)
    }

    #[inline]
    pub fn as_u32(self) -> u32 {
        self.0
    }

    #[inline]
    pub fn from_u32(raw: u32) -> ExpnId {
        ExpnId(raw)
    }

    #[inline]
    pub fn expn_data(self) -> ExpnData {
        HygieneData::with(|data| data.expn_data(self).clone())
    }

    #[inline]
    pub fn set_expn_data(self, mut expn_data: ExpnData) {
        HygieneData::with(|data| {
            let old_expn_data = &mut data.expn_data[self.0 as usize];
            assert!(old_expn_data.is_none(), "expansion data is reset for an expansion ID");
            assert_eq!(expn_data.orig_id, None);
            expn_data.orig_id = Some(self.as_u32());
            *old_expn_data = Some(expn_data);
        });
        update_disambiguator(self)
    }

    pub fn is_descendant_of(self, ancestor: ExpnId) -> bool {
        HygieneData::with(|data| data.is_descendant_of(self, ancestor))
    }

    /// `expn_id.outer_expn_is_descendant_of(ctxt)` is equivalent to but faster than
    /// `expn_id.is_descendant_of(ctxt.outer_expn())`.
    pub fn outer_expn_is_descendant_of(self, ctxt: SyntaxContext) -> bool {
        HygieneData::with(|data| data.is_descendant_of(self, data.outer_expn(ctxt)))
    }

    /// Returns span for the macro which originally caused this expansion to happen.
    ///
    /// Stops backtracing at include! boundary.
    pub fn expansion_cause(mut self) -> Option<Span> {
        let mut last_macro = None;
        loop {
            let expn_data = self.expn_data();
            // Stop going up the backtrace once include! is encountered
            if expn_data.is_root()
                || matches!(
                    expn_data.kind,
                    ExpnKind::Macro { kind: MacroKind::Bang, name: sym::include, proc_macro: _ }
                )
            {
                break;
            }
            self = expn_data.call_site.ctxt().outer_expn();
            last_macro = Some(expn_data.call_site);
        }
        last_macro
    }
}

#[derive(Debug)]
pub struct HygieneData {
    /// Each expansion should have an associated expansion data, but sometimes there's a delay
    /// between creation of an expansion ID and obtaining its data (e.g. macros are collected
    /// first and then resolved later), so we use an `Option` here.
    expn_data: Vec<Option<ExpnData>>,
    syntax_context_data: Vec<SyntaxContextData>,
    syntax_context_map: FxHashMap<(SyntaxContext, ExpnId, Transparency), SyntaxContext>,
    /// Maps the `Fingerprint` of an `ExpnData` to the next disambiguator value.
    /// This is used by `update_disambiguator` to keep track of which `ExpnData`s
    /// would have collisions without a disambiguator.
    /// The keys of this map are always computed with `ExpnData.disambiguator`
    /// set to 0.
    expn_data_disambiguators: FxHashMap<Fingerprint, u32>,
}

impl HygieneData {
    crate fn new(edition: Edition) -> Self {
        let mut root_data = ExpnData::default(
            ExpnKind::Root,
            DUMMY_SP,
            edition,
            Some(DefId::local(CRATE_DEF_INDEX)),
        );
        root_data.orig_id = Some(0);

        HygieneData {
            expn_data: vec![Some(root_data)],
            syntax_context_data: vec![SyntaxContextData {
                outer_expn: ExpnId::root(),
                outer_transparency: Transparency::Opaque,
                parent: SyntaxContext(0),
                opaque: SyntaxContext(0),
                opaque_and_semitransparent: SyntaxContext(0),
                dollar_crate_name: kw::DollarCrate,
            }],
            syntax_context_map: FxHashMap::default(),
            expn_data_disambiguators: FxHashMap::default(),
        }
    }

    pub fn with<T, F: FnOnce(&mut HygieneData) -> T>(f: F) -> T {
        SESSION_GLOBALS.with(|session_globals| f(&mut *session_globals.hygiene_data.borrow_mut()))
    }

    fn fresh_expn(&mut self, mut expn_data: Option<ExpnData>) -> ExpnId {
        let raw_id = self.expn_data.len() as u32;
        if let Some(data) = expn_data.as_mut() {
            assert_eq!(data.orig_id, None);
            data.orig_id = Some(raw_id);
        }
        self.expn_data.push(expn_data);
        ExpnId(raw_id)
    }

    fn expn_data(&self, expn_id: ExpnId) -> &ExpnData {
        self.expn_data[expn_id.0 as usize].as_ref().expect("no expansion data for an expansion ID")
    }

    fn is_descendant_of(&self, mut expn_id: ExpnId, ancestor: ExpnId) -> bool {
        while expn_id != ancestor {
            if expn_id == ExpnId::root() {
                return false;
            }
            expn_id = self.expn_data(expn_id).parent;
        }
        true
    }

    fn normalize_to_macros_2_0(&self, ctxt: SyntaxContext) -> SyntaxContext {
        self.syntax_context_data[ctxt.0 as usize].opaque
    }

    fn normalize_to_macro_rules(&self, ctxt: SyntaxContext) -> SyntaxContext {
        self.syntax_context_data[ctxt.0 as usize].opaque_and_semitransparent
    }

    fn outer_expn(&self, ctxt: SyntaxContext) -> ExpnId {
        self.syntax_context_data[ctxt.0 as usize].outer_expn
    }

    fn outer_mark(&self, ctxt: SyntaxContext) -> (ExpnId, Transparency) {
        let data = &self.syntax_context_data[ctxt.0 as usize];
        (data.outer_expn, data.outer_transparency)
    }

    fn parent_ctxt(&self, ctxt: SyntaxContext) -> SyntaxContext {
        self.syntax_context_data[ctxt.0 as usize].parent
    }

    fn remove_mark(&self, ctxt: &mut SyntaxContext) -> (ExpnId, Transparency) {
        let outer_mark = self.outer_mark(*ctxt);
        *ctxt = self.parent_ctxt(*ctxt);
        outer_mark
    }

    fn marks(&self, mut ctxt: SyntaxContext) -> Vec<(ExpnId, Transparency)> {
        let mut marks = Vec::new();
        while ctxt != SyntaxContext::root() {
            debug!("marks: getting parent of {:?}", ctxt);
            marks.push(self.outer_mark(ctxt));
            ctxt = self.parent_ctxt(ctxt);
        }
        marks.reverse();
        marks
    }

