rayon/slice/
mod.rs

1//! Parallel iterator types for [slices][std::slice]
2//!
3//! You will rarely need to interact with this module directly unless you need
4//! to name one of the iterator types.
5//!
6//! [std::slice]: https://doc.rust-lang.org/stable/std/slice/
7
8mod chunks;
9mod mergesort;
10mod quicksort;
11mod rchunks;
12
13mod test;
14
15use self::mergesort::par_mergesort;
16use self::quicksort::par_quicksort;
17use crate::iter::plumbing::*;
18use crate::iter::*;
19use crate::split_producer::*;
20use std::cmp;
21use std::cmp::Ordering;
22use std::fmt::{self, Debug};
23use std::mem;
24
25pub use self::chunks::{Chunks, ChunksExact, ChunksExactMut, ChunksMut};
26pub use self::rchunks::{RChunks, RChunksExact, RChunksExactMut, RChunksMut};
27
28/// Parallel extensions for slices.
29pub trait ParallelSlice<T: Sync> {
30    /// Returns a plain slice, which is used to implement the rest of the
31    /// parallel methods.
32    fn as_parallel_slice(&self) -> &[T];
33
34    /// Returns a parallel iterator over subslices separated by elements that
35    /// match the separator.
36    ///
37    /// # Examples
38    ///
39    /// ```
40    /// use rayon::prelude::*;
41    /// let smallest = [1, 2, 3, 0, 2, 4, 8, 0, 3, 6, 9]
42    ///     .par_split(|i| *i == 0)
43    ///     .map(|numbers| numbers.iter().min().unwrap())
44    ///     .min();
45    /// assert_eq!(Some(&1), smallest);
46    /// ```
47    fn par_split<P>(&self, separator: P) -> Split<'_, T, P>
48    where
49        P: Fn(&T) -> bool + Sync + Send,
50    {
51        Split {
52            slice: self.as_parallel_slice(),
53            separator,
54        }
55    }
56
57    /// Returns a parallel iterator over all contiguous windows of length
58    /// `window_size`. The windows overlap.
59    ///
60    /// # Examples
61    ///
62    /// ```
63    /// use rayon::prelude::*;
64    /// let windows: Vec<_> = [1, 2, 3].par_windows(2).collect();
65    /// assert_eq!(vec![[1, 2], [2, 3]], windows);
66    /// ```
67    fn par_windows(&self, window_size: usize) -> Windows<'_, T> {
68        Windows {
69            window_size,
70            slice: self.as_parallel_slice(),
71        }
72    }
73
74    /// Returns a parallel iterator over at most `chunk_size` elements of
75    /// `self` at a time. The chunks do not overlap.
76    ///
77    /// If the number of elements in the iterator is not divisible by
78    /// `chunk_size`, the last chunk may be shorter than `chunk_size`.  All
79    /// other chunks will have that exact length.
80    ///
81    /// # Examples
82    ///
83    /// ```
84    /// use rayon::prelude::*;
85    /// let chunks: Vec<_> = [1, 2, 3, 4, 5].par_chunks(2).collect();
86    /// assert_eq!(chunks, vec![&[1, 2][..], &[3, 4], &[5]]);
87    /// ```
88    #[track_caller]
89    fn par_chunks(&self, chunk_size: usize) -> Chunks<'_, T> {
90        assert!(chunk_size != 0, "chunk_size must not be zero");
91        Chunks::new(chunk_size, self.as_parallel_slice())
92    }
93
94    /// Returns a parallel iterator over `chunk_size` elements of
95    /// `self` at a time. The chunks do not overlap.
96    ///
97    /// If `chunk_size` does not divide the length of the slice, then the
98    /// last up to `chunk_size-1` elements will be omitted and can be
99    /// retrieved from the remainder function of the iterator.
100    ///
101    /// # Examples
102    ///
103    /// ```
104    /// use rayon::prelude::*;
105    /// let chunks: Vec<_> = [1, 2, 3, 4, 5].par_chunks_exact(2).collect();
106    /// assert_eq!(chunks, vec![&[1, 2][..], &[3, 4]]);
107    /// ```
108    #[track_caller]
109    fn par_chunks_exact(&self, chunk_size: usize) -> ChunksExact<'_, T> {
110        assert!(chunk_size != 0, "chunk_size must not be zero");
111        ChunksExact::new(chunk_size, self.as_parallel_slice())
112    }
113
114    /// Returns a parallel iterator over at most `chunk_size` elements of `self` at a time,
115    /// starting at the end. The chunks do not overlap.
116    ///
117    /// If the number of elements in the iterator is not divisible by
118    /// `chunk_size`, the last chunk may be shorter than `chunk_size`.  All
119    /// other chunks will have that exact length.
