1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
//! Primitives for object and array transmutation.
//!
//! The functions in this module are very unsafe and their use is not
//! recommended unless you *really* know what you are doing.
use self::super::guard::{SingleValueGuard, PermissiveGuard, SingleManyGuard, Guard};
use self::super::error::Error;
use core::mem::size_of;
#[cfg(feature = "alloc")]
use core::mem::forget;
#[cfg(feature = "alloc")]
use alloc::vec::Vec;
use core::slice;
/// Convert a byte slice into a single instance of a `Copy`able type.
///
/// The byte slice must have at least enough bytes to fill a single instance of
/// a type, extraneous data is ignored.
///
/// # Safety
///
/// - This function does not perform memory alignment checks. The beginning of
/// the slice data must be properly aligned for accessing the value of type `T`.
/// - The byte data needs to correspond to a valid `T` value.
///
/// Failure to fulfill any of the requirements above may result in undefined
/// behavior.
///
/// # Errors
///
/// An error is returned if the slice does not have enough bytes for a single
/// value `T`.
///
/// # Examples
///
/// ```
/// # use safe_transmute::base::from_bytes;
/// # include!("../tests/test_util/le_to_native.rs");
/// # fn main() {
/// // Little-endian
/// unsafe {
/// # /*
/// assert_eq!(from_bytes::<u32>(&[0x00, 0x00, 0x00, 0x01])?, 0x0100_0000);
/// # */
/// # assert_eq!(from_bytes::<u32>(&Le2NAl4([0x00, 0x00, 0x00, 0x01]).0.le_to_native::<u32>()).unwrap(), 0x0100_0000);
/// }
/// # }
/// ```
pub unsafe fn from_bytes<T: Copy>(bytes: &[u8]) -> Result<T, Error<u8, T>> {
SingleManyGuard::check::<T>(bytes)?;
Ok(slice::from_raw_parts(bytes.as_ptr() as *const T, 1)[0])
}
/// Convert a byte slice into a single instance of a `Copy`able type.
///
/// The byte slice must have exactly the expected number of bytes to fill a
/// single instance of a type, without trailing space.
///
/// # Safety
///
/// - This function does not perform memory alignment checks. The beginning of
/// the slice data must be properly aligned for accessing the value of type `T`.
/// - The byte data needs to correspond to a valid `T` value.
///
/// Failure to fulfill any of the requirements above may result in undefined
/// behavior.
///
/// # Errors
///
/// An error is returned if the slice's length is not equal to the size of a
/// single value `T`.
///
/// # Examples
///
/// ```
/// # use safe_transmute::base::from_bytes_pedantic;
/// # include!("../tests/test_util/le_to_native.rs");
/// # fn main() {
/// // Little-endian
/// unsafe {
/// # /*
/// assert_eq!(from_bytes_pedantic::<u32>(&[0x00, 0x00, 0x00, 0x01])?, 0x0100_0000);
/// # */
/// # assert_eq!(
/// # from_bytes_pedantic::<u32>(&Le2NAl4([0x00, 0x00, 0x00, 0x01]).0.le_to_native::<u32>()).unwrap(),
/// # 0x0100_0000
/// # );
/// }
/// # }
/// ```
pub unsafe fn from_bytes_pedantic<T: Copy>(bytes: &[u8]) -> Result<T, Error<u8, T>> {
SingleValueGuard::check::<T>(bytes)?;
Ok(slice::from_raw_parts(bytes.as_ptr() as *const T, 1)[0])
}
/// View a byte slice as a slice of an arbitrary type.
///
/// The required byte length of the slice depends on the chosen boundary guard.
/// Please see the [Guard API](../guard/index.html).
///
/// # Safety
///
/// - This function does not perform memory alignment checks. The beginning of
/// the slice data must be properly aligned for accessing vlues of type `T`.
/// - The byte data needs to correspond to a valid contiguous sequence of `T`
/// values. Types `T` with a `Drop` implementation are unlikely to be safe
/// in this regard.
///
/// Failure to fulfill any of the requirements above may result in undefined
/// behavior.
///
/// # Errors
///
/// An error is returned if the data does not comply with the policies of the
/// given guard `G`.
///
/// # Examples
///
/// ```
/// # use safe_transmute::base::transmute_many;
/// # use safe_transmute::SingleManyGuard;
/// # include!("../tests/test_util/le_to_native.rs");
/// # fn main() {
/// // Little-endian
/// unsafe {
/// # /*
/// assert_eq!(
/// transmute_many::<u16, SingleManyGuard>(&[0x00, 0x01, 0x00, 0x02])?,
/// # */
/// # assert_eq!(transmute_many::<u16, SingleManyGuard>(&Le2NAl4([0x00, 0x01, 0x00, 0x02]).0.le_to_native::<u16>()).unwrap(),
/// &[0x0100, 0x0200]
/// );
/// }
/// # }
/// ```
pub unsafe fn transmute_many<T, G: Guard>(bytes: &[u8]) -> Result<&[T], Error<u8, T>> {
G::check::<T>(bytes)?;
Ok(slice::from_raw_parts(bytes.as_ptr() as *const T, bytes.len() / size_of::<T>()))
}
/// View a mutable byte slice as a slice of an arbitrary type.