    fn walk_chain(&self, mut span: Span, to: SyntaxContext) -> Span {
        debug!("walk_chain({:?}, {:?})", span, to);
        debug!("walk_chain: span ctxt = {:?}", span.ctxt());
        while span.from_expansion() && span.ctxt() != to {
            let outer_expn = self.outer_expn(span.ctxt());
            debug!("walk_chain({:?}): outer_expn={:?}", span, outer_expn);
            let expn_data = self.expn_data(outer_expn);
            debug!("walk_chain({:?}): expn_data={:?}", span, expn_data);
            span = expn_data.call_site;
        }
        span
    }

    fn adjust(&self, ctxt: &mut SyntaxContext, expn_id: ExpnId) -> Option<ExpnId> {
        let mut scope = None;
        while !self.is_descendant_of(expn_id, self.outer_expn(*ctxt)) {
            scope = Some(self.remove_mark(ctxt).0);
        }
        scope
    }

    fn apply_mark(
        &mut self,
        ctxt: SyntaxContext,
        expn_id: ExpnId,
        transparency: Transparency,
    ) -> SyntaxContext {
        assert_ne!(expn_id, ExpnId::root());
        if transparency == Transparency::Opaque {
            return self.apply_mark_internal(ctxt, expn_id, transparency);
        }

        let call_site_ctxt = self.expn_data(expn_id).call_site.ctxt();
        let mut call_site_ctxt = if transparency == Transparency::SemiTransparent {
            self.normalize_to_macros_2_0(call_site_ctxt)
        } else {
            self.normalize_to_macro_rules(call_site_ctxt)
        };

        if call_site_ctxt == SyntaxContext::root() {
            return self.apply_mark_internal(ctxt, expn_id, transparency);
        }

        // Otherwise, `expn_id` is a macros 1.0 definition and the call site is in a
        // macros 2.0 expansion, i.e., a macros 1.0 invocation is in a macros 2.0 definition.
        //
        // In this case, the tokens from the macros 1.0 definition inherit the hygiene
        // at their invocation. That is, we pretend that the macros 1.0 definition
        // was defined at its invocation (i.e., inside the macros 2.0 definition)
        // so that the macros 2.0 definition remains hygienic.
        //
        // See the example at `test/ui/hygiene/legacy_interaction.rs`.
        for (expn_id, transparency) in self.marks(ctxt) {
            call_site_ctxt = self.apply_mark_internal(call_site_ctxt, expn_id, transparency);
        }
        self.apply_mark_internal(call_site_ctxt, expn_id, transparency)
    }

    fn apply_mark_internal(
        &mut self,
        ctxt: SyntaxContext,
        expn_id: ExpnId,
        transparency: Transparency,
    ) -> SyntaxContext {
        let syntax_context_data = &mut self.syntax_context_data;
        let mut opaque = syntax_context_data[ctxt.0 as usize].opaque;
        let mut opaque_and_semitransparent =
            syntax_context_data[ctxt.0 as usize].opaque_and_semitransparent;

        if transparency >= Transparency::Opaque {
            let parent = opaque;
            opaque = *self
                .syntax_context_map
                .entry((parent, expn_id, transparency))
                .or_insert_with(|| {
                    let new_opaque = SyntaxContext(syntax_context_data.len() as u32);
                    syntax_context_data.push(SyntaxContextData {
                        outer_expn: expn_id,
                        outer_transparency: transparency,
                        parent,
                        opaque: new_opaque,
                        opaque_and_semitransparent: new_opaque,
                        dollar_crate_name: kw::DollarCrate,
                    });
                    new_opaque
                });
        }

        if transparency >= Transparency::SemiTransparent {
            let parent = opaque_and_semitransparent;
            opaque_and_semitransparent = *self
                .syntax_context_map
                .entry((parent, expn_id, transparency))
                .or_insert_with(|| {
                    let new_opaque_and_semitransparent =
                        SyntaxContext(syntax_context_data.len() as u32);
                    syntax_context_data.push(SyntaxContextData {
                        outer_expn: expn_id,
                        outer_transparency: transparency,
                        parent,
                        opaque,
                        opaque_and_semitransparent: new_opaque_and_semitransparent,
                        dollar_crate_name: kw::DollarCrate,
                    });
                    new_opaque_and_semitransparent
                });
        }

        let parent = ctxt;
        *self.syntax_context_map.entry((parent, expn_id, transparency)).or_insert_with(|| {
            let new_opaque_and_semitransparent_and_transparent =
                SyntaxContext(syntax_context_data.len() as u32);
            syntax_context_data.push(SyntaxContextData {
                outer_expn: expn_id,
                outer_transparency: transparency,
                parent,
                opaque,
                opaque_and_semitransparent,
                dollar_crate_name: kw::DollarCrate,
            });
            new_opaque_and_semitransparent_and_transparent
        })
    }
}

pub fn clear_syntax_context_map() {
    HygieneData::with(|data| data.syntax_context_map = FxHashMap::default());
}

pub fn walk_chain(span: Span, to: SyntaxContext) -> Span {
    HygieneData::with(|data| data.walk_chain(span, to))
}

pub fn update_dollar_crate_names(mut get_name: impl FnMut(SyntaxContext) -> Symbol) {
    // The new contexts that need updating are at the end of the list and have `$crate` as a name.
    let (len, to_update) = HygieneData::with(|data| {
        (
            data.syntax_context_data.len(),
            data.syntax_context_data
                .iter()
                .rev()
                .take_while(|scdata| scdata.dollar_crate_name == kw::DollarCrate)
                .count(),
        )
    });
    // The callback must be called from outside of the `HygieneData` lock,
    // since it will try to acquire it too.
    let range_to_update = len - to_update..len;
    let names: Vec<_> =
        range_to_update.clone().map(|idx| get_name(SyntaxContext::from_u32(idx as u32))).collect();
    HygieneData::with(|data| {
        range_to_update.zip(names).for_each(|(idx, name)| {
            data.syntax_context_data[idx].dollar_crate_name = name;
        })
    })
}