120    ///
121    /// # Examples
122    ///
123    /// ```
124    /// use rayon::prelude::*;
125    /// let chunks: Vec<_> = [1, 2, 3, 4, 5].par_rchunks(2).collect();
126    /// assert_eq!(chunks, vec![&[4, 5][..], &[2, 3], &[1]]);
127    /// ```
128    #[track_caller]
129    fn par_rchunks(&self, chunk_size: usize) -> RChunks<'_, T> {
130        assert!(chunk_size != 0, "chunk_size must not be zero");
131        RChunks::new(chunk_size, self.as_parallel_slice())
132    }
133
134    /// Returns a parallel iterator over `chunk_size` elements of `self` at a time,
135    /// starting at the end. The chunks do not overlap.
136    ///
137    /// If `chunk_size` does not divide the length of the slice, then the
138    /// last up to `chunk_size-1` elements will be omitted and can be
139    /// retrieved from the remainder function of the iterator.
140    ///
141    /// # Examples
142    ///
143    /// ```
144    /// use rayon::prelude::*;
145    /// let chunks: Vec<_> = [1, 2, 3, 4, 5].par_rchunks_exact(2).collect();
146    /// assert_eq!(chunks, vec![&[4, 5][..], &[2, 3]]);
147    /// ```
148    #[track_caller]
149    fn par_rchunks_exact(&self, chunk_size: usize) -> RChunksExact<'_, T> {
150        assert!(chunk_size != 0, "chunk_size must not be zero");
151        RChunksExact::new(chunk_size, self.as_parallel_slice())
152    }
153}
154
155impl<T: Sync> ParallelSlice<T> for [T] {
156    #[inline]
157    fn as_parallel_slice(&self) -> &[T] {
158        self
159    }
160}
161
162/// Parallel extensions for mutable slices.
163pub trait ParallelSliceMut<T: Send> {
164    /// Returns a plain mutable slice, which is used to implement the rest of
165    /// the parallel methods.
166    fn as_parallel_slice_mut(&mut self) -> &mut [T];
167
168    /// Returns a parallel iterator over mutable subslices separated by
169    /// elements that match the separator.
170    ///
171    /// # Examples
172    ///
173    /// ```
174    /// use rayon::prelude::*;
175    /// let mut array = [1, 2, 3, 0, 2, 4, 8, 0, 3, 6, 9];
176    /// array.par_split_mut(|i| *i == 0)
177    ///      .for_each(|slice| slice.reverse());
178    /// assert_eq!(array, [3, 2, 1, 0, 8, 4, 2, 0, 9, 6, 3]);
179    /// ```
180    fn par_split_mut<P>(&mut self, separator: P) -> SplitMut<'_, T, P>
181    where
182        P: Fn(&T) -> bool + Sync + Send,
183    {
184        SplitMut {
185            slice: self.as_parallel_slice_mut(),
186            separator,
187        }
188    }
189
190    /// Returns a parallel iterator over at most `chunk_size` elements of
191    /// `self` at a time. The chunks are mutable and do not overlap.
192    ///
193    /// If the number of elements in the iterator is not divisible by
194    /// `chunk_size`, the last chunk may be shorter than `chunk_size`.  All
195    /// other chunks will have that exact length.
196    ///
197    /// # Examples
198    ///
199    /// ```
200    /// use rayon::prelude::*;
201    /// let mut array = [1, 2, 3, 4, 5];
202    /// array.par_chunks_mut(2)
203    ///      .for_each(|slice| slice.reverse());
204    /// assert_eq!(array, [2, 1, 4, 3, 5]);
205    /// ```
206    #[track_caller]
207    fn par_chunks_mut(&mut self, chunk_size: usize) -> ChunksMut<'_, T> {
208        assert!(chunk_size != 0, "chunk_size must not be zero");
209        ChunksMut::new(chunk_size, self.as_parallel_slice_mut())
210    }
211
212    /// Returns a parallel iterator over `chunk_size` elements of
213    /// `self` at a time. The chunks are mutable and do not overlap.
214    ///
215    /// If `chunk_size` does not divide the length of the slice, then the
216    /// last up to `chunk_size-1` elements will be omitted and can be
217    /// retrieved from the remainder function of the iterator.
218    ///
219    /// # Examples
220    ///
221    /// ```
222    /// use rayon::prelude::*;
223    /// let mut array = [1, 2, 3, 4, 5];
224    /// array.par_chunks_exact_mut(3)
225    ///      .for_each(|slice| slice.reverse());
226    /// assert_eq!(array, [3, 2, 1, 4, 5]);
227    /// ```
228    #[track_caller]
229    fn par_chunks_exact_mut(&mut self, chunk_size: usize) -> ChunksExactMut<'_, T> {
230        assert!(chunk_size != 0, "chunk_size must not be zero");
231        ChunksExactMut::new(chunk_size, self.as_parallel_slice_mut())
232    }
233
234    /// Returns a parallel iterator over at most `chunk_size` elements of `self` at a time,
235    /// starting at the end. The chunks are mutable and do not overlap.
236    ///
237    /// If the number of elements in the iterator is not divisible by
238    /// `chunk_size`, the last chunk may be shorter than `chunk_size`.  All
239    /// other chunks will have that exact length.
