ryu_js/pretty/to_fixed/
mod.rs

1use crate::{
2    d2s::{DOUBLE_BIAS, DOUBLE_EXPONENT_BITS, DOUBLE_MANTISSA_BITS},
3    digit_table::DIGIT_TABLE,
4    pretty::{
5        format64,
6        to_fixed::d2fixed_full_table::{
7            ADDITIONAL_BITS_2, MIN_BLOCK_2, POW10_OFFSET, POW10_OFFSET_2, POW10_SPLIT,
8            POW10_SPLIT_2,
9        },
10    },
11};
12#[cfg(feature = "no-panic")]
13use no_panic::no_panic;
14
15mod d2fixed_full_table;
16
17/// Max bytes/characters required for `toFixed` representation of a [`f64`] value:
18///
19/// - 1 byte for sign (-)
20/// - `22` bytes for whole part:
21///   Because we have a check for if `>= 1e21` (1 byte extra, just in case)
22/// - `1` byte for dot (`.`)
23/// - `108` (`9 * 12`) bytes for fraction part:
24///   We write digits in blocks, which consist of `9` digits.
25///
26/// Total: `1 + 22 + 1 + 108 = 132`
27pub const MAX_BUFFER_SIZE: usize = 132;
28
29pub struct Cursor {
30    buffer: *mut u8,
31    len: isize,
32    index: isize,
33}
34
35impl Cursor {
36    #[cfg_attr(feature = "no-panic", no_panic)]
37    pub fn new(buffer: *mut u8, len: usize) -> Self {
38        debug_assert!(!buffer.is_null());
39        Self {
40            buffer,
41            len: len as isize,
42            index: 0,
43        }
44    }
45
46    /// Append one byte to buffer.
47    ///
48    /// # Safety
49    ///
50    /// The caller must ensure that there is enough space for the given byte.
51    #[cfg_attr(feature = "no-panic", no_panic)]
52    unsafe fn append_byte(&mut self, c: u8) {
53        debug_assert!(self.index < self.len);
54
55        *self.buffer.offset(self.index) = c;
56        self.index += 1;
57    }
58
59    /// Append the byte `count` times into the buffer.
60    ///
61    /// # Safety
62    ///
63    /// The caller must ensure that there is enough space for the given bytes.
64    #[cfg_attr(feature = "no-panic", no_panic)]
65    unsafe fn append_bytes(&mut self, c: u8, count: usize) {
66        debug_assert!(self.index + count as isize <= self.len);
67
68        self.buffer.offset(self.index).write_bytes(c, count);
69        self.index += count as isize;
70    }
71
72    /// Gets the current [`Cursor`] index.
73    ///
74    /// The `index` is also the amount of bytes that have been written into the buffer.
75    #[cfg_attr(feature = "no-panic", no_panic)]
76    fn index(&self) -> usize {
77        self.index as usize
78    }
79
80    /// Convert `digits` to decimal and write the last 9 decimal digits to result.
81    /// If `digits` contains additional digits, then those are silently ignored.
82    ///
83    /// # Safety
84    ///
85    /// The caller must ensure that the buffer has enough space for `9` bytes.
86    #[cfg_attr(feature = "no-panic", no_panic)]
87    unsafe fn append_nine_digits(&mut self, mut digits: u32) {
88        let count = 9;
89
90        debug_assert!(self.index + count <= self.len);
91
92        if digits == 0 {
93            self.append_bytes(b'0', 9);
94            return;
95        }
96
97        let result = self.buffer.offset(self.index);
98
99        for i in [0, 4] {
100            let c = digits % 10000;
101            digits /= 10000;
102            let c0 = (c % 100) << 1;
103            let c1 = (c / 100) << 1;
104
105            // memcpy(result + 7 - i, DIGIT_TABLE + c0, 2);
106            // memcpy(result + 5 - i, DIGIT_TABLE + c1, 2);
107            result
108                .offset(7 - i as isize)
109                .copy_from_nonoverlapping(DIGIT_TABLE.as_ptr().offset(c0 as isize), 2);
110            result
111                .offset(5 - i as isize)
112                .copy_from_nonoverlapping(DIGIT_TABLE.as_ptr().offset(c1 as isize), 2);
113        }
114        *(result.offset(0)) = b'0' + digits as u8;
115
116        self.index += count;
117    }
118
119    /// Convert `digits` to a sequence of decimal digits. Append the digits to the result.
