1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
// Spans are encoded using 1-bit tag and 2 different encoding formats (one for each tag value). // One format is used for keeping span data inline, // another contains index into an out-of-line span interner. // The encoding format for inline spans were obtained by optimizing over crates in rustc/libstd. // See https://internals.rust-lang.org/t/rfc-compiler-refactoring-spans/1357/28 use crate::hygiene::SyntaxContext; use crate::SESSION_GLOBALS; use crate::{BytePos, SpanData}; use rustc_data_structures::fx::FxIndexSet; /// A compressed span. /// /// Whereas [`SpanData`] is 12 bytes, which is a bit too big to stick everywhere, `Span` /// is a form that only takes up 8 bytes, with less space for the length and /// context. The vast majority (99.9%+) of `SpanData` instances will fit within /// those 8 bytes; any `SpanData` whose fields don't fit into a `Span` are /// stored in a separate interner table, and the `Span` will index into that /// table. Interning is rare enough that the cost is low, but common enough /// that the code is exercised regularly. /// /// An earlier version of this code used only 4 bytes for `Span`, but that was /// slower because only 80--90% of spans could be stored inline (even less in /// very large crates) and so the interner was used a lot more. /// /// Inline (compressed) format: /// - `span.base_or_index == span_data.lo` /// - `span.len_or_tag == len == span_data.hi - span_data.lo` (must be `<= MAX_LEN`) /// - `span.ctxt == span_data.ctxt` (must be `<= MAX_CTXT`) /// /// Interned format: /// - `span.base_or_index == index` (indexes into the interner table) /// - `span.len_or_tag == LEN_TAG` (high bit set, all other bits are zero) /// - `span.ctxt == 0` /// /// The inline form uses 0 for the tag value (rather than 1) so that we don't /// need to mask out the tag bit when getting the length, and so that the /// dummy span can be all zeroes. /// /// Notes about the choice of field sizes: /// - `base` is 32 bits in both `Span` and `SpanData`, which means that `base` /// values never cause interning. The number of bits needed for `base` /// depends on the crate size. 32 bits allows up to 4 GiB of code in a crate. /// - `len` is 15 bits in `Span` (a u16, minus 1 bit for the tag) and 32 bits /// in `SpanData`, which means that large `len` values will cause interning. /// The number of bits needed for `len` does not depend on the crate size. /// The most common numbers of bits for `len` are from 0 to 7, with a peak usually /// at 3 or 4, and then it drops off quickly from 8 onwards. 15 bits is enough /// for 99.99%+ of cases, but larger values (sometimes 20+ bits) might occur /// dozens of times in a typical crate. /// - `ctxt` is 16 bits in `Span` and 32 bits in `SpanData`, which means that /// large `ctxt` values will cause interning. The number of bits needed for /// `ctxt` values depend partly on the crate size and partly on the form of /// the code. No crates in `rustc-perf` need more than 15 bits for `ctxt`, /// but larger crates might need more than 16 bits. /// #[derive(Clone, Copy, Eq, PartialEq, Hash)] pub struct Span { base_or_index: u32, len_or_tag: u16, ctxt_or_zero: u16, } const LEN_TAG: u16 = 0b1000_0000_0000_0000; const MAX_LEN: u32 = 0b0111_1111_1111_1111; const MAX_CTXT: u32 = 0b1111_1111_1111_1111; /// Dummy span, both position and length are zero, syntax context is zero as well. pub const DUMMY_SP: Span = Span { base_or_index: 0, len_or_tag: 0, ctxt_or_zero: 0 }; impl Span { #[inline] pub fn new(mut lo: BytePos, mut hi: BytePos, ctxt: SyntaxContext) -> Self { if lo > hi { std::mem::swap(&mut lo, &mut hi); } let (base, len, ctxt2) = (lo.0, hi.0 - lo.0, ctxt.as_u32()); if len <= MAX_LEN && ctxt2 <= MAX_CTXT { // Inline format. Span { base_or_index: base, len_or_tag: len as u16, ctxt_or_zero: ctxt2 as u16 } } else { // Interned format. let index = with_span_interner(|interner| interner.intern(&SpanData { lo, hi, ctxt })); Span { base_or_index: index, len_or_tag: LEN_TAG, ctxt_or_zero: 0 } } } #[inline] pub fn data(self) -> SpanData { if self.len_or_tag != LEN_TAG { // Inline format. debug_assert!(self.len_or_tag as u32 <= MAX_LEN); SpanData { lo: BytePos(self.base_or_index), hi: BytePos(self.base_or_index + self.len_or_tag as u32), ctxt: SyntaxContext::from_u32(self.ctxt_or_zero as u32), } } else { // Interned format. debug_assert!(self.ctxt_or_zero == 0); let index = self.base_or_index; with_span_interner(|interner| interner.spans[index as usize]) } } } #[derive(Default)] pub struct SpanInterner { spans: FxIndexSet<SpanData>, } impl SpanInterner { fn intern(&mut self, span_data: &SpanData) -> u32 { let (index, _) = self.spans.insert_full(*span_data); index as u32 } } // If an interner exists, return it. Otherwise, prepare a fresh one. #[inline] fn with_span_interner<T, F: FnOnce(&mut SpanInterner) -> T>(f: F) -> T { SESSION_GLOBALS.with(|session_globals| f(&mut *session_globals.span_interner.lock())) }