240    ///
241    /// # Examples
242    ///
243    /// ```
244    /// use rayon::prelude::*;
245    /// let mut array = [1, 2, 3, 4, 5];
246    /// array.par_rchunks_mut(2)
247    ///      .for_each(|slice| slice.reverse());
248    /// assert_eq!(array, [1, 3, 2, 5, 4]);
249    /// ```
250    #[track_caller]
251    fn par_rchunks_mut(&mut self, chunk_size: usize) -> RChunksMut<'_, T> {
252        assert!(chunk_size != 0, "chunk_size must not be zero");
253        RChunksMut::new(chunk_size, self.as_parallel_slice_mut())
254    }
255
256    /// Returns a parallel iterator over `chunk_size` elements of `self` at a time,
257    /// starting at the end. The chunks are mutable and do not overlap.
258    ///
259    /// If `chunk_size` does not divide the length of the slice, then the
260    /// last up to `chunk_size-1` elements will be omitted and can be
261    /// retrieved from the remainder function of the iterator.
262    ///
263    /// # Examples
264    ///
265    /// ```
266    /// use rayon::prelude::*;
267    /// let mut array = [1, 2, 3, 4, 5];
268    /// array.par_rchunks_exact_mut(3)
269    ///      .for_each(|slice| slice.reverse());
270    /// assert_eq!(array, [1, 2, 5, 4, 3]);
271    /// ```
272    #[track_caller]
273    fn par_rchunks_exact_mut(&mut self, chunk_size: usize) -> RChunksExactMut<'_, T> {
274        assert!(chunk_size != 0, "chunk_size must not be zero");
275        RChunksExactMut::new(chunk_size, self.as_parallel_slice_mut())
276    }
277
278    /// Sorts the slice in parallel.
279    ///
280    /// This sort is stable (i.e., does not reorder equal elements) and *O*(*n* \* log(*n*)) worst-case.
281    ///
282    /// When applicable, unstable sorting is preferred because it is generally faster than stable
283    /// sorting and it doesn't allocate auxiliary memory.
284    /// See [`par_sort_unstable`](#method.par_sort_unstable).
285    ///
286    /// # Current implementation
287    ///
288    /// The current algorithm is an adaptive merge sort inspired by
289    /// [timsort](https://en.wikipedia.org/wiki/Timsort).
290    /// It is designed to be very fast in cases where the slice is nearly sorted, or consists of
291    /// two or more sorted sequences concatenated one after another.
292    ///
293    /// Also, it allocates temporary storage the same size as `self`, but for very short slices a
294    /// non-allocating insertion sort is used instead.
295    ///
296    /// In order to sort the slice in parallel, the slice is first divided into smaller chunks and
297    /// all chunks are sorted in parallel. Then, adjacent chunks that together form non-descending
298    /// or descending runs are concatenated. Finally, the remaining chunks are merged together using
299    /// parallel subdivision of chunks and parallel merge operation.
300    ///
301    /// # Examples
302    ///
303    /// ```
304    /// use rayon::prelude::*;
305    ///
306    /// let mut v = [-5, 4, 1, -3, 2];
307    ///
308    /// v.par_sort();
309    /// assert_eq!(v, [-5, -3, 1, 2, 4]);
310    /// ```
311    fn par_sort(&mut self)
312    where
313        T: Ord,
314    {
315        par_mergesort(self.as_parallel_slice_mut(), T::lt);
316    }
317
318    /// Sorts the slice in parallel with a comparator function.
319    ///
320    /// This sort is stable (i.e., does not reorder equal elements) and *O*(*n* \* log(*n*)) worst-case.
321    ///
322    /// The comparator function must define a total ordering for the elements in the slice. If
323    /// the ordering is not total, the order of the elements is unspecified. An order is a
324    /// total order if it is (for all `a`, `b` and `c`):
325    ///
326    /// * total and antisymmetric: exactly one of `a < b`, `a == b` or `a > b` is true, and
327    /// * transitive, `a < b` and `b < c` implies `a < c`. The same must hold for both `==` and `>`.
328    ///
329    /// For example, while [`f64`] doesn't implement [`Ord`] because `NaN != NaN`, we can use
330    /// `partial_cmp` as our sort function when we know the slice doesn't contain a `NaN`.
331    ///
332    /// ```
333    /// use rayon::prelude::*;
334    ///
335    /// let mut floats = [5f64, 4.0, 1.0, 3.0, 2.0];
336    /// floats.par_sort_by(|a, b| a.partial_cmp(b).unwrap());
337    /// assert_eq!(floats, [1.0, 2.0, 3.0, 4.0, 5.0]);
338    /// ```
339    ///
340    /// When applicable, unstable sorting is preferred because it is generally faster than stable
341    /// sorting and it doesn't allocate auxiliary memory.
342    /// See [`par_sort_unstable_by`](#method.par_sort_unstable_by).
343    ///
344    /// # Current implementation
345    ///
346    /// The current algorithm is an adaptive merge sort inspired by
347    /// [timsort](https://en.wikipedia.org/wiki/Timsort).
348    /// It is designed to be very fast in cases where the slice is nearly sorted, or consists of
349    /// two or more sorted sequences concatenated one after another.