120    ///
121    /// # Safety
122    ///
123    /// The caller has to guarantee that:
124    ///
125    /// - 10^(olength-1) <= digits < 10^olength
126    ///   e.g., by passing `olength` as `decimalLength9(digits)`.
127    ///
128    /// - That the buffer has enough space for the decimal length of the given integer.
129    #[cfg_attr(feature = "no-panic", no_panic)]
130    unsafe fn append_n_digits(&mut self, mut digits: u32) {
131        let olength = decimal_length9(digits);
132
133        debug_assert!(self.index + olength as isize <= self.len);
134
135        let result = self.buffer.offset(self.index);
136
137        let mut i = 0;
138        while digits >= 10000 {
139            let c = digits % 10000;
140
141            digits /= 10000;
142            let c0 = (c % 100) << 1;
143            let c1 = (c / 100) << 1;
144
145            // memcpy(result + olength - i - 2, DIGIT_TABLE + c0, 2);
146            // memcpy(result + olength - i - 4, DIGIT_TABLE + c1, 2);
147            result
148                .offset(olength as isize - i as isize - 2)
149                .copy_from_nonoverlapping(DIGIT_TABLE.as_ptr().offset(c0 as isize), 2);
150            result
151                .offset(olength as isize - i as isize - 4)
152                .copy_from_nonoverlapping(DIGIT_TABLE.as_ptr().offset(c1 as isize), 2);
153
154            i += 4;
155        }
156        if digits >= 100 {
157            let c = (digits % 100) << 1;
158            digits /= 100;
159
160            // memcpy(result + olength - i - 2, DIGIT_TABLE + c, 2);
161            result
162                .offset(olength as isize - i as isize - 2)
163                .copy_from_nonoverlapping(DIGIT_TABLE.as_ptr().offset(c as isize), 2);
164
165            i += 2;
166        }
167        if digits >= 10 {
168            let c = digits << 1;
169
170            // memcpy(result + olength - i - 2, DIGIT_TABLE + c, 2);
171            result
172                .offset(olength as isize - i as isize - 2)
173                .copy_from_nonoverlapping(DIGIT_TABLE.as_ptr().offset(c as isize), 2);
174        } else {
175            *result = b'0' + digits as u8;
176        }
177
178        self.index += olength as isize;
179    }
180
181    /// Convert `digits` to decimal and write the last `count` decimal digits to result.
182    /// If `digits` contains additional digits, then those are silently ignored.
183    ///
184    /// # Safety
185    ///
186    /// The caller must ensure that the buffer has enough space for the given `count`.
187    #[cfg_attr(feature = "no-panic", no_panic)]
188    unsafe fn append_c_digits(&mut self, count: u32, mut digits: u32) {
189        debug_assert!(self.index + count as isize <= self.len);
190
191        let result = self.buffer.offset(self.index);
192
193        // Copy pairs of digits from DIGIT_TABLE.
194        let mut i: u32 = 0;
195        //   for (; i < count - 1; i += 2) {
196        while i < count - 1 {
197            let c: u32 = (digits % 100) << 1;
198            digits /= 100;
199
200            // memcpy(result + count - i - 2, DIGIT_TABLE + c, 2);
201            result
202                .offset((count - i - 2) as isize)
203                .copy_from_nonoverlapping(DIGIT_TABLE.as_ptr().offset(c as isize), 2);
204
205            i += 2;
206        }
207        // Generate the last digit if count is odd.
208        if i < count {
209            let c = b'0' + (digits % 10) as u8;
210
211            // result[count - i - 1] = c;
212            *result.offset((count - i - 1) as isize) = c;
213        }
214
215        self.index += count as isize;
216    }
217
218    /// Get the byte at the given index.
219    ///
220    /// # Safety
221    ///
222    /// The caller must ensure that the index is within `[0, len)`.
223    #[cfg_attr(feature = "no-panic", no_panic)]
224    unsafe fn get(&mut self, i: isize) -> u8 {
225        debug_assert!((0..self.len).contains(&i));
226
227        *self.buffer.offset(i)
228    }
229
230    /// Set the byte at the given index with the value.
231    ///
232    /// # Safety
233    ///
234    /// The caller must ensure that the index is within `[0, len)`.