pub fn debug_hygiene_data(verbose: bool) -> String {
    HygieneData::with(|data| {
        if verbose {
            format!("{:#?}", data)
        } else {
            let mut s = String::from("");
            s.push_str("Expansions:");
            data.expn_data.iter().enumerate().for_each(|(id, expn_info)| {
                let expn_info = expn_info.as_ref().expect("no expansion data for an expansion ID");
                s.push_str(&format!(
                    "\n{}: parent: {:?}, call_site_ctxt: {:?}, def_site_ctxt: {:?}, kind: {:?}",
                    id,
                    expn_info.parent,
                    expn_info.call_site.ctxt(),
                    expn_info.def_site.ctxt(),
                    expn_info.kind,
                ));
            });
            s.push_str("\n\nSyntaxContexts:");
            data.syntax_context_data.iter().enumerate().for_each(|(id, ctxt)| {
                s.push_str(&format!(
                    "\n#{}: parent: {:?}, outer_mark: ({:?}, {:?})",
                    id, ctxt.parent, ctxt.outer_expn, ctxt.outer_transparency,
                ));
            });
            s
        }
    })
}

impl SyntaxContext {
    #[inline]
    pub const fn root() -> Self {
        SyntaxContext(0)
    }

    #[inline]
    crate fn as_u32(self) -> u32 {
        self.0
    }

    #[inline]
    crate fn from_u32(raw: u32) -> SyntaxContext {
        SyntaxContext(raw)
    }

    /// Extend a syntax context with a given expansion and transparency.
    crate fn apply_mark(self, expn_id: ExpnId, transparency: Transparency) -> SyntaxContext {
        HygieneData::with(|data| data.apply_mark(self, expn_id, transparency))
    }

    /// Pulls a single mark off of the syntax context. This effectively moves the
    /// context up one macro definition level. That is, if we have a nested macro
    /// definition as follows:
    ///
    /// ```rust
    /// macro_rules! f {
    ///    macro_rules! g {
    ///        ...
    ///    }
    /// }
    /// ```
    ///
    /// and we have a SyntaxContext that is referring to something declared by an invocation
    /// of g (call it g1), calling remove_mark will result in the SyntaxContext for the
    /// invocation of f that created g1.
    /// Returns the mark that was removed.
    pub fn remove_mark(&mut self) -> ExpnId {
        HygieneData::with(|data| data.remove_mark(self).0)
    }

    pub fn marks(self) -> Vec<(ExpnId, Transparency)> {
        HygieneData::with(|data| data.marks(self))
    }

    /// Adjust this context for resolution in a scope created by the given expansion.
    /// For example, consider the following three resolutions of `f`:
    ///
    /// ```rust
    /// mod foo { pub fn f() {} } // `f`'s `SyntaxContext` is empty.
    /// m!(f);
    /// macro m($f:ident) {
    ///     mod bar {
    ///         pub fn f() {} // `f`'s `SyntaxContext` has a single `ExpnId` from `m`.
    ///         pub fn $f() {} // `$f`'s `SyntaxContext` is empty.
    ///     }
    ///     foo::f(); // `f`'s `SyntaxContext` has a single `ExpnId` from `m`
    ///     //^ Since `mod foo` is outside this expansion, `adjust` removes the mark from `f`,
    ///     //| and it resolves to `::foo::f`.
    ///     bar::f(); // `f`'s `SyntaxContext` has a single `ExpnId` from `m`
    ///     //^ Since `mod bar` not outside this expansion, `adjust` does not change `f`,
    ///     //| and it resolves to `::bar::f`.
    ///     bar::$f(); // `f`'s `SyntaxContext` is empty.
    ///     //^ Since `mod bar` is not outside this expansion, `adjust` does not change `$f`,
    ///     //| and it resolves to `::bar::$f`.
    /// }
    /// ```
    /// This returns the expansion whose definition scope we use to privacy check the resolution,
    /// or `None` if we privacy check as usual (i.e., not w.r.t. a macro definition scope).
    pub fn adjust(&mut self, expn_id: ExpnId) -> Option<ExpnId> {
        HygieneData::with(|data| data.adjust(self, expn_id))
    }

    /// Like `SyntaxContext::adjust`, but also normalizes `self` to macros 2.0.
    pub fn normalize_to_macros_2_0_and_adjust(&mut self, expn_id: ExpnId) -> Option<ExpnId> {
        HygieneData::with(|data| {
            *self = data.normalize_to_macros_2_0(*self);
            data.adjust(self, expn_id)
        })
    }

    /// Adjust this context for resolution in a scope created by the given expansion
    /// via a glob import with the given `SyntaxContext`.
    /// For example:
    ///
    /// ```rust
    /// m!(f);
    /// macro m($i:ident) {
    ///     mod foo {
    ///         pub fn f() {} // `f`'s `SyntaxContext` has a single `ExpnId` from `m`.
    ///         pub fn $i() {} // `$i`'s `SyntaxContext` is empty.
    ///     }
    ///     n(f);
    ///     macro n($j:ident) {
    ///         use foo::*;
    ///         f(); // `f`'s `SyntaxContext` has a mark from `m` and a mark from `n`
    ///         //^ `glob_adjust` removes the mark from `n`, so this resolves to `foo::f`.
    ///         $i(); // `$i`'s `SyntaxContext` has a mark from `n`
    ///         //^ `glob_adjust` removes the mark from `n`, so this resolves to `foo::$i`.
    ///         $j(); // `$j`'s `SyntaxContext` has a mark from `m`
    ///         //^ This cannot be glob-adjusted, so this is a resolution error.
    ///     }
    /// }
    /// ```
    /// This returns `None` if the context cannot be glob-adjusted.
    /// Otherwise, it returns the scope to use when privacy checking (see `adjust` for details).
    pub fn glob_adjust(&mut self, expn_id: ExpnId, glob_span: Span) -> Option<Option<ExpnId>> {
        HygieneData::with(|data| {
            let mut scope = None;
            let mut glob_ctxt = data.normalize_to_macros_2_0(glob_span.ctxt());
            while !data.is_descendant_of(expn_id, data.outer_expn(glob_ctxt)) {
                scope = Some(data.remove_mark(&mut glob_ctxt).0);
                if data.remove_mark(self).0 != scope.unwrap() {
                    return None;
                }
            }
            if data.adjust(self, expn_id).is_some() {
                return None;
            }
            Some(scope)
        })
    }