350    ///
351    /// Also, it allocates temporary storage the same size as `self`, but for very short slices a
352    /// non-allocating insertion sort is used instead.
353    ///
354    /// In order to sort the slice in parallel, the slice is first divided into smaller chunks and
355    /// all chunks are sorted in parallel. Then, adjacent chunks that together form non-descending
356    /// or descending runs are concatenated. Finally, the remaining chunks are merged together using
357    /// parallel subdivision of chunks and parallel merge operation.
358    ///
359    /// # Examples
360    ///
361    /// ```
362    /// use rayon::prelude::*;
363    ///
364    /// let mut v = [5, 4, 1, 3, 2];
365    /// v.par_sort_by(|a, b| a.cmp(b));
366    /// assert_eq!(v, [1, 2, 3, 4, 5]);
367    ///
368    /// // reverse sorting
369    /// v.par_sort_by(|a, b| b.cmp(a));
370    /// assert_eq!(v, [5, 4, 3, 2, 1]);
371    /// ```
372    fn par_sort_by<F>(&mut self, compare: F)
373    where
374        F: Fn(&T, &T) -> Ordering + Sync,
375    {
376        par_mergesort(self.as_parallel_slice_mut(), |a, b| {
377            compare(a, b) == Ordering::Less
378        });
379    }
380
381    /// Sorts the slice in parallel with a key extraction function.
382    ///
383    /// This sort is stable (i.e., does not reorder equal elements) and *O*(*m* \* *n* \* log(*n*))
384    /// worst-case, where the key function is *O*(*m*).
385    ///
386    /// For expensive key functions (e.g. functions that are not simple property accesses or
387    /// basic operations), [`par_sort_by_cached_key`](#method.par_sort_by_cached_key) is likely to
388    /// be significantly faster, as it does not recompute element keys.
389    ///
390    /// When applicable, unstable sorting is preferred because it is generally faster than stable
391    /// sorting and it doesn't allocate auxiliary memory.
392    /// See [`par_sort_unstable_by_key`](#method.par_sort_unstable_by_key).
393    ///
394    /// # Current implementation
395    ///
396    /// The current algorithm is an adaptive merge sort inspired by
397    /// [timsort](https://en.wikipedia.org/wiki/Timsort).
398    /// It is designed to be very fast in cases where the slice is nearly sorted, or consists of
399    /// two or more sorted sequences concatenated one after another.
400    ///
401    /// Also, it allocates temporary storage the same size as `self`, but for very short slices a
402    /// non-allocating insertion sort is used instead.
403    ///
404    /// In order to sort the slice in parallel, the slice is first divided into smaller chunks and
405    /// all chunks are sorted in parallel. Then, adjacent chunks that together form non-descending
406    /// or descending runs are concatenated. Finally, the remaining chunks are merged together using
407    /// parallel subdivision of chunks and parallel merge operation.
408    ///
409    /// # Examples
410    ///
411    /// ```
412    /// use rayon::prelude::*;
413    ///
414    /// let mut v = [-5i32, 4, 1, -3, 2];
415    ///
416    /// v.par_sort_by_key(|k| k.abs());
417    /// assert_eq!(v, [1, 2, -3, 4, -5]);
418    /// ```
419    fn par_sort_by_key<K, F>(&mut self, f: F)
420    where
421        K: Ord,
422        F: Fn(&T) -> K + Sync,
423    {
424        par_mergesort(self.as_parallel_slice_mut(), |a, b| f(a).lt(&f(b)));
425    }
426
427    /// Sorts the slice in parallel with a key extraction function.
428    ///
429    /// During sorting, the key function is called at most once per element, by using
430    /// temporary storage to remember the results of key evaluation.
431    /// The key function is called in parallel, so the order of calls is completely unspecified.
432    ///
433    /// This sort is stable (i.e., does not reorder equal elements) and *O*(*m* \* *n* + *n* \* log(*n*))
434    /// worst-case, where the key function is *O*(*m*).
435    ///
436    /// For simple key functions (e.g., functions that are property accesses or
437    /// basic operations), [`par_sort_by_key`](#method.par_sort_by_key) is likely to be
438    /// faster.
439    ///
440    /// # Current implementation
441    ///
442    /// The current algorithm is based on [pattern-defeating quicksort][pdqsort] by Orson Peters,
443    /// which combines the fast average case of randomized quicksort with the fast worst case of
444    /// heapsort, while achieving linear time on slices with certain patterns. It uses some
445    /// randomization to avoid degenerate cases, but with a fixed seed to always provide
446    /// deterministic behavior.
447    ///
448    /// In the worst case, the algorithm allocates temporary storage in a `Vec<(K, usize)>` the
449    /// length of the slice.
450    ///
451    /// All quicksorts work in two stages: partitioning into two halves followed by recursive
452    /// calls. The partitioning phase is sequential, but the two recursive calls are performed in
453    /// parallel. Finally, after sorting the cached keys, the item positions are updated sequentially.