235    #[cfg_attr(feature = "no-panic", no_panic)]
236    unsafe fn set(&mut self, i: isize, c: u8) {
237        debug_assert!((0..self.len).contains(&i));
238
239        *self.buffer.offset(i) = c;
240    }
241}
242
243/// Because of the abs(f) >= 1e21 check, falls back to ToString ([`format64`]).
244///
245/// See tests.
246const MAX_EXPONENT: u32 = 0b100_0100_0100; // 1029
247const MIN_EXPONENT: u16 = 0b010_1001_0011;
248
249/// `e2 = exponent - bias - |mantissa|`
250const MAX_E2: i32 = MAX_EXPONENT as i32 - DOUBLE_BIAS - DOUBLE_MANTISSA_BITS as i32;
251const MIN_E2: i32 = MIN_EXPONENT as i32 - DOUBLE_BIAS - DOUBLE_MANTISSA_BITS as i32;
252
253const MAX_POW10_SPLIT_2_INX: i32 = -MIN_E2 / 16;
254
255const POW10_ADDITIONAL_BITS: u32 = 120;
256
257/// Returns `floor(log_10(2^e))` requires `0 <= e <= 1650`.
258#[cfg_attr(feature = "no-panic", no_panic)]
259fn log10_pow2(e: i32) -> u32 {
260    // The first value this approximation fails for is 2^1651 which is just greater than 10^297.
261    debug_assert!((0..=1650).contains(&e));
262
263    ((e as u32) * 78913) >> 18
264}
265
266/// Get index from `e2` value.
267///
268/// Range `[0, 2]` inclusive.
269#[cfg_attr(feature = "no-panic", no_panic)]
270fn index_for_exponent(e: u32) -> u32 {
271    debug_assert!((0..=MAX_E2 as u32).contains(&e));
272
273    let result = (e + 15) / 16;
274
275    debug_assert!((0..=2).contains(&result));
276
277    result
278}
279
280#[cfg_attr(feature = "no-panic", no_panic)]
281fn pow10_bits_for_index(idx: u32) -> u32 {
282    16 * idx + POW10_ADDITIONAL_BITS
283}
284
285/// Get the length from the index.
286///
287/// Range `[2, 3]` inclusive.
288///
289// TODO: Because the ranges are so small we could have tables, too speed up execution.
290#[cfg_attr(feature = "no-panic", no_panic)]
291fn length_for_index(idx: u32) -> u32 {
292    // +1 for ceil, +16 for mantissa, +8 to round up when dividing by 9
293    (log10_pow2(16 * idx as i32) + 1 + 16 + 8) / 9
294}
295
296#[cfg_attr(feature = "no-panic", no_panic)]
297fn umul256(a: u128, b_hi: u64, b_lo: u64) -> (u128, u128) {
298    let a_lo = a as u64;
299    let a_hi = (a >> 64) as u64;
300
301    let b00 = (a_lo as u128) * (b_lo as u128);
302    let b01 = (a_lo as u128) * (b_hi as u128);
303    let b10 = (a_hi as u128) * (b_lo as u128);
304    let b11 = (a_hi as u128) * (b_hi as u128);
305
306    let b00_lo = b00 as u64;
307    let b00_hi = (b00 >> 64) as u64;
308
309    let mid1 = b10 + b00_hi as u128;
310    let mid1_lo = (mid1) as u64;
311    let mid1_hi = (mid1 >> 64) as u64;
312
313    let mid2 = b01 + mid1_lo as u128;
314    let mid2_lo = (mid2) as u64;
315    let mid2_hi = (mid2 >> 64) as u64;
316
317    let p_hi = b11 + mid1_hi as u128 + mid2_hi as u128;
318    let p_lo = ((mid2_lo as u128) << 64) | b00_lo as u128;
319
320    (p_hi, p_lo)
321}
322
323// Returns the high 128 bits of the 256-bit product of a and b.
324#[cfg_attr(feature = "no-panic", no_panic)]
325fn umul256_hi(a: u128, b_hi: u64, b_lo: u64) -> u128 {
326    // Reuse the umul256 implementation.
327    // Optimizers will likely eliminate the instructions used to compute the
328    // low part of the product.
329    let (hi, _lo) = umul256(a, b_hi, b_lo);
330    hi
331}
332
333// Unfortunately, gcc/clang do not automatically turn a 128-bit integer division
334// into a multiplication, so we have to do it manually.
