rusticata_macros/
macros.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
//! Helper macros

use nom::bytes::complete::take;
use nom::combinator::map_res;
use nom::IResult;

#[doc(hidden)]
pub mod export {
    pub use core::{fmt, mem, ptr};
}

/// Helper macro for newtypes: declare associated constants and implement Display trait
#[macro_export]
macro_rules! newtype_enum (
    (@collect_impl, $name:ident, $($key:ident = $val:expr),* $(,)*) => {
        $( pub const $key : $name = $name($val); )*
    };

    (@collect_disp, $name:ident, $f:ident, $m:expr, $($key:ident = $val:expr),* $(,)*) => {
        match $m {
            $( $val => write!($f, stringify!{$key}), )*
            n => write!($f, "{}({} / 0x{:x})", stringify!{$name}, n, n)
        }
    };

    // entry
    (impl $name:ident {$($body:tt)*}) => (
        #[allow(non_upper_case_globals)]
        impl $name {
            newtype_enum!{@collect_impl, $name, $($body)*}
        }
    );

    // entry with display
    (impl display $name:ident {$($body:tt)*}) => (
        newtype_enum!(impl $name { $($body)* });

        impl $crate::export::fmt::Display for $name {
            fn fmt(&self, f: &mut $crate::export::fmt::Formatter) -> $crate::export::fmt::Result {
                newtype_enum!(@collect_disp, $name, f, self.0, $($body)*)
            }
        }
    );

    // entry with display and debug
    (impl debug $name:ident {$($body:tt)*}) => (
        newtype_enum!(impl display $name { $($body)* });

        impl $crate::export::fmt::Debug for $name {
            fn fmt(&self, f: &mut $crate::export::fmt::Formatter) -> $crate::export::fmt::Result {
                write!(f, "{}", self)
            }
        }
    );
);

/// Helper macro for nom parsers: raise error if the condition is true
///
/// This macro is used when using custom errors
#[macro_export]
macro_rules! custom_check (
  ($i:expr, $cond:expr, $err:expr) => (
    {
      if $cond {
        Err(::nom::Err::Error($err))
      } else {
        Ok(($i, ()))
      }
    }
  );
);

/// Helper macro for nom parsers: raise error if the condition is true
///
/// This macro is used when using `ErrorKind`
#[macro_export]
macro_rules! error_if (
  ($i:expr, $cond:expr, $err:expr) => (
    {
      use nom::error_position;
      if $cond {
        Err(::nom::Err::Error(error_position!($i, $err)))
      } else {
        Ok(($i, ()))
      }
    }
  );
);

/// Helper macro for nom parsers: raise error if input is not empty
///
/// Deprecated - use `nom::eof`
#[macro_export]
#[deprecated(since = "2.0.0")]
macro_rules! empty (
  ($i:expr,) => (
    {
      use nom::eof;
      eof!($i,)
    }
  );
);

#[deprecated(since = "3.0.1", note = "please use `be_var_u64` instead")]
/// Read an entire slice as a big-endian value.
///
/// Returns the value as `u64`. This function checks for integer overflows, and returns a
/// `Result::Err` value if the value is too big.
pub fn bytes_to_u64(s: &[u8]) -> Result<u64, &'static str> {
    let mut u: u64 = 0;

    if s.is_empty() {
        return Err("empty");
    };
    if s.len() > 8 {
        return Err("overflow");
    }
    for &c in s {
        let u1 = u << 8;
        u = u1 | (c as u64);
    }

    Ok(u)
}

/// Read a slice as a big-endian value.
#[macro_export]
macro_rules! parse_hex_to_u64 (
    ( $i:expr, $size:expr ) => {
        map_res(take($size as usize), $crate::combinator::be_var_u64)($i)
    };
);

/// Read 3 bytes as an unsigned integer
#[deprecated(since = "0.5.0", note = "please use `be_u24` instead")]
#[allow(deprecated)]
#[inline]
pub fn parse_uint24(i: &[u8]) -> IResult<&[u8], u64> {
    map_res(take(3usize), bytes_to_u64)(i)
}

//named!(parse_hex4<&[u8], u64>, parse_hex_to_u64!(4));

/// Combination and flat_map! and take! as first combinator
#[macro_export]
macro_rules! flat_take (
    ($i:expr, $len:expr, $f:ident) => ({
        if $i.len() < $len { Err(::nom::Err::Incomplete(::nom::Needed::new($len))) }
        else {
            let taken = &$i[0..$len];
            let rem = &$i[$len..];
            match $f(taken) {
                Ok((_,res)) => Ok((rem,res)),
                Err(e)      => Err(e)
            }
        }
    });
    ($i:expr, $len:expr, $submac:ident!( $($args:tt)*)) => ({
        if $i.len() < $len { Err(::nom::Err::Incomplete(::nom::Needed::new($len))) }
        else {
            let taken = &$i[0..$len];
            let rem = &$i[$len..];
            match $submac!(taken, $($args)*) {
                Ok((_,res)) => Ok((rem,res)),
                Err(e)      => Err(e)
            }
        }
    });
);

/// Apply combinator, trying to "upgrade" error to next error type (using the `Into` or `From`
/// traits).
#[macro_export]
macro_rules! upgrade_error (
    ($i:expr, $submac:ident!( $($args:tt)*) ) => ({
        upgrade_error!( $submac!( $i, $($args)* ) )
    });
    ($i:expr, $f:expr) => ({
        upgrade_error!( call!($i, $f) )
    });
    ($e:expr) => ({
        match $e {
            Ok(o) => Ok(o),
            Err(::nom::Err::Error(e)) => Err(::nom::Err::Error(e.into())),
            Err(::nom::Err::Failure(e)) => Err(::nom::Err::Failure(e.into())),
            Err(::nom::Err::Incomplete(i)) => Err(::nom::Err::Incomplete(i)),
        }
    });
);

/// Apply combinator, trying to "upgrade" error to next error type (using the `Into` or `From`
/// traits).
#[macro_export]
macro_rules! upgrade_error_to (
    ($i:expr, $ty:ty, $submac:ident!( $($args:tt)*) ) => ({
        upgrade_error_to!( $ty, $submac!( $i, $($args)* ) )
    });
    ($i:expr, $ty:ty, $f:expr) => ({
        upgrade_error_to!( $ty, call!($i, $f) )
    });
    ($ty:ty, $e:expr) => ({
        match $e {
            Ok(o) => Ok(o),
            Err(::nom::Err::Error(e)) => Err(::nom::Err::Error(e.into::<$ty>())),
            Err(::nom::Err::Failure(e)) => Err(::nom::Err::Failure(e.into::<$ty>())),
            Err(::nom::Err::Incomplete(i)) => Err(::nom::Err::Incomplete(i)),
        }
    });
);

/// Nom combinator that returns the given expression unchanged
#[macro_export]
macro_rules! q {
    ($i:expr, $x:expr) => {{
        Ok(($i, $x))
    }};
}

/// Align input value to the next multiple of n bytes
/// Valid only if n is a power of 2
#[macro_export]
macro_rules! align_n2 {
    ($x:expr, $n:expr) => {
        ($x + ($n - 1)) & !($n - 1)
    };
}

/// Align input value to the next multiple of 4 bytes
#[macro_export]
macro_rules! align32 {
    ($x:expr) => {
        $crate::align_n2!($x, 4)
    };
}

#[cfg(test)]
mod tests {
    use nom::error::ErrorKind;
    use nom::number::streaming::{be_u16, be_u32};
    use nom::{error_position, Err, IResult, Needed};

    #[test]
    fn test_error_if() {
        let empty = &b""[..];
        let res: IResult<&[u8], ()> = error_if!(empty, true, ErrorKind::Tag);
        assert_eq!(res, Err(Err::Error(error_position!(empty, ErrorKind::Tag))));
    }

    #[test]
    fn test_newtype_enum() {
        #[derive(Debug, PartialEq, Eq)]
        struct MyType(pub u8);

        newtype_enum! {
            impl display MyType {
                Val1 = 0,
                Val2 = 1
            }
        }

        assert_eq!(MyType(0), MyType::Val1);
        assert_eq!(MyType(1), MyType::Val2);

        assert_eq!(format!("{}", MyType(0)), "Val1");
        assert_eq!(format!("{}", MyType(4)), "MyType(4 / 0x4)");
    }
    #[test]
    fn test_flat_take() {
        let input = &[0x00, 0x01, 0xff];
        // read first 2 bytes and use correct combinator: OK
        let res: IResult<&[u8], u16> = flat_take!(input, 2, be_u16);
        assert_eq!(res, Ok((&input[2..], 0x0001)));
        // read 3 bytes and use 2: OK (some input is just lost)
        let res: IResult<&[u8], u16> = flat_take!(input, 3, be_u16);
        assert_eq!(res, Ok((&b""[..], 0x0001)));
        // read 2 bytes and a combinator requiring more bytes
        let res: IResult<&[u8], u32> = flat_take!(input, 2, be_u32);
        assert_eq!(res, Err(Err::Incomplete(Needed::new(2))));
        // test with macro as sub-combinator
        let res: IResult<&[u8], u16> = flat_take!(input, 2, be_u16);
        assert_eq!(res, Ok((&input[2..], 0x0001)));
    }

    #[test]
    fn test_q() {
        let empty = &b""[..];
        let res: IResult<&[u8], &str, ErrorKind> = q!(empty, "test");
        assert_eq!(res, Ok((empty, "test")));
    }

    #[test]
    fn test_align32() {
        assert_eq!(align32!(3), 4);
        assert_eq!(align32!(4), 4);
        assert_eq!(align32!(5), 8);
        assert_eq!(align32!(5u32), 8);
        assert_eq!(align32!(5i32), 8);
        assert_eq!(align32!(5usize), 8);
    }
}