454    ///
455    /// [pdqsort]: https://github.com/orlp/pdqsort
456    ///
457    /// # Examples
458    ///
459    /// ```
460    /// use rayon::prelude::*;
461    ///
462    /// let mut v = [-5i32, 4, 32, -3, 2];
463    ///
464    /// v.par_sort_by_cached_key(|k| k.to_string());
465    /// assert!(v == [-3, -5, 2, 32, 4]);
466    /// ```
467    fn par_sort_by_cached_key<K, F>(&mut self, f: F)
468    where
469        F: Fn(&T) -> K + Sync,
470        K: Ord + Send,
471    {
472        let slice = self.as_parallel_slice_mut();
473        let len = slice.len();
474        if len < 2 {
475            return;
476        }
477
478        // Helper macro for indexing our vector by the smallest possible type, to reduce allocation.
479        macro_rules! sort_by_key {
480            ($t:ty) => {{
481                let mut indices: Vec<_> = slice
482                    .par_iter_mut()
483                    .enumerate()
484                    .map(|(i, x)| (f(&*x), i as $t))
485                    .collect();
486                // The elements of `indices` are unique, as they are indexed, so any sort will be
487                // stable with respect to the original slice. We use `sort_unstable` here because
488                // it requires less memory allocation.
489                indices.par_sort_unstable();
490                for i in 0..len {
491                    let mut index = indices[i].1;
492                    while (index as usize) < i {
493                        index = indices[index as usize].1;
494                    }
495                    indices[i].1 = index;
496                    slice.swap(i, index as usize);
497                }
498            }};
499        }
500
501        let sz_u8 = mem::size_of::<(K, u8)>();
502        let sz_u16 = mem::size_of::<(K, u16)>();
503        let sz_u32 = mem::size_of::<(K, u32)>();
504        let sz_usize = mem::size_of::<(K, usize)>();
505
506        if sz_u8 < sz_u16 && len <= (std::u8::MAX as usize) {
507            return sort_by_key!(u8);
508        }
509        if sz_u16 < sz_u32 && len <= (std::u16::MAX as usize) {
510            return sort_by_key!(u16);
511        }
512        if sz_u32 < sz_usize && len <= (std::u32::MAX as usize) {
513            return sort_by_key!(u32);
514        }
515        sort_by_key!(usize)
516    }
517
518    /// Sorts the slice in parallel, but might not preserve the order of equal elements.
519    ///
520    /// This sort is unstable (i.e., may reorder equal elements), in-place
521    /// (i.e., does not allocate), and *O*(*n* \* log(*n*)) worst-case.
522    ///
523    /// # Current implementation
524    ///
525    /// The current algorithm is based on [pattern-defeating quicksort][pdqsort] by Orson Peters,
526    /// which combines the fast average case of randomized quicksort with the fast worst case of
527    /// heapsort, while achieving linear time on slices with certain patterns. It uses some
528    /// randomization to avoid degenerate cases, but with a fixed seed to always provide
529    /// deterministic behavior.
530    ///
531    /// It is typically faster than stable sorting, except in a few special cases, e.g., when the
532    /// slice consists of several concatenated sorted sequences.
533    ///
534    /// All quicksorts work in two stages: partitioning into two halves followed by recursive
535    /// calls. The partitioning phase is sequential, but the two recursive calls are performed in
536    /// parallel.
537    ///
538    /// [pdqsort]: https://github.com/orlp/pdqsort
539    ///
540    /// # Examples
541    ///
542    /// ```
543    /// use rayon::prelude::*;
544    ///
545    /// let mut v = [-5, 4, 1, -3, 2];
546    ///
547    /// v.par_sort_unstable();
548    /// assert_eq!(v, [-5, -3, 1, 2, 4]);
549    /// ```
550    fn par_sort_unstable(&mut self)
551    where
552        T: Ord,
553    {
554        par_quicksort(self.as_parallel_slice_mut(), T::lt);
555    }
556
557    /// Sorts the slice in parallel with a comparator function, but might not preserve the order of
558    /// equal elements.
559    ///
560    /// This sort is unstable (i.e., may reorder equal elements), in-place
561    /// (i.e., does not allocate), and *O*(*n* \* log(*n*)) worst-case.
562    ///
563    /// The comparator function must define a total ordering for the elements in the slice. If
564    /// the ordering is not total, the order of the elements is unspecified. An order is a
565    /// total order if it is (for all `a`, `b` and `c`):
566    ///
567    /// * total and antisymmetric: exactly one of `a < b`, `a == b` or `a > b` is true, and
568    /// * transitive, `a < b` and `b < c` implies `a < c`. The same must hold for both `==` and `>`.
569    ///
570    /// For example, while [`f64`] doesn't implement [`Ord`] because `NaN != NaN`, we can use
571    /// `partial_cmp` as our sort function when we know the slice doesn't contain a `NaN`.