335#[cfg_attr(feature = "no-panic", no_panic)]
336fn uint128_mod1e9(v: u128) -> u32 {
337    // After multiplying, we're going to shift right by 29, then truncate to uint32_t.
338    // This means that we need only 29 + 32 = 61 bits, so we can truncate to uint64_t before shifting.
339    let multiplied = umul256_hi(v, 0x89705F4136B4A597, 0x31680A88F8953031) as u64;
340
341    // For uint32_t truncation, see the mod1e9() comment in d2s_intrinsics.rs
342    let shifted = (multiplied >> 29) as u32;
343
344    (v as u32).wrapping_sub(1000000000u32.wrapping_mul(shifted))
345}
346
347// Best case: use 128-bit type.
348#[cfg_attr(feature = "no-panic", no_panic)]
349fn mul_shift_mod1e9(m: u64, mul: &[u64; 3], j: i32) -> u32 {
350    let b0 = m as u128 * mul[0] as u128; // 0
351    let b1 = m as u128 * mul[1] as u128; // 64
352    let b2 = m as u128 * mul[2] as u128; // 128
353
354    debug_assert!((128..=180).contains(&j));
355
356    let mid = b1 + ((b0 >> 64) as u64) as u128; // 64
357    let s1 = b2 + ((mid >> 64) as u64) as u128; // 128
358    uint128_mod1e9(s1 >> (j - 128))
359}
360
361// Returns the number of decimal digits in v, which must not contain more than 9 digits.
362#[cfg_attr(feature = "no-panic", no_panic)]
363fn decimal_length9(v: u32) -> u32 {
364    // Function precondition: v is not a 10-digit number.
365    // (f2s: 9 digits are sufficient for round-tripping.)
366    // (d2fixed: We print 9-digit blocks.)
367    debug_assert!(v < 1000000000);
368
369    if v >= 100000000 {
370        9
371    } else if v >= 10000000 {
372        8
373    } else if v >= 1000000 {
374        7
375    } else if v >= 100000 {
376        6
377    } else if v >= 10000 {
378        5
379    } else if v >= 1000 {
380        4
381    } else if v >= 100 {
382        3
383    } else if v >= 10 {
384        2
385    } else {
386        1
387    }
388}
389
390/// Print [`f64`] to the given buffer using fixed notation,
391/// as defined in the ECMAScript `Number.prototype.toFixed()` method
392/// and return number of bytes written.
393///
394/// At most 132 bytes will be written.
395///
396/// ## Special cases
397///
398/// This function **does not** check for NaN or infinity. If the input
399/// number is not a finite float, the printed representation will be some
400/// correctly formatted but unspecified numerical value.
401///
402/// Please check [`is_finite`] yourself before calling this function, or
403/// check [`is_nan`] and [`is_infinite`] and handle those cases yourself.
404///
405/// [`is_finite`]: https://doc.rust-lang.org/std/primitive.f64.html#method.is_finite
406/// [`is_nan`]: https://doc.rust-lang.org/std/primitive.f64.html#method.is_nan
407/// [`is_infinite`]: https://doc.rust-lang.org/std/primitive.f64.html#method.is_infinite
408///
409/// ## Safety
410///
411/// The `result` pointer argument must point to sufficiently many writable bytes
412/// to hold Ryū's representation of `f`.
413///
414/// ## Example
415///
416/// ```
417/// use std::{mem::MaybeUninit, slice, str};
418///
419/// let f = 1.235f64;
420///
421/// unsafe {
422///     let mut buffer = [MaybeUninit::<u8>::uninit(); 132];
423///     let len = ryu_js::raw::format64_to_fixed(f, 2, buffer.as_mut_ptr() as *mut u8);
424///     let slice = slice::from_raw_parts(buffer.as_ptr() as *const u8, len);
425///     let print = str::from_utf8_unchecked(slice);
426///     assert_eq!(print, "1.24");
427/// }
428/// ```
429#[must_use]
430#[cfg_attr(feature = "no-panic", no_panic)]
431pub unsafe fn format64_to_fixed(f: f64, fraction_digits: u8, result: *mut u8) -> usize {
432    // SKIPPED: 1. Let x be ? thisNumberValue(this value).
