1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
//! Alignment checking primitives.
use core::mem::{align_of, size_of};
use self::super::error::UnalignedError;
fn validate_alignment<S, T>(data: &[S]) -> Result<(), usize> {
// TODO this could probably become more efficient once `ptr::align_offