1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648
use crate::{
d2s::{DOUBLE_BIAS, DOUBLE_EXPONENT_BITS, DOUBLE_MANTISSA_BITS},
digit_table::DIGIT_TABLE,
pretty::{
format64,
to_fixed::d2fixed_full_table::{
ADDITIONAL_BITS_2, MIN_BLOCK_2, POW10_OFFSET, POW10_OFFSET_2, POW10_SPLIT,
POW10_SPLIT_2,
},
},
};
#[cfg(feature = "no-panic")]
use no_panic::no_panic;
mod d2fixed_full_table;
/// Max bytes/characters required for `toFixed` representation of a [`f64`] value:
///
/// - 1 byte for sign (-)
/// - `22` bytes for whole part:
/// Because we have a check for if `>= 1e21` (1 byte extra, just in case)
/// - `1` byte for dot (`.`)
/// - `108` (`9 * 12`) bytes for fraction part:
/// We write digits in blocks, which consist of `9` digits.
///
/// Total: `1 + 22 + 1 + 108 = 132`
pub const MAX_BUFFER_SIZE: usize = 132;
pub struct Cursor {
buffer: *mut u8,
len: isize,
index: isize,
}
impl Cursor {
#[cfg_attr(feature = "no-panic", no_panic)]
pub fn new(buffer: *mut u8, len: usize) -> Self {
debug_assert!(!buffer.is_null());
Self {
buffer,
len: len as isize,
index: 0,
}
}
/// Append one byte to buffer.
///
/// # Safety
///
/// The caller must ensure that there is enough space for the given byte.
#[cfg_attr(feature = "no-panic", no_panic)]
unsafe fn append_byte(&mut self, c: u8) {
debug_assert!(self.index < self.len);
*self.buffer.offset(self.index) = c;
self.index += 1;
}
/// Append the byte `count` times into the buffer.
///
/// # Safety
///
/// The caller must ensure that there is enough space for the given bytes.
#[cfg_attr(feature = "no-panic", no_panic)]
unsafe fn append_bytes(&mut self, c: u8, count: usize) {
debug_assert!(self.index + count as isize <= self.len);
self.buffer.offset(self.index).write_bytes(c, count);
self.index += count as isize;
}
/// Gets the current [`Cursor`] index.
///
/// The `index` is also the amount of bytes that have been written into the buffer.
#[cfg_attr(feature = "no-panic", no_panic)]
fn index(&self) -> usize {
self.index as usize
}
/// Convert `digits` to decimal and write the last 9 decimal digits to result.
/// If `digits` contains additional digits, then those are silently ignored.
///
/// # Safety
///
/// The caller must ensure that the buffer has enough space for `9` bytes.
#[cfg_attr(feature = "no-panic", no_panic)]
unsafe fn append_nine_digits(&mut self, mut digits: u32) {
let count = 9;
debug_assert!(self.index + count <= self.len);
if digits == 0 {
self.append_bytes(b'0', 9);
return;
}
let result = self.buffer.offset(self.index);
for i in [0, 4] {
let c = digits % 10000;
digits /= 10000;
let c0 = (c % 100) << 1;
let c1 = (c / 100) << 1;
// memcpy(result + 7 - i, DIGIT_TABLE + c0, 2);
// memcpy(result + 5 - i, DIGIT_TABLE + c1, 2);
result
.offset(7 - i as isize)
.copy_from_nonoverlapping(DIGIT_TABLE.as_ptr().offset(c0 as isize), 2);
result
.offset(5 - i as isize)
.copy_from_nonoverlapping(DIGIT_TABLE.as_ptr().offset(c1 as isize), 2);
}
*(result.offset(0)) = b'0' + digits as u8;
self.index += count;
}
/// Convert `digits` to a sequence of decimal digits. Append the digits to the result.
///
/// # Safety
///
/// The caller has to guarantee that:
///
/// - 10^(olength-1) <= digits < 10^olength
/// e.g., by passing `olength` as `decimalLength9(digits)`.
///
/// - That the buffer has enough space for the decimal length of the given integer.
#[cfg_attr(feature = "no-panic", no_panic)]
unsafe fn append_n_digits(&mut self, mut digits: u32) {
let olength = decimal_length9(digits);
debug_assert!(self.index + olength as isize <= self.len);
let result = self.buffer.offset(self.index);
let mut i = 0;
while digits >= 10000 {
let c = digits % 10000;
digits /= 10000;
let c0 = (c % 100) << 1;
let c1 = (c / 100) << 1;
// memcpy(result + olength - i - 2, DIGIT_TABLE + c0, 2);
// memcpy(result + olength - i - 4, DIGIT_TABLE + c1, 2);
result
.offset(olength as isize - i as isize - 2)
.copy_from_nonoverlapping(DIGIT_TABLE.as_ptr().offset(c0 as isize), 2);
result
.offset(olength as isize - i as isize - 4)
.copy_from_nonoverlapping(DIGIT_TABLE.as_ptr().offset(c1 as isize), 2);
i += 4;
}
if digits >= 100 {
let c = (digits % 100) << 1;
digits /= 100;
// memcpy(result + olength - i - 2, DIGIT_TABLE + c, 2);
result
.offset(olength as isize - i as isize - 2)
.copy_from_nonoverlapping(DIGIT_TABLE.as_ptr().offset(c as isize), 2);
i += 2;
}
if digits >= 10 {
let c = digits << 1;
// memcpy(result + olength - i - 2, DIGIT_TABLE + c, 2);
result
.offset(olength as isize - i as isize - 2)
.copy_from_nonoverlapping(DIGIT_TABLE.as_ptr().offset(c as isize), 2);
} else {
*result = b'0' + digits as u8;
}
self.index += olength as isize;
}
/// Convert `digits` to decimal and write the last `count` decimal digits to result.
/// If `digits` contains additional digits, then those are silently ignored.
///
/// # Safety
///
/// The caller must ensure that the buffer has enough space for the given `count`.
#[cfg_attr(feature = "no-panic", no_panic)]
unsafe fn append_c_digits(&mut self, count: u32, mut digits: u32) {
debug_assert!(self.index + count as isize <= self.len);
let result = self.buffer.offset(self.index);
// Copy pairs of digits from DIGIT_TABLE.
let mut i: u32 = 0;
// for (; i < count - 1; i += 2) {
while i < count - 1 {
let c: u32 = (digits % 100) << 1;
digits /= 100;
// memcpy(result + count - i - 2, DIGIT_TABLE + c, 2);
result
.offset((count - i - 2) as isize)
.copy_from_nonoverlapping(DIGIT_TABLE.as_ptr().offset(c as isize), 2);
i += 2;
}
// Generate the last digit if count is odd.
if i < count {
let c = b'0' + (digits % 10) as u8;
// result[count - i - 1] = c;
*result.offset((count - i - 1) as isize) = c;
}
self.index += count as isize;
}
/// Get the byte at the given index.
///
/// # Safety
///
/// The caller must ensure that the index is within `[0, len)`.
#[cfg_attr(feature = "no-panic", no_panic)]
unsafe fn get(&mut self, i: isize) -> u8 {
debug_assert!((0..self.len).contains(&i));
*self.buffer.offset(i)
}
/// Set the byte at the given index with the value.
///
/// # Safety
///
/// The caller must ensure that the index is within `[0, len)`.
#[cfg_attr(feature = "no-panic", no_panic)]
unsafe fn set(&mut self, i: isize, c: u8) {
debug_assert!((0..self.len).contains(&i));
*self.buffer.offset(i) = c;
}
}
/// Because of the abs(f) >= 1e21 check, falls back to ToString ([`format64`]).
///
/// See tests.
const MAX_EXPONENT: u32 = 0b100_0100_0100; // 1029
const MIN_EXPONENT: u16 = 0b010_1001_0011;
/// `e2 = exponent - bias - |mantissa|`
const MAX_E2: i32 = MAX_EXPONENT as i32 - DOUBLE_BIAS - DOUBLE_MANTISSA_BITS as i32;
const MIN_E2: i32 = MIN_EXPONENT as i32 - DOUBLE_BIAS - DOUBLE_MANTISSA_BITS as i32;
const MAX_POW10_SPLIT_2_INX: i32 = -MIN_E2 / 16;
const POW10_ADDITIONAL_BITS: u32 = 120;
/// Returns `floor(log_10(2^e))` requires `0 <= e <= 1650`.
#[cfg_attr(feature = "no-panic", no_panic)]
fn log10_pow2(e: i32) -> u32 {
// The first value this approximation fails for is 2^1651 which is just greater than 10^297.
debug_assert!((0..=1650).contains(&e));
((e as u32) * 78913) >> 18
}
/// Get index from `e2` value.
///
/// Range `[0, 2]` inclusive.
#[cfg_attr(feature = "no-panic", no_panic)]
fn index_for_exponent(e: u32) -> u32 {
debug_assert!((0..=MAX_E2 as u32).contains(&e));
let result = (e + 15) / 16;
debug_assert!((0..=2).contains(&result));
result
}
#[cfg_attr(feature = "no-panic", no_panic)]
fn pow10_bits_for_index(idx: u32) -> u32 {
16 * idx + POW10_ADDITIONAL_BITS
}
/// Get the length from the index.
///
/// Range `[2, 3]` inclusive.
///
// TODO: Because the ranges are so small we could have tables, too speed up execution.
#[cfg_attr(feature = "no-panic", no_panic)]
fn length_for_index(idx: u32) -> u32 {
// +1 for ceil, +16 for mantissa, +8 to round up when dividing by 9
(log10_pow2(16 * idx as i32) + 1 + 16 + 8) / 9
}
#[cfg_attr(feature = "no-panic", no_panic)]
fn umul256(a: u128, b_hi: u64, b_lo: u64) -> (u128, u128) {
let a_lo = a as u64;
let a_hi = (a >> 64) as u64;
let b00 = (a_lo as u128) * (b_lo as u128);
let b01 = (a_lo as u128) * (b_hi as u128);
let b10 = (a_hi as u128) * (b_lo as u128);
let b11 = (a_hi as u128) * (b_hi as u128);
let b00_lo = b00 as u64;
let b00_hi = (b00 >> 64) as u64;
let mid1 = b10 + b00_hi as u128;
let mid1_lo = (mid1) as u64;
let mid1_hi = (mid1 >> 64) as u64;
let mid2 = b01 + mid1_lo as u128;
let mid2_lo = (mid2) as u64;
let mid2_hi = (mid2 >> 64) as u64;
let p_hi = b11 + mid1_hi as u128 + mid2_hi as u128;
let p_lo = ((mid2_lo as u128) << 64) | b00_lo as u128;
(p_hi, p_lo)
}
// Returns the high 128 bits of the 256-bit product of a and b.
#[cfg_attr(feature = "no-panic", no_panic)]
fn umul256_hi(a: u128, b_hi: u64, b_lo: u64) -> u128 {
// Reuse the umul256 implementation.
// Optimizers will likely eliminate the instructions used to compute the
// low part of the product.
let (hi, _lo) = umul256(a, b_hi, b_lo);
hi
}
// Unfortunately, gcc/clang do not automatically turn a 128-bit integer division
// into a multiplication, so we have to do it manually.
#[cfg_attr(feature = "no-panic", no_panic)]
fn uint128_mod1e9(v: u128) -> u32 {
// After multiplying, we're going to shift right by 29, then truncate to uint32_t.
// This means that we need only 29 + 32 = 61 bits, so we can truncate to uint64_t before shifting.
let multiplied = umul256_hi(v, 0x89705F4136B4A597, 0x31680A88F8953031) as u64;
// For uint32_t truncation, see the mod1e9() comment in d2s_intrinsics.rs
let shifted = (multiplied >> 29) as u32;
(v as u32).wrapping_sub(1000000000u32.wrapping_mul(shifted))
}
// Best case: use 128-bit type.
#[cfg_attr(feature = "no-panic", no_panic)]
fn mul_shift_mod1e9(m: u64, mul: &[u64; 3], j: i32) -> u32 {
let b0 = m as u128 * mul[0] as u128; // 0
let b1 = m as u128 * mul[1] as u128; // 64
let b2 = m as u128 * mul[2] as u128; // 128
debug_assert!((128..=180).contains(&j));
let mid = b1 + ((b0 >> 64) as u64) as u128; // 64
let s1 = b2 + ((mid >> 64) as u64) as u128; // 128
uint128_mod1e9(s1 >> (j - 128))
}
// Returns the number of decimal digits in v, which must not contain more than 9 digits.
#[cfg_attr(feature = "no-panic", no_panic)]
fn decimal_length9(v: u32) -> u32 {
// Function precondition: v is not a 10-digit number.
// (f2s: 9 digits are sufficient for round-tripping.)
// (d2fixed: We print 9-digit blocks.)
debug_assert!(v < 1000000000);
if v >= 100000000 {
9
} else if v >= 10000000 {
8
} else if v >= 1000000 {
7
} else if v >= 100000 {
6
} else if v >= 10000 {
5
} else if v >= 1000 {
4
} else if v >= 100 {
3
} else if v >= 10 {
2
} else {
1
}
}
/// Print [`f64`] to the given buffer using fixed notation,
/// as defined in the ECMAScript `Number.prototype.toFixed()` method
/// and return number of bytes written.
///
/// At most 132 bytes will be written.
///
/// ## Special cases
///
/// This function **does not** check for NaN or infinity. If the input
/// number is not a finite float, the printed representation will be some
/// correctly formatted but unspecified numerical value.
///
/// Please check [`is_finite`] yourself before calling this function, or
/// check [`is_nan`] and [`is_infinite`] and handle those cases yourself.
///
/// [`is_finite`]: https://doc.rust-lang.org/std/primitive.f64.html#method.is_finite
/// [`is_nan`]: https://doc.rust-lang.org/std/primitive.f64.html#method.is_nan
/// [`is_infinite`]: https://doc.rust-lang.org/std/primitive.f64.html#method.is_infinite
///
/// ## Safety
///
/// The `result` pointer argument must point to sufficiently many writable bytes
/// to hold Ryū's representation of `f`.
///
/// ## Example
///
/// ```
/// use std::{mem::MaybeUninit, slice, str};
///
/// let f = 1.235f64;
///
/// unsafe {
/// let mut buffer = [MaybeUninit::<u8>::uninit(); 132];
/// let len = ryu_js::raw::format64_to_fixed(f, 2, buffer.as_mut_ptr() as *mut u8);
/// let slice = slice::from_raw_parts(buffer.as_ptr() as *const u8, len);
/// let print = str::from_utf8_unchecked(slice);
/// assert_eq!(print, "1.24");
/// }
/// ```
#[must_use]
#[cfg_attr(feature = "no-panic", no_panic)]
pub unsafe fn format64_to_fixed(f: f64, fraction_digits: u8, result: *mut u8) -> usize {
// SKIPPED: 1. Let x be ? thisNumberValue(this value).
// SKIPPED: 2. Let f be ? ToIntegerOrInfinity(fractionDigits).
// SKIPPED: 3. Assert: If fractionDigits is undefined, then f is 0.
// SKIPPED: 4. If f is not finite, throw a RangeError exception.
// 5. If f < 0 or f > 100, throw a RangeError exception.
debug_assert!((0..=100).contains(&fraction_digits));
// 10. If x ≥ 10^21, then
let f_abs = if f < 0.0 { -f } else { f };
if f_abs >= 1e21 {
// a. Let m be ! ToString(𝔽(x)).
return format64(f, result);
}
let mut result = Cursor::new(result, MAX_BUFFER_SIZE);
let bits = f.to_bits();
let sign = ((bits >> (DOUBLE_MANTISSA_BITS + DOUBLE_EXPONENT_BITS)) & 1) != 0;
let ieee_mantissa = bits & ((1u64 << DOUBLE_MANTISSA_BITS) - 1);
let ieee_exponent =
(bits >> DOUBLE_MANTISSA_BITS) as u32 & ((1u32 << DOUBLE_EXPONENT_BITS) - 1);
// Special case when it's 0 or -0 it's the same.
//
// Return and append '.' and '0's is needed.
//
// See: https://tc39.es/ecma262/#%E2%84%9D
if ieee_exponent == 0 && ieee_mantissa == 0 {
result.append_byte(b'0');
if fraction_digits == 0 {
return result.index();
}
result.append_byte(b'.');
result.append_bytes(b'0', fraction_digits as usize);
return result.index();
}
debug_assert!((0..=MAX_EXPONENT).contains(&ieee_exponent));
if sign {
result.append_byte(b'-');
}
let (e2, m2) = if ieee_exponent == 0 {
(1 - DOUBLE_BIAS - DOUBLE_MANTISSA_BITS as i32, ieee_mantissa)
} else {
(
ieee_exponent as i32 - DOUBLE_BIAS - DOUBLE_MANTISSA_BITS as i32,
(1 << DOUBLE_MANTISSA_BITS) | ieee_mantissa,
)
};
debug_assert!((..=MAX_E2).contains(&e2));
let mut nonzero = false;
// Write the whole part (integral part) of the floating point.
//
// xxxxxxx.1234567 (write xs)
if e2 >= -(DOUBLE_MANTISSA_BITS as i32) {
// 0 <= idx <= 2
let idx = if e2 < 0 {
0
} else {
index_for_exponent(e2 as u32)
};
let p10bits = pow10_bits_for_index(idx);
let len = length_for_index(idx) as i32;
for i in (0..len).rev() {
let j = p10bits as i32 - e2;
// SAFETY: 0 <= idx <= 2, putting idx inside the index bounds of `POW10_OFFSET`.
let split_idx = *POW10_OFFSET.get_unchecked(idx as usize) as usize;
// SAFETY: The max value inside `POW10_OFFSET` is 5, and the max value of `i` is 2,
// putting `split_idx + i` inside the index bounds of `POW10_SPLIT`.
let mul = POW10_SPLIT.get_unchecked(split_idx + i as usize);
// Temporary: j is usually around 128, and by shifting a bit, we push it to 128 or above, which is
// a slightly faster code path in mulShift_mod1e9. Instead, we can just increase the multipliers.
let digits = mul_shift_mod1e9(m2 << 8, mul, j + 8);
if nonzero {
result.append_nine_digits(digits);
} else if digits != 0 {
result.append_n_digits(digits);
nonzero = true;
}
}
}
// If the whole part is zero (nothing was writen), write a zero.
if !nonzero {
result.append_byte(b'0');
}
// If fraction_digits is not zero, then write the dot.
if fraction_digits != 0 {
result.append_byte(b'.');
}
// Check if it has fractional part.
if e2 >= 0 {
result.append_bytes(b'0', fraction_digits as usize);
return result.index();
}
// Write fractional part.
//
// 1234567.yyyyyyy (write ys)
let fraction_digits = fraction_digits as u32;
let idx = (-e2 / 16).min(MAX_POW10_SPLIT_2_INX) as usize;
let min_block = MIN_BLOCK_2[idx];
// fraction_digits is defined to be [0, 100] inclusive.
//
// Therefore blocks can be [1, 12] inclusive.
let blocks: u32 = fraction_digits / 9 + 1;
if blocks <= min_block as u32 {
result.append_bytes(b'0', fraction_digits as usize);
return result.index();
}
debug_assert!(idx <= 25);
let mut round_up = false;
for i in 0..blocks {
let p: isize = POW10_OFFSET_2[idx] as isize + i as isize - min_block as isize;
debug_assert!(p >= 0);
let p = p as usize;
// SAFETY: `idx` <= 26 per the min operation above. If `idx == 26` (which is the last index
// of `POW10_OFFSET_2`), blocks <= min_block will always be true, since `1 <= blocks <= 12`
// and `MIN_BLOCK_2[26]` = 12. Hence, for that value of `idx` this won't be executed.
// Finally, for `idx <= 25` it is always true that `idx + 1 <= 26`, making this access always
// in bounds for `POW10_OFFSET_2`.
if p >= *POW10_OFFSET_2.get_unchecked(idx + 1) as usize {
// If the remaining digits are all 0, then we might as well use memset.
// No rounding required in this case.
let fill = fraction_digits as usize - 9 * i as usize;
// memset(result + index, '0', fill);
result.append_bytes(b'0', fill);
break;
}
debug_assert!(p <= 480);
// Temporary: j is usually around 128, and by shifting a bit, we push it to 128 or above, which is
// a slightly faster code path in mulShift_mod1e9. Instead, we can just increase the multipliers.
let j: isize = ADDITIONAL_BITS_2 as isize + (-(e2 as isize) - 16 * idx as isize);
// SAFETY: Since `idx <= 25`, the maximum value of `POW10_OFFSET_2[idx]` must be `480` for
// `idx == 25`.
// However, this also means that `min_block == 11` for that value of `idx`.
// Hence, `POW10_OFFSET_2[25] - MIN_BLOCK_2[25] == 469`, and for that value of `blocks`,
// `0 <= 1 <= 10`.
//
// This shows that the maximum value of `p` is `480`, which is exactly the biggest valid
// index for `POW10_SPLIT_2`.
let mut digits: u32 =
mul_shift_mod1e9(m2 << 8, POW10_SPLIT_2.get_unchecked(p), j as i32 + 8);
if i < blocks - 1 {
result.append_nine_digits(digits);
} else {
let maximum: u32 = fraction_digits - 9 * i;
let mut last_digit: u32 = 0;
for _k in 0..(9 - maximum) {
last_digit = digits % 10;
digits /= 10;
}
// If last digit is 5 or above, round up.
round_up = last_digit >= 5;
if maximum != 0 {
result.append_c_digits(maximum, digits);
}
break;
}
}
// Roundup if needed.
if round_up {
let mut round_index = result.index;
let mut dot_index = 0; // '.' can't be located at index 0
loop {
round_index -= 1;
let c = result.get(round_index);
if round_index == -1 || c == b'-' {
result.set(round_index + 1, b'1');
if dot_index > 0 {
result.set(dot_index, b'0');
result.set(dot_index + 1, b'.');
}
result.append_byte(b'0');
break;
}
if c == b'.' {
dot_index = round_index;
continue;
} else if c == b'9' {
result.set(round_index, b'0');
continue;
}
result.set(round_index, c + 1);
break;
}
}
result.index()
}