433    // SKIPPED: 2. Let f be ? ToIntegerOrInfinity(fractionDigits).
434    // SKIPPED: 3. Assert: If fractionDigits is undefined, then f is 0.
435    // SKIPPED: 4. If f is not finite, throw a RangeError exception.
436    // 5. If f < 0 or f > 100, throw a RangeError exception.
437    debug_assert!((0..=100).contains(&fraction_digits));
438
439    // 10. If x ≥ 10^21, then
440    let f_abs = if f < 0.0 { -f } else { f };
441    if f_abs >= 1e21 {
442        // a. Let m be ! ToString(𝔽(x)).
443        return format64(f, result);
444    }
445
446    let mut result = Cursor::new(result, MAX_BUFFER_SIZE);
447
448    let bits = f.to_bits();
449    let sign = ((bits >> (DOUBLE_MANTISSA_BITS + DOUBLE_EXPONENT_BITS)) & 1) != 0;
450    let ieee_mantissa = bits & ((1u64 << DOUBLE_MANTISSA_BITS) - 1);
451    let ieee_exponent =
452        (bits >> DOUBLE_MANTISSA_BITS) as u32 & ((1u32 << DOUBLE_EXPONENT_BITS) - 1);
453
454    // Special case when it's 0 or -0 it's the same.
455    //
456    // Return and append '.' and '0's is needed.
457    //
458    // See: https://tc39.es/ecma262/#%E2%84%9D
459    if ieee_exponent == 0 && ieee_mantissa == 0 {
460        result.append_byte(b'0');
461        if fraction_digits == 0 {
462            return result.index();
463        }
464        result.append_byte(b'.');
465        result.append_bytes(b'0', fraction_digits as usize);
466        return result.index();
467    }
468
469    debug_assert!((0..=MAX_EXPONENT).contains(&ieee_exponent));
470
471    if sign {
472        result.append_byte(b'-');
473    }
474
475    let (e2, m2) = if ieee_exponent == 0 {
476        (1 - DOUBLE_BIAS - DOUBLE_MANTISSA_BITS as i32, ieee_mantissa)
477    } else {
478        (
479            ieee_exponent as i32 - DOUBLE_BIAS - DOUBLE_MANTISSA_BITS as i32,
480            (1 << DOUBLE_MANTISSA_BITS) | ieee_mantissa,
481        )
482    };
483
484    debug_assert!((..=MAX_E2).contains(&e2));
485
486    let mut nonzero = false;
487
488    // Write the whole part (integral part) of the floating point.
489    //
490    // xxxxxxx.1234567 (write xs)
491    if e2 >= -(DOUBLE_MANTISSA_BITS as i32) {
492        // 0 <= idx <= 2
493        let idx = if e2 < 0 {
494            0
495        } else {
496            index_for_exponent(e2 as u32)
497        };
498        let p10bits = pow10_bits_for_index(idx);
499        let len = length_for_index(idx) as i32;
500
501        for i in (0..len).rev() {
502            let j = p10bits as i32 - e2;
503            // SAFETY: 0 <= idx <= 2, putting idx inside the index bounds of `POW10_OFFSET`.
504            let split_idx = *POW10_OFFSET.get_unchecked(idx as usize) as usize;
505
506            // SAFETY: The max value inside `POW10_OFFSET` is 5, and the max value of `i` is 2,
507            // putting `split_idx + i` inside the index bounds of `POW10_SPLIT`.
508            let mul = POW10_SPLIT.get_unchecked(split_idx + i as usize);
509
510            // Temporary: j is usually around 128, and by shifting a bit, we push it to 128 or above, which is
511            // a slightly faster code path in mulShift_mod1e9. Instead, we can just increase the multipliers.
512            let digits = mul_shift_mod1e9(m2 << 8, mul, j + 8);
513            if nonzero {
514                result.append_nine_digits(digits);
515            } else if digits != 0 {
516                result.append_n_digits(digits);
517                nonzero = true;
518            }
519        }
520    }
521
522    // If the whole part is zero (nothing was writen), write a zero.
523    if !nonzero {
524        result.append_byte(b'0');
525    }
526
527    // If fraction_digits is not zero, then write the dot.
528    if fraction_digits != 0 {
529        result.append_byte(b'.');
530    }
531
532    // Check if it has fractional part.