    /// Undo `glob_adjust` if possible:
    ///
    /// ```rust
    /// if let Some(privacy_checking_scope) = self.reverse_glob_adjust(expansion, glob_ctxt) {
    ///     assert!(self.glob_adjust(expansion, glob_ctxt) == Some(privacy_checking_scope));
    /// }
    /// ```
    pub fn reverse_glob_adjust(
        &mut self,
        expn_id: ExpnId,
        glob_span: Span,
    ) -> Option<Option<ExpnId>> {
        HygieneData::with(|data| {
            if data.adjust(self, expn_id).is_some() {
                return None;
            }

            let mut glob_ctxt = data.normalize_to_macros_2_0(glob_span.ctxt());
            let mut marks = Vec::new();
            while !data.is_descendant_of(expn_id, data.outer_expn(glob_ctxt)) {
                marks.push(data.remove_mark(&mut glob_ctxt));
            }

            let scope = marks.last().map(|mark| mark.0);
            while let Some((expn_id, transparency)) = marks.pop() {
                *self = data.apply_mark(*self, expn_id, transparency);
            }
            Some(scope)
        })
    }

    pub fn hygienic_eq(self, other: SyntaxContext, expn_id: ExpnId) -> bool {
        HygieneData::with(|data| {
            let mut self_normalized = data.normalize_to_macros_2_0(self);
            data.adjust(&mut self_normalized, expn_id);
            self_normalized == data.normalize_to_macros_2_0(other)
        })
    }

    #[inline]
    pub fn normalize_to_macros_2_0(self) -> SyntaxContext {
        HygieneData::with(|data| data.normalize_to_macros_2_0(self))
    }

    #[inline]
    pub fn normalize_to_macro_rules(self) -> SyntaxContext {
        HygieneData::with(|data| data.normalize_to_macro_rules(self))
    }

    #[inline]
    pub fn outer_expn(self) -> ExpnId {
        HygieneData::with(|data| data.outer_expn(self))
    }

    /// `ctxt.outer_expn_data()` is equivalent to but faster than
    /// `ctxt.outer_expn().expn_data()`.
    #[inline]
    pub fn outer_expn_data(self) -> ExpnData {
        HygieneData::with(|data| data.expn_data(data.outer_expn(self)).clone())
    }

    #[inline]
    pub fn outer_mark(self) -> (ExpnId, Transparency) {
        HygieneData::with(|data| data.outer_mark(self))
    }

    pub fn dollar_crate_name(self) -> Symbol {
        HygieneData::with(|data| data.syntax_context_data[self.0 as usize].dollar_crate_name)
    }

    pub fn edition(self) -> Edition {
        self.outer_expn_data().edition
    }
}

impl fmt::Debug for SyntaxContext {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "#{}", self.0)
    }
}

impl Span {
    /// Creates a fresh expansion with given properties.
    /// Expansions are normally created by macros, but in some cases expansions are created for
    /// other compiler-generated code to set per-span properties like allowed unstable features.
    /// The returned span belongs to the created expansion and has the new properties,
    /// but its location is inherited from the current span.
    pub fn fresh_expansion(self, expn_data: ExpnData) -> Span {
        self.fresh_expansion_with_transparency(expn_data, Transparency::Transparent)
    }

    pub fn fresh_expansion_with_transparency(
        self,
        expn_data: ExpnData,
        transparency: Transparency,
    ) -> Span {
        let expn_id = ExpnId::fresh(Some(expn_data));
        HygieneData::with(|data| {
            self.with_ctxt(data.apply_mark(SyntaxContext::root(), expn_id, transparency))
        })
    }

    /// Reuses the span but adds information like the kind of the desugaring and features that are
    /// allowed inside this span.
    pub fn mark_with_reason(
        self,
        allow_internal_unstable: Option<Lrc<[Symbol]>>,
        reason: DesugaringKind,
        edition: Edition,
    ) -> Span {
        self.fresh_expansion(ExpnData {
            allow_internal_unstable,
            ..ExpnData::default(ExpnKind::Desugaring(reason), self, edition, None)
        })
    }
}

/// A subset of properties from both macro definition and macro call available through global data.
/// Avoid using this if you have access to the original definition or call structures.
#[derive(Clone, Debug, Encodable, Decodable, HashStable_Generic)]
pub struct ExpnData {
    // --- The part unique to each expansion.
    /// The kind of this expansion - macro or compiler desugaring.
    pub kind: ExpnKind,
    /// The expansion that produced this expansion.
    pub parent: ExpnId,
    /// The location of the actual macro invocation or syntax sugar , e.g.
    /// `let x = foo!();` or `if let Some(y) = x {}`
    ///
    /// This may recursively refer to other macro invocations, e.g., if
    /// `foo!()` invoked `bar!()` internally, and there was an
    /// expression inside `bar!`; the call_site of the expression in
    /// the expansion would point to the `bar!` invocation; that
    /// call_site span would have its own ExpnData, with the call_site
    /// pointing to the `foo!` invocation.
    pub call_site: Span,

    // --- The part specific to the macro/desugaring definition.
    // --- It may be reasonable to share this part between expansions with the same definition,
    // --- but such sharing is known to bring some minor inconveniences without also bringing
    // --- noticeable perf improvements (PR #62898).
    /// The span of the macro definition (possibly dummy).
    /// This span serves only informational purpose and is not used for resolution.
    pub def_site: Span,
    /// List of `#[unstable]`/feature-gated features that the macro is allowed to use
    /// internally without forcing the whole crate to opt-in
    /// to them.
    pub allow_internal_unstable: Option<Lrc<[Symbol]>>,
    /// Whether the macro is allowed to use `unsafe` internally
    /// even if the user crate has `#![forbid(unsafe_code)]`.
    pub allow_internal_unsafe: bool,
    /// Enables the macro helper hack (`ident!(...)` -> `$crate::ident!(...)`)
    /// for a given macro.
    pub local_inner_macros: bool,
    /// Edition of the crate in which the macro is defined.
    pub edition: Edition,
    /// The `DefId` of the macro being invoked,
    /// if this `ExpnData` corresponds to a macro invocation
    pub macro_def_id: Option<DefId>,
    /// The crate that originally created this `ExpnData`. During
    /// metadata serialization, we only encode `ExpnData`s that were
    /// created locally - when our serialized metadata is decoded,
    /// foreign `ExpnId`s will have their `ExpnData` looked up
    /// from the crate specified by `Crate
    krate: CrateNum,
    /// The raw that this `ExpnData` had in its original crate.
    /// An `ExpnData` can be created before being assigned an `ExpnId`,
    /// so this might be `None` until `set_expn_data` is called
    // This is used only for serialization/deserialization purposes:
    // two `ExpnData`s that differ only in their `orig_id` should
    // be considered equivalent.
    #[stable_hasher(ignore)]
    orig_id: Option<u32>,

    /// Used to force two `ExpnData`s to have different `Fingerprint`s.
    /// Due to macro expansion, it's possible to end up with two `ExpnId`s
    /// that have identical `ExpnData`s. This violates the contract of `HashStable`
    /// - the two `ExpnId`s are not equal, but their `Fingerprint`s are equal
    /// (since the numerical `ExpnId` value is not considered by the `HashStable`
    /// implementation).
    ///
    /// The `disambiguator` field is set by `update_disambiguator` when two distinct
    /// `ExpnId`s would end up with the same `Fingerprint`. Since `ExpnData` includes
    /// a `krate` field, this value only needs to be unique within a single crate.
    disambiguator: u32,
}

// These would require special handling of `orig_id`.
impl !PartialEq for ExpnData {}
impl !Hash for ExpnData {}

impl ExpnData {
    pub fn new(
        kind: ExpnKind,
        parent: ExpnId,
        call_site: Span,
        def_site: Span,
        allow_internal_unstable: Option<Lrc<[Symbol]>>,
        allow_internal_unsafe: bool,
        local_inner_macros: bool,
        edition: Edition,
        macro_def_id: Option<DefId>,
    ) -> ExpnData {
        ExpnData {
            kind,
            parent,
            call_site,
            def_site,
            allow_internal_unstable,
            allow_internal_unsafe,
            local_inner_macros,
            edition,
            macro_def_id,
            krate: LOCAL_CRATE,
            orig_id: None,
            disambiguator: 0,
        }
    }

    /// Constructs expansion data with default properties.
    pub fn default(
        kind: ExpnKind,
        call_site: Span,
        edition: Edition,
        macro_def_id: Option<DefId>,
    ) -> ExpnData {
        ExpnData {
            kind,
            parent: ExpnId::root(),
            call_site,
            def_site: DUMMY_SP,
            allow_internal_unstable: None,
            allow_internal_unsafe: false,
            local_inner_macros: false,
            edition,
            macro_def_id,
            krate: LOCAL_CRATE,
            orig_id: None,
            disambiguator: 0,
        }
    }

    pub fn allow_unstable(
        kind: ExpnKind,
        call_site: Span,
        edition: Edition,
        allow_internal_unstable: Lrc<[Symbol]>,
        macro_def_id: Option<DefId>,
    ) -> ExpnData {
        ExpnData {
            allow_internal_unstable: Some(allow_internal_unstable),
            ..ExpnData::default(kind, call_site, edition, macro_def_id)
        }
    }

    #[inline]
    pub fn is_root(&self) -> bool {
        matches!(self.kind, ExpnKind::Root)
    }
}

/// Expansion kind.
#[derive(Clone, Debug, PartialEq, Encodable, Decodable, HashStable_Generic)]
pub enum ExpnKind {
    /// No expansion, aka root expansion. Only `ExpnId::root()` has this kind.
    Root,
    /// Expansion produced by a macro.
    Macro {
        kind: MacroKind,
        name: Symbol,
        /// If `true`, this macro is a procedural macro. This
        /// flag is only used for diagnostic purposes
        proc_macro: bool,
    },
    /// Transform done by the compiler on the AST.
    AstPass(AstPass),
    /// Desugaring done by the compiler during HIR lowering.
    Desugaring(DesugaringKind),
    /// MIR inlining
    Inlined,
}

impl ExpnKind {
    pub fn descr(&self) -> String {
        match *self {
            ExpnKind::Root => kw::PathRoot.to_string(),
            ExpnKind::Macro { kind, name, proc_macro: _ } => match kind {
                MacroKind::Bang => format!("{}!", name),
                MacroKind::Attr => format!("#[{}]", name),
                MacroKind::Derive => format!("#[derive({})]", name),
            },
            ExpnKind::AstPass(kind) => kind.descr().to_string(),
            ExpnKind::Desugaring(kind) => format!("desugaring of {}", kind.descr()),
            ExpnKind::Inlined => "inlined source".to_string(),
        }
    }
}

/// The kind of macro invocation or definition.
#[derive(Clone, Copy, PartialEq, Eq, Encodable, Decodable, Hash, Debug)]
#[derive(HashStable_Generic)]
pub enum MacroKind {
    /// A bang macro `foo!()`.
    Bang,
    /// An attribute macro `#[foo]`.
    Attr,
    /// A derive macro `#[derive(Foo)]`
    Derive,
}

impl MacroKind {
    pub fn descr(self) -> &'static str {
        match self {
            MacroKind::Bang => "macro",
            MacroKind::Attr => "attribute macro",
            MacroKind::Derive => "derive macro",
        }
    }

    pub fn descr_expected(self) -> &'static str {
        match self {
            MacroKind::Attr => "attribute",
            _ => self.descr(),
        }
    }

    pub fn article(self) -> &'static str {
        match self {
            MacroKind::Attr => "an",
            _ => "a",
        }
    }
}

/// The kind of AST transform.
#[derive(Clone, Copy, Debug, PartialEq, Encodable, Decodable, HashStable_Generic)]
pub enum AstPass {
    StdImports,
    TestHarness,
    ProcMacroHarness,
}

impl AstPass {
    fn descr(self) -> &'static str {
        match self {
            AstPass::StdImports => "standard library imports",
            AstPass::TestHarness => "test harness",
            AstPass::ProcMacroHarness => "proc macro harness",
        }
    }
}

/// The kind of compiler desugaring.
#[derive(Clone, Copy, PartialEq, Debug, Encodable, Decodable, HashStable_Generic)]
pub enum DesugaringKind {
    /// We desugar `if c { i } else { e }` to `match $ExprKind::Use(c) { true => i, _ => e }`.
    /// However, we do not want to blame `c` for unreachability but rather say that `i`
    /// is unreachable. This desugaring kind allows us to avoid blaming `c`.
    /// This also applies to `while` loops.
    CondTemporary,
    QuestionMark,
    TryBlock,
    /// Desugaring of an `impl Trait` in return type position
    /// to an `type Foo = impl Trait;` and replacing the
    /// `impl Trait` with `Foo`.
    OpaqueTy,
    Async,
    Await,
    ForLoop(ForLoopLoc),
}

/// A location in the desugaring of a `for` loop
#[derive(Clone, Copy, PartialEq, Debug, Encodable, Decodable, HashStable_Generic)]
pub enum ForLoopLoc {
    Head,
    IntoIter,
}

impl DesugaringKind {
    /// The description wording should combine well with "desugaring of {}".
    fn descr(self) -> &'static str {
        match self {
            DesugaringKind::CondTemporary => "`if` or `while` condition",
            DesugaringKind::Async => "`async` block or function",
            DesugaringKind::Await => "`await` expression",
            DesugaringKind::QuestionMark => "operator `?`",
            DesugaringKind::TryBlock => "`try` block",
            DesugaringKind::OpaqueTy => "`impl Trait`",
            DesugaringKind::ForLoop(_) => "`for` loop",
        }
    }
}

#[derive(Default)]
pub struct HygieneEncodeContext {
    /// All `SyntaxContexts` for which we have written `SyntaxContextData` into crate metadata.
    /// This is `None` after we finish encoding `SyntaxContexts`, to ensure
    /// that we don't accidentally try to encode any more `SyntaxContexts`
    serialized_ctxts: Lock<FxHashSet<SyntaxContext>>,
    /// The `SyntaxContexts` that we have serialized (e.g. as a result of encoding `Spans`)
    /// in the most recent 'round' of serializnig. Serializing `SyntaxContextData`
    /// may cause us to serialize more `SyntaxContext`s, so serialize in a loop
    /// until we reach a fixed point.
    latest_ctxts: Lock<FxHashSet<SyntaxContext>>,

    serialized_expns: Lock<FxHashSet<ExpnId>>,

    latest_expns: Lock<FxHashSet<ExpnId>>,
}

impl HygieneEncodeContext {
    pub fn encode<
        T,
        R,
        F: FnMut(&mut T, u32, &SyntaxContextData) -> Result<(), R>,
        G: FnMut(&mut T, u32, &ExpnData) -> Result<(), R>,
    >(
        &self,
        encoder: &mut T,
        mut encode_ctxt: F,
        mut encode_expn: G,
    ) -> Result<(), R> {
        // When we serialize a `SyntaxContextData`, we may end up serializing
        // a `SyntaxContext` that we haven't seen before
        while !self.latest_ctxts.lock().is_empty() || !self.latest_expns.lock().is_empty() {
            debug!(
                "encode_hygiene: Serializing a round of {:?} SyntaxContextDatas: {:?}",
                self.latest_ctxts.lock().len(),
                self.latest_ctxts
            );

            // Consume the current round of SyntaxContexts.
            // Drop the lock() temporary early
            let latest_ctxts = { std::mem::take(&mut *self.latest_ctxts.lock()) };

            // It's fine to iterate over a HashMap, because the serialization
            // of the table that we insert data into doesn't depend on insertion
            // order
            for_all_ctxts_in(latest_ctxts.into_iter(), |(index, ctxt, data)| {
                if self.serialized_ctxts.lock().insert(ctxt) {
                    encode_ctxt(encoder, index, data)?;
                }
                Ok(())
            })?;

            let latest_expns = { std::mem::take(&mut *self.latest_expns.lock()) };

            for_all_expns_in(latest_expns.into_iter(), |index, expn, data| {
                if self.serialized_expns.lock().insert(expn) {
                    encode_expn(encoder, index, data)?;
                }
                Ok(())
            })?;
        }
        debug!("encode_hygiene: Done serializing SyntaxContextData");
        Ok(())
    }
}

#[derive(Default)]
/// Additional information used to assist in decoding hygiene data
pub struct HygieneDecodeContext {
    // Maps serialized `SyntaxContext` ids to a `SyntaxContext` in the current
    // global `HygieneData`. When we deserialize a `SyntaxContext`, we need to create
    // a new id in the global `HygieneData`. This map tracks the ID we end up picking,
    // so that multiple occurrences of the same serialized id are decoded to the same
    // `SyntaxContext`
    remapped_ctxts: Lock<Vec<Option<SyntaxContext>>>,
    // The same as `remapepd_ctxts`, but for `ExpnId`s
    remapped_expns: Lock<Vec<Option<ExpnId>>>,
}

pub fn decode_expn_id<
    'a,
    D: Decoder,
    F: FnOnce(&mut D, u32) -> Result<ExpnData, D::Error>,
    G: FnOnce(CrateNum) -> &'a HygieneDecodeContext,
>(
    d: &mut D,
    mode: ExpnDataDecodeMode<'a, G>,
    decode_data: F,
) -> Result<ExpnId, D::Error> {
    let index = u32::decode(d)?;
    let context = match mode {
        ExpnDataDecodeMode::IncrComp(context) => context,
        ExpnDataDecodeMode::Metadata(get_context) => {
            let krate = CrateNum::decode(d)?;
            get_context(krate)
        }
    };

    // Do this after decoding, so that we decode a `CrateNum`
    // if necessary
    if index == ExpnId::root().as_u32() {
        debug!("decode_expn_id: deserialized root");
        return Ok(ExpnId::root());
    }

    let outer_expns = &context.remapped_expns;

    // Ensure that the lock() temporary is dropped early
    {
        if let Some(expn_id) = outer_expns.lock().get(index as usize).copied().flatten() {
            return Ok(expn_id);
        }
    }

    // Don't decode the data inside `HygieneData::with`, since we need to recursively decode
    // other ExpnIds
    let mut expn_data = decode_data(d, index)?;

    let expn_id = HygieneData::with(|hygiene_data| {
        let expn_id = ExpnId(hygiene_data.expn_data.len() as u32);