572    ///
573    /// ```
574    /// use rayon::prelude::*;
575    ///
576    /// let mut floats = [5f64, 4.0, 1.0, 3.0, 2.0];
577    /// floats.par_sort_unstable_by(|a, b| a.partial_cmp(b).unwrap());
578    /// assert_eq!(floats, [1.0, 2.0, 3.0, 4.0, 5.0]);
579    /// ```
580    ///
581    /// # Current implementation
582    ///
583    /// The current algorithm is based on [pattern-defeating quicksort][pdqsort] by Orson Peters,
584    /// which combines the fast average case of randomized quicksort with the fast worst case of
585    /// heapsort, while achieving linear time on slices with certain patterns. It uses some
586    /// randomization to avoid degenerate cases, but with a fixed seed to always provide
587    /// deterministic behavior.
588    ///
589    /// It is typically faster than stable sorting, except in a few special cases, e.g., when the
590    /// slice consists of several concatenated sorted sequences.
591    ///
592    /// All quicksorts work in two stages: partitioning into two halves followed by recursive
593    /// calls. The partitioning phase is sequential, but the two recursive calls are performed in
594    /// parallel.
595    ///
596    /// [pdqsort]: https://github.com/orlp/pdqsort
597    ///
598    /// # Examples
599    ///
600    /// ```
601    /// use rayon::prelude::*;
602    ///
603    /// let mut v = [5, 4, 1, 3, 2];
604    /// v.par_sort_unstable_by(|a, b| a.cmp(b));
605    /// assert_eq!(v, [1, 2, 3, 4, 5]);
606    ///
607    /// // reverse sorting
608    /// v.par_sort_unstable_by(|a, b| b.cmp(a));
609    /// assert_eq!(v, [5, 4, 3, 2, 1]);
610    /// ```
611    fn par_sort_unstable_by<F>(&mut self, compare: F)
612    where
613        F: Fn(&T, &T) -> Ordering + Sync,
614    {
615        par_quicksort(self.as_parallel_slice_mut(), |a, b| {
616            compare(a, b) == Ordering::Less
617        });
618    }
619
620    /// Sorts the slice in parallel with a key extraction function, but might not preserve the order
621    /// of equal elements.
622    ///
623    /// This sort is unstable (i.e., may reorder equal elements), in-place
624    /// (i.e., does not allocate), and *O*(m \* *n* \* log(*n*)) worst-case,
625    /// where the key function is *O*(*m*).
626    ///
627    /// # Current implementation
628    ///
629    /// The current algorithm is based on [pattern-defeating quicksort][pdqsort] by Orson Peters,
630    /// which combines the fast average case of randomized quicksort with the fast worst case of
631    /// heapsort, while achieving linear time on slices with certain patterns. It uses some
632    /// randomization to avoid degenerate cases, but with a fixed seed to always provide
633    /// deterministic behavior.
634    ///
635    /// Due to its key calling strategy, `par_sort_unstable_by_key` is likely to be slower than
636    /// [`par_sort_by_cached_key`](#method.par_sort_by_cached_key) in cases where the key function
637    /// is expensive.
638    ///
639    /// All quicksorts work in two stages: partitioning into two halves followed by recursive
640    /// calls. The partitioning phase is sequential, but the two recursive calls are performed in
641    /// parallel.
642    ///
643    /// [pdqsort]: https://github.com/orlp/pdqsort
644    ///
645    /// # Examples
646    ///
647    /// ```
648    /// use rayon::prelude::*;
649    ///
650    /// let mut v = [-5i32, 4, 1, -3, 2];
651    ///
652    /// v.par_sort_unstable_by_key(|k| k.abs());
653    /// assert_eq!(v, [1, 2, -3, 4, -5]);
654    /// ```
655    fn par_sort_unstable_by_key<K, F>(&mut self, f: F)
656    where
657        K: Ord,
658        F: Fn(&T) -> K + Sync,
659    {
660        par_quicksort(self.as_parallel_slice_mut(), |a, b| f(a).lt(&f(b)));
661    }
662}
663
664impl<T: Send> ParallelSliceMut<T> for [T] {
665    #[inline]
666    fn as_parallel_slice_mut(&mut self) -> &mut [T] {
667        self
668    }
669}
670
671impl<'data, T: Sync + 'data> IntoParallelIterator for &'data [T] {
672    type Item = &'data T;
673    type Iter = Iter<'data, T>;
674
675    fn into_par_iter(self) -> Self::Iter {
676        Iter { slice: self }
677    }
678}
679
680impl<'data, T: Send + 'data> IntoParallelIterator for &'data mut [T] {
681    type Item = &'data mut T;
682    type Iter = IterMut<'data, T>;
683
684    fn into_par_iter(self) -> Self::Iter {
685        IterMut { slice: self }
686    }
687}
688
689/// Parallel iterator over immutable items in a slice
690#[derive(Debug)]
691pub struct Iter<'data, T: Sync> {
692    slice: &'data [T],
693}
694
695impl<'data, T: Sync> Clone for Iter<'data, T> {
696    fn clone(&self) -> Self {
697        Iter { ..*self }
698    }
699}
700
701impl<'data, T: Sync + 'data> ParallelIterator for Iter<'data, T> {