///
/// The required byte length of the slice depends on the chosen boundary guard.
/// Please see the [Guard API](../guard/index.html).
///
/// # Safety
///
/// - This function does not perform memory alignment checks. The beginning of
/// the slice data must be properly aligned for accessing vlues of type `T`.
/// - The byte data needs to correspond to a valid contiguous sequence of `T`
/// values. Types `T` with a `Drop` implementation are unlikely to be safe
/// in this regard.
///
/// Failure to fulfill any of the requirements above may result in undefined
/// behavior.
///
/// # Errors
///
/// An error is returned if the data does not comply with the policies of the
/// given guard `G`.
///
/// # Examples
///
/// ```
/// # use safe_transmute::base::transmute_many_mut;
/// # use safe_transmute::SingleManyGuard;
/// # include!("../tests/test_util/le_to_native.rs");
/// # fn main() {
/// // Little-endian
/// unsafe {
/// # /*
/// assert_eq!(
/// transmute_many_mut::<u16, SingleManyGuard>(&mut [0xFF, 0x01, 0x00, 0x02])?,
/// # */
/// # assert_eq!(transmute_many_mut::<u16, SingleManyGuard>(&mut Le2NAl4([0xFF, 0x01, 0x00, 0x02]).0.le_to_native::<u16>()).unwrap(),
/// &mut [0x01FF, 0x0200]
/// );
/// }
/// # }
/// ```
pub unsafe fn transmute_many_mut<T, G: Guard>(bytes: &mut [u8]) -> Result<&mut [T], Error<u8, T>> {
G::check::<T>(bytes)?;
Ok(slice::from_raw_parts_mut(bytes.as_mut_ptr() as *mut T, bytes.len() / size_of::<T>()))
}
/// View a byte slice as a slice of an arbitrary type.
///
/// The resulting slice will have as many instances of a type as will fit,
/// rounded down. The permissive guard is a no-op, which makes it possible for
/// this function to return a slice directly. It is therefore equivalent to
/// `transmute_many::<_, PermissiveGuard>(bytes).unwrap()`.
///
/// # Safety
///
/// - This function does not perform memory alignment checks. The beginning of
/// the slice data must be properly aligned for accessing vlues of type `T`.
/// - The byte data needs to correspond to a valid contiguous sequence of `T`
/// values. Types `T` with a `Drop` implementation are unlikely to be safe
/// in this regard.
///
/// Failure to fulfill any of the requirements above may result in undefined
/// behavior.
///
/// # Examples
///
/// ```
/// # use safe_transmute::base::transmute_many_permissive;
/// # include!("../tests/test_util/le_to_native.rs");
/// # fn main() {
/// // Little-endian
/// unsafe {
/// # /*
/// assert_eq!(
/// transmute_many_permissive::<u16>(&[0x00, 0x01, 0x00, 0x02]),
/// # */
/// # assert_eq!(transmute_many_permissive::<u16>(&Le2NAl4([0x00, 0x01, 0x00, 0x02]).0.le_to_native::<u16>()),
/// &[0x0100, 0x0200]
/// );
/// }
/// # }
/// ```
pub unsafe fn transmute_many_permissive<T>(bytes: &[u8]) -> &[T] {
transmute_many::<_, PermissiveGuard>(bytes).expect("permissive guard should never fail")
}
/// Transform a vector into a vector of another element type.
///
/// The vector's allocated byte buffer (if already allocated) will be reused.
///
/// # Safety
///
/// Vector transmutations are **exceptionally** dangerous because of
/// the constraints imposed by
/// [`Vec::from_raw_parts()`](https://doc.rust-lang.org/std/vec/struct.Vec.html#method.from_raw_parts).
///
/// Unless *all* of the following requirements are fulfilled, this operation
/// may result in undefined behavior:
///
/// - The target type `T` must have the same size and minimum alignment as the
/// type `S`.
/// - The vector's data needs to correspond to a valid contiguous sequence of
/// `T` values. Types `T` with a `Drop` implementation are unlikely to be
/// safe in this regard.
///
/// # Examples
///
/// ```
/// # use safe_transmute::base::transmute_vec;
/// unsafe {
/// assert_eq!(
/// transmute_vec::<u8, i8>(vec![0x00, 0x01, 0x00, 0x02]),
/// vec![0x00i8, 0x01i8, 0x00i8, 0x02i8]
/// );
/// }
/// ```
#[cfg(feature = "alloc")]
pub unsafe fn transmute_vec<S, T>(mut vec: Vec<S>) -> Vec<T> {
let ptr = vec.as_mut_ptr();
let capacity = vec.capacity() * size_of::<S>() / size_of::<T>();
let len = vec.len() * size_of::<S>() / size_of::<T>();
forget(vec);
Vec::from_raw_parts(ptr as *mut T, len, capacity)
}