        // If we just deserialized an `ExpnData` owned by
        // the local crate, its `orig_id` will be stale,
        // so we need to update it to its own value.
        // This only happens when we deserialize the incremental cache,
        // since a crate will never decode its own metadata.
        if expn_data.krate == LOCAL_CRATE {
            expn_data.orig_id = Some(expn_id.0);
        }

        hygiene_data.expn_data.push(Some(expn_data));

        let mut expns = outer_expns.lock();
        let new_len = index as usize + 1;
        if expns.len() < new_len {
            expns.resize(new_len, None);
        }
        expns[index as usize] = Some(expn_id);
        drop(expns);
        expn_id
    });
    Ok(expn_id)
}

// Decodes `SyntaxContext`, using the provided `HygieneDecodeContext`
// to track which `SyntaxContext`s we have already decoded.
// The provided closure will be invoked to deserialize a `SyntaxContextData`
// if we haven't already seen the id of the `SyntaxContext` we are deserializing.
pub fn decode_syntax_context<
    D: Decoder,
    F: FnOnce(&mut D, u32) -> Result<SyntaxContextData, D::Error>,
>(
    d: &mut D,
    context: &HygieneDecodeContext,
    decode_data: F,
) -> Result<SyntaxContext, D::Error> {
    let raw_id: u32 = Decodable::decode(d)?;
    if raw_id == 0 {
        debug!("decode_syntax_context: deserialized root");
        // The root is special
        return Ok(SyntaxContext::root());
    }

    let outer_ctxts = &context.remapped_ctxts;

    // Ensure that the lock() temporary is dropped early
    {
        if let Some(ctxt) = outer_ctxts.lock().get(raw_id as usize).copied().flatten() {
            return Ok(ctxt);
        }
    }

    // Allocate and store SyntaxContext id *before* calling the decoder function,
    // as the SyntaxContextData may reference itself.
    let new_ctxt = HygieneData::with(|hygiene_data| {
        let new_ctxt = SyntaxContext(hygiene_data.syntax_context_data.len() as u32);
        // Push a dummy SyntaxContextData to ensure that nobody else can get the
        // same ID as us. This will be overwritten after call `decode_Data`
        hygiene_data.syntax_context_data.push(SyntaxContextData {
            outer_expn: ExpnId::root(),
            outer_transparency: Transparency::Transparent,
            parent: SyntaxContext::root(),
            opaque: SyntaxContext::root(),
            opaque_and_semitransparent: SyntaxContext::root(),
            dollar_crate_name: kw::Empty,
        });
        let mut ctxts = outer_ctxts.lock();
        let new_len = raw_id as usize + 1;
        if ctxts.len() < new_len {
            ctxts.resize(new_len, None);
        }
        ctxts[raw_id as usize] = Some(new_ctxt);
        drop(ctxts);
        new_ctxt
    });

    // Don't try to decode data while holding the lock, since we need to
    // be able to recursively decode a SyntaxContext
    let mut ctxt_data = decode_data(d, raw_id)?;
    // Reset `dollar_crate_name` so that it will be updated by `update_dollar_crate_names`
    // We don't care what the encoding crate set this to - we want to resolve it
    // from the perspective of the current compilation session
    ctxt_data.dollar_crate_name = kw::DollarCrate;

    // Overwrite the dummy data with our decoded SyntaxContextData
    HygieneData::with(|hygiene_data| {
        let dummy = std::mem::replace(
            &mut hygiene_data.syntax_context_data[new_ctxt.as_u32() as usize],
            ctxt_data,
        );
        // Make sure nothing weird happening while `decode_data` was running
        assert_eq!(dummy.dollar_crate_name, kw::Empty);
    });

    Ok(new_ctxt)
}

fn for_all_ctxts_in<E, F: FnMut((u32, SyntaxContext, &SyntaxContextData)) -> Result<(), E>>(
    ctxts: impl Iterator<Item = SyntaxContext>,
    mut f: F,
) -> Result<(), E> {
    let all_data: Vec<_> = HygieneData::with(|data| {
        ctxts.map(|ctxt| (ctxt, data.syntax_context_data[ctxt.0 as usize].clone())).collect()
    });
    for (ctxt, data) in all_data.into_iter() {
        f((ctxt.0, ctxt, &data))?;
    }
    Ok(())
}

fn for_all_expns_in<E, F: FnMut(u32, ExpnId, &ExpnData) -> Result<(), E>>(
    expns: impl Iterator<Item = ExpnId>,
    mut f: F,
) -> Result<(), E> {
    let all_data: Vec<_> = HygieneData::with(|data| {
        expns.map(|expn| (expn, data.expn_data[expn.0 as usize].clone())).collect()
    });
    for (expn, data) in all_data.into_iter() {
        f(expn.0, expn, &data.unwrap_or_else(|| panic!("Missing data for {:?}", expn)))?;
    }
    Ok(())
}

impl<E: Encoder> Encodable<E> for ExpnId {
    default fn encode(&self, _: &mut E) -> Result<(), E::Error> {
        panic!("cannot encode `ExpnId` with `{}`", std::any::type_name::<E>());
    }
}

impl<D: Decoder> Decodable<D> for ExpnId {
    default fn decode(_: &mut D) -> Result<Self, D::Error> {
        panic!("cannot decode `ExpnId` with `{}`", std::any::type_name::<D>());
    }
}

pub fn raw_encode_syntax_context<E: Encoder>(
    ctxt: SyntaxContext,
    context: &HygieneEncodeContext,
    e: &mut E,
) -> Result<(), E::Error> {
    if !context.serialized_ctxts.lock().contains(&ctxt) {
        context.latest_ctxts.lock().insert(ctxt);
    }
    ctxt.0.encode(e)
}

pub fn raw_encode_expn_id<E: Encoder>(
    expn: ExpnId,
    context: &HygieneEncodeContext,
    mode: ExpnDataEncodeMode,
    e: &mut E,
) -> Result<(), E::Error> {
    // Record the fact that we need to serialize the corresponding
    // `ExpnData`
    let needs_data = || {
        if !context.serialized_expns.lock().contains(&expn) {
            context.latest_expns.lock().insert(expn);
        }
    };