533    if e2 >= 0 {
534        result.append_bytes(b'0', fraction_digits as usize);
535        return result.index();
536    }
537
538    // Write fractional part.
539    //
540    // 1234567.yyyyyyy (write ys)
541
542    let fraction_digits = fraction_digits as u32;
543
544    let idx = (-e2 / 16).min(MAX_POW10_SPLIT_2_INX) as usize;
545
546    let min_block = MIN_BLOCK_2[idx];
547
548    // fraction_digits is defined to be [0, 100] inclusive.
549    //
550    // Therefore blocks can be [1, 12] inclusive.
551    let blocks: u32 = fraction_digits / 9 + 1;
552    if blocks <= min_block as u32 {
553        result.append_bytes(b'0', fraction_digits as usize);
554        return result.index();
555    }
556
557    debug_assert!(idx <= 25);
558
559    let mut round_up = false;
560
561    for i in 0..blocks {
562        let p: isize = POW10_OFFSET_2[idx] as isize + i as isize - min_block as isize;
563        debug_assert!(p >= 0);
564        let p = p as usize;
565
566        // SAFETY: `idx` <= 26 per the min operation above. If `idx == 26` (which is the last index
567        // of `POW10_OFFSET_2`), blocks <= min_block will always be true, since `1 <= blocks <= 12`
568        // and `MIN_BLOCK_2[26]` = 12. Hence, for that value of `idx` this won't be executed.
569        // Finally, for `idx <= 25` it is always true that `idx + 1 <= 26`, making this access always
570        // in bounds for `POW10_OFFSET_2`.
571        if p >= *POW10_OFFSET_2.get_unchecked(idx + 1) as usize {
572            // If the remaining digits are all 0, then we might as well use memset.
573            // No rounding required in this case.
574            let fill = fraction_digits as usize - 9 * i as usize;
575            // memset(result + index, '0', fill);
576            result.append_bytes(b'0', fill);
577            break;
578        }
579
580        debug_assert!(p <= 480);
581
582        // Temporary: j is usually around 128, and by shifting a bit, we push it to 128 or above, which is
583        // a slightly faster code path in mulShift_mod1e9. Instead, we can just increase the multipliers.
584        let j: isize = ADDITIONAL_BITS_2 as isize + (-(e2 as isize) - 16 * idx as isize);
585
586        // SAFETY: Since `idx <= 25`, the maximum value of `POW10_OFFSET_2[idx]` must be `480` for
587        // `idx == 25`.
588        // However, this also means that `min_block == 11` for that value of `idx`.
589        // Hence, `POW10_OFFSET_2[25] - MIN_BLOCK_2[25] == 469`, and for that value of `blocks`,
590        // `0 <= 1 <= 10`.
591        //
592        // This shows that the maximum value of `p` is `480`, which is exactly the biggest valid
593        // index for `POW10_SPLIT_2`.
594        let mut digits: u32 =
595            mul_shift_mod1e9(m2 << 8, POW10_SPLIT_2.get_unchecked(p), j as i32 + 8);
596
597        if i < blocks - 1 {
598            result.append_nine_digits(digits);
599        } else {
600            let maximum: u32 = fraction_digits - 9 * i;
601            let mut last_digit: u32 = 0;
602            for _k in 0..(9 - maximum) {
603                last_digit = digits % 10;
604                digits /= 10;
605            }
606
607            // If last digit is 5 or above, round up.
608            round_up = last_digit >= 5;
609
610            if maximum != 0 {
611                result.append_c_digits(maximum, digits);
612            }
613            break;
614        }
615    }
616
617    // Roundup if needed.
618    if round_up {
619        let mut round_index = result.index;
620        let mut dot_index = 0; // '.' can't be located at index 0
621        loop {
622            round_index -= 1;
623
624            let c = result.get(round_index);
625            if round_index == -1 || c == b'-' {
626                result.set(round_index + 1, b'1');
627                if dot_index > 0 {
628                    result.set(dot_index, b'0');
629                    result.set(dot_index + 1, b'.');
630                }
631                result.append_byte(b'0');
632                break;
633            }
634            if c == b'.' {
635                dot_index = round_index;
636                continue;
637            } else if c == b'9' {
638                result.set(round_index, b'0');
639                continue;
640            }
641
642            result.set(round_index, c + 1);
643            break;
644        }
645    }
646
647    result.index()
648}