702    type Item = &'data T;
703
704    fn drive_unindexed<C>(self, consumer: C) -> C::Result
705    where
706        C: UnindexedConsumer<Self::Item>,
707    {
708        bridge(self, consumer)
709    }
710
711    fn opt_len(&self) -> Option<usize> {
712        Some(self.len())
713    }
714}
715
716impl<'data, T: Sync + 'data> IndexedParallelIterator for Iter<'data, T> {
717    fn drive<C>(self, consumer: C) -> C::Result
718    where
719        C: Consumer<Self::Item>,
720    {
721        bridge(self, consumer)
722    }
723
724    fn len(&self) -> usize {
725        self.slice.len()
726    }
727
728    fn with_producer<CB>(self, callback: CB) -> CB::Output
729    where
730        CB: ProducerCallback<Self::Item>,
731    {
732        callback.callback(IterProducer { slice: self.slice })
733    }
734}
735
736struct IterProducer<'data, T: Sync> {
737    slice: &'data [T],
738}
739
740impl<'data, T: 'data + Sync> Producer for IterProducer<'data, T> {
741    type Item = &'data T;
742    type IntoIter = ::std::slice::Iter<'data, T>;
743
744    fn into_iter(self) -> Self::IntoIter {
745        self.slice.iter()
746    }
747
748    fn split_at(self, index: usize) -> (Self, Self) {
749        let (left, right) = self.slice.split_at(index);
750        (IterProducer { slice: left }, IterProducer { slice: right })
751    }
752}
753
754/// Parallel iterator over immutable overlapping windows of a slice
755#[derive(Debug)]
756pub struct Windows<'data, T: Sync> {
757    window_size: usize,
758    slice: &'data [T],
759}
760
761impl<'data, T: Sync> Clone for Windows<'data, T> {
762    fn clone(&self) -> Self {
763        Windows { ..*self }
764    }
765}
766
767impl<'data, T: Sync + 'data> ParallelIterator for Windows<'data, T> {
768    type Item = &'data [T];
769
770    fn drive_unindexed<C>(self, consumer: C) -> C::Result
771    where
772        C: UnindexedConsumer<Self::Item>,
773    {
774        bridge(self, consumer)
775    }
776
777    fn opt_len(&self) -> Option<usize> {
778        Some(self.len())
779    }
780}
781
782impl<'data, T: Sync + 'data> IndexedParallelIterator for Windows<'data, T> {
783    fn drive<C>(self, consumer: C) -> C::Result
784    where
785        C: Consumer<Self::Item>,
786    {
787        bridge(self, consumer)
788    }
789
790    fn len(&self) -> usize {
791        assert!(self.window_size >= 1);
792        self.slice.len().saturating_sub(self.window_size - 1)
793    }
794
795    fn with_producer<CB>(self, callback: CB) -> CB::Output
796    where
797        CB: ProducerCallback<Self::Item>,
798    {
799        callback.callback(WindowsProducer {
800            window_size: self.window_size,
801            slice: self.slice,
802        })
803    }
804}
805
806struct WindowsProducer<'data, T: Sync> {
807    window_size: usize,
808    slice: &'data [T],
809}
810
811impl<'data, T: 'data + Sync> Producer for WindowsProducer<'data, T> {
812    type Item = &'data [T];
813    type IntoIter = ::std::slice::Windows<'data, T>;
814
815    fn into_iter(self) -> Self::IntoIter {
816        self.slice.windows(self.window_size)
817    }
818
819    fn split_at(self, index: usize) -> (Self, Self) {
820        let left_index = cmp::min(self.slice.len(), index + (self.window_size - 1));
821        let left = &self.slice[..left_index];
822        let right = &self.slice[index..];
823        (
824            WindowsProducer {
825                window_size: self.window_size,
826                slice: left,
827            },
828            WindowsProducer {
829                window_size: self.window_size,
830                slice: right,
831            },
832        )
833    }
834}
835
836/// Parallel iterator over mutable items in a slice
837#[derive(Debug)]
838pub struct IterMut<'data, T: Send> {
839    slice: &'data mut [T],
840}
841
842impl<'data, T: Send + 'data> ParallelIterator for IterMut<'data, T> {
843    type Item = &'data mut T;
844
845    fn drive_unindexed<C>(self, consumer: C) -> C::Result
846    where
847        C: UnindexedConsumer<Self::Item>,
848    {
849        bridge(self, consumer)
850    }
851
852    fn opt_len(&self) -> Option<usize> {
853        Some(self.len())
854    }
855}
856
857impl<'data, T: Send + 'data> IndexedParallelIterator for IterMut<'data, T> {
858    fn drive<C>(self, consumer: C) -> C::Result
859    where
860        C: Consumer<Self::Item>,
861    {
862        bridge(self, consumer)
863    }
864
865    fn len(&self) -> usize {
866        self.slice.len()
867    }
868
869    fn with_producer<CB>(self, callback: CB) -> CB::Output
870    where
871        CB: ProducerCallback<Self::Item>,
872    {
873        callback.callback(IterMutProducer { slice: self.slice })
874    }
875}
876
877struct IterMutProducer<'data, T: Send> {
878    slice: &'data mut [T],
879}
880
881impl<'data, T: 'data + Send> Producer for IterMutProducer<'data, T> {
882    type Item = &'data mut T;
883    type IntoIter = ::std::slice::IterMut<'data, T>;
884
885    fn into_iter(self) -> Self::IntoIter {
886        self.slice.iter_mut()
887    }
888
889    fn split_at(self, index: usize) -> (Self, Self) {
890        let (left, right) = self.slice.split_at_mut(index);
891        (
892            IterMutProducer { slice: left },
893            IterMutProducer { slice: right },
894        )
895    }
896}
897
898/// Parallel iterator over slices separated by a predicate
899pub struct Split<'data, T, P> {
900    slice: &'data [T],
901    separator: P,
902}
903
904impl<'data, T, P: Clone> Clone for Split<'data, T, P> {
905    fn clone(&self) -> Self {
906        Split {
907            separator: self.separator.clone(),
908            ..*self
909        }
910    }
911}
912
913impl<'data, T: Debug, P> Debug for Split<'data, T, P> {
914    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
915        f.debug_struct("Split").field("slice", &self.slice).finish()
916    }
917}
918
919impl<'data, T, P> ParallelIterator for Split<'data, T, P>
920where
921    P: Fn(&T) -> bool + Sync + Send,
922    T: Sync,
923{
924    type Item = &'data [T];
925
926    fn drive_unindexed<C>(self, consumer: C) -> C::Result
927    where
928        C: UnindexedConsumer<Self::Item>,
929    {
930        let producer = SplitProducer::new(self.slice, &self.separator);
931        bridge_unindexed(producer, consumer)
932    }
933}
934
935/// Implement support for `SplitProducer`.
936impl<'data, T, P> Fissile<P> for &'data [T]
937where
938    P: Fn(&T) -> bool,
939{
940    fn length(&self) -> usize {
941        self.len()
942    }
943
944    fn midpoint(&self, end: usize) -> usize {
945        end / 2
946    }
947
948    fn find(&self, separator: &P, start: usize, end: usize) -> Option<usize> {
949        self[start..end].iter().position(separator)
950    }
951
952    fn rfind(&self, separator: &P, end: usize) -> Option<usize> {
953        self[..end].iter().rposition(separator)
954    }
955
956    fn split_once(self, index: usize) -> (Self, Self) {
957        let (left, right) = self.split_at(index);
958        (left, &right[1..]) // skip the separator
959    }
960
961    fn fold_splits<F>(self, separator: &P, folder: F, skip_last: bool) -> F
962    where
963        F: Folder<Self>,
964        Self: Send,
965    {
966        let mut split = self.split(separator);
967        if skip_last {
968            split.next_back();
969        }
970        folder.consume_iter(split)
971    }
972}
973
974/// Parallel iterator over mutable slices separated by a predicate
975pub struct SplitMut<'data, T, P> {
976    slice: &'data mut [T],
977    separator: P,
978}
979
980impl<'data, T: Debug, P> Debug for SplitMut<'data, T, P> {
981    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
982        f.debug_struct("SplitMut")
983            .field("slice", &self.slice)
984            .finish()
985    }
986}
987
988impl<'data, T, P> ParallelIterator for SplitMut<'data, T, P>
989where
990    P: Fn(&T) -> bool + Sync + Send,
991    T: Send,
992{
993    type Item = &'data mut [T];
994
995    fn drive_unindexed<C>(self, consumer: C) -> C::Result
996    where
997        C: UnindexedConsumer<Self::Item>,
998    {
999        let producer = SplitProducer::new(self.slice, &self.separator);
1000        bridge_unindexed(producer, consumer)
1001    }
1002}
1003
1004/// Implement support for `SplitProducer`.
1005impl<'data, T, P> Fissile<P> for &'data mut [T]
1006where
1007    P: Fn(&T) -> bool,
1008{
1009    fn length(&self) -> usize {
1010        self.len()
1011    }
1012
1013    fn midpoint(&self, end: usize) -> usize {
1014        end / 2
1015    }
1016
1017    fn find(&self, separator: &P, start: usize, end: usize) -> Option<usize> {
1018        self[start..end].iter().position(separator)
1019    }
1020
1021    fn rfind(&self, separator: &P, end: usize) -> Option<usize> {
1022        self[..end].iter().rposition(separator)
1023    }
1024
1025    fn split_once(self, index: usize) -> (Self, Self) {
1026        let (left, right) = self.split_at_mut(index);
1027        (left, &mut right[1..]) // skip the separator
1028    }
1029
1030    fn fold_splits<F>(self, separator: &P, folder: F, skip_last: bool) -> F
1031    where
1032        F: Folder<Self>,
1033        Self: Send,
1034    {
1035        let mut split = self.split_mut(separator);
1036        if skip_last {
1037            split.next_back();
1038        }
1039        folder.consume_iter(split)
1040    }
1041}