    match mode {
        ExpnDataEncodeMode::IncrComp => {
            // Always serialize the `ExpnData` in incr comp mode
            needs_data();
            expn.0.encode(e)
        }
        ExpnDataEncodeMode::Metadata => {
            let data = expn.expn_data();
            // We only need to serialize the ExpnData
            // if it comes from this crate.
            // We currently don't serialize any hygiene information data for
            // proc-macro crates: see the `SpecializedEncoder<Span>` impl
            // for crate metadata.
            if data.krate == LOCAL_CRATE {
                needs_data();
            }
            data.orig_id.expect("Missing orig_id").encode(e)?;
            data.krate.encode(e)
        }
    }
}

pub enum ExpnDataEncodeMode {
    IncrComp,
    Metadata,
}

pub enum ExpnDataDecodeMode<'a, F: FnOnce(CrateNum) -> &'a HygieneDecodeContext> {
    IncrComp(&'a HygieneDecodeContext),
    Metadata(F),
}

impl<'a> ExpnDataDecodeMode<'a, Box<dyn FnOnce(CrateNum) -> &'a HygieneDecodeContext>> {
    pub fn incr_comp(ctxt: &'a HygieneDecodeContext) -> Self {
        ExpnDataDecodeMode::IncrComp(ctxt)
    }
}

impl<E: Encoder> Encodable<E> for SyntaxContext {
    default fn encode(&self, _: &mut E) -> Result<(), E::Error> {
        panic!("cannot encode `SyntaxContext` with `{}`", std::any::type_name::<E>());
    }
}

impl<D: Decoder> Decodable<D> for SyntaxContext {
    default fn decode(_: &mut D) -> Result<Self, D::Error> {
        panic!("cannot decode `SyntaxContext` with `{}`", std::any::type_name::<D>());
    }
}

/// Updates the `disambiguator` field of the corresponding `ExpnData`
/// such that the `Fingerprint` of the `ExpnData` does not collide with
/// any other `ExpnIds`.
///
/// This method is called only when an `ExpnData` is first associated
/// with an `ExpnId` (when the `ExpnId` is initially constructed, or via
/// `set_expn_data`). It is *not* called for foreign `ExpnId`s deserialized
/// from another crate's metadata - since `ExpnData` includes a `krate` field,
/// collisions are only possible between `ExpnId`s within the same crate.
fn update_disambiguator(expn_id: ExpnId) {
    /// A `HashStableContext` which hashes the raw id values for `DefId`
    /// and `CrateNum`, rather than using their computed stable hash.
    ///
    /// This allows us to use the `HashStable` implementation on `ExpnId`
    /// early on in compilation, before we've constructed a `TyCtxt`.
    /// The `Fingerprint`s created by this context are not 'stable', since
    /// the raw `CrateNum` and `DefId` values for an item may change between
    /// sessions due to unrelated changes (e.g. adding/removing an different item).
    ///
    /// However, this is fine for our purposes - we only need to detect
    /// when two `ExpnData`s have the same `Fingerprint`. Since the hashes produced
    /// by this context still obey the properties of `HashStable`, we have
    /// that
    /// `hash_stable(expn1, DummyHashStableContext) == hash_stable(expn2, DummyHashStableContext)`
    /// iff `hash_stable(expn1, StableHashingContext) == hash_stable(expn2, StableHasingContext)`.
    ///
    /// This is sufficient for determining when we need to update the disambiguator.
    struct DummyHashStableContext<'a> {
        caching_source_map: CachingSourceMapView<'a>,
    }

    impl<'a> crate::HashStableContext for DummyHashStableContext<'a> {
        fn hash_def_id(&mut self, def_id: DefId, hasher: &mut StableHasher) {
            def_id.krate.as_u32().hash_stable(self, hasher);
            def_id.index.as_u32().hash_stable(self, hasher);
        }

        fn expn_id_cache() -> &'static LocalKey<ExpnIdCache> {
            // This cache is only used by `DummyHashStableContext`,
            // so we won't pollute the cache values of the normal `StableHashingContext`
            thread_local! {
                static CACHE: ExpnIdCache = const { ExpnIdCache::new(Vec::new()) };
            }

            &CACHE
        }

        fn hash_crate_num(&mut self, krate: CrateNum, hasher: &mut StableHasher) {
            krate.as_u32().hash_stable(self, hasher);
        }
        fn hash_spans(&self) -> bool {
            true
        }
        fn span_data_to_lines_and_cols(
            &mut self,
            span: &crate::SpanData,
        ) -> Option<(Lrc<SourceFile>, usize, BytePos, usize, BytePos)> {
            self.caching_source_map.span_data_to_lines_and_cols(span)
        }
    }

    let source_map = SESSION_GLOBALS
        .with(|session_globals| session_globals.source_map.borrow().as_ref().unwrap().clone());

    let mut ctx =
        DummyHashStableContext { caching_source_map: CachingSourceMapView::new(&source_map) };

    let mut hasher = StableHasher::new();

    let expn_data = expn_id.expn_data();
    // This disambiguator should not have been set yet.
    assert_eq!(
        expn_data.disambiguator, 0,
        "Already set disambiguator for ExpnData: {:?}",
        expn_data
    );
    expn_data.hash_stable(&mut ctx, &mut hasher);
    let first_hash = hasher.finish();

    let modified = HygieneData::with(|data| {
        // If this is the first ExpnData with a given hash, then keep our
        // disambiguator at 0 (the default u32 value)
        let disambig = data.expn_data_disambiguators.entry(first_hash).or_default();
        data.expn_data[expn_id.0 as usize].as_mut().unwrap().disambiguator = *disambig;
        *disambig += 1;

        *disambig != 1
    });

    if modified {
        debug!("Set disambiguator for {:?} (hash {:?})", expn_id, first_hash);
        debug!("expn_data = {:?}", expn_id.expn_data());

        // Verify that the new disambiguator makes the hash unique
        #[cfg(debug_assertions)]
        {
            hasher = StableHasher::new();
            expn_id.expn_data().hash_stable(&mut ctx, &mut hasher);
            let new_hash: Fingerprint = hasher.finish();

            HygieneData::with(|data| {
                assert_eq!(
                    data.expn_data_disambiguators.get(&new_hash),
                    None,
                    "Hash collision after disambiguator update!",
                );
            });
        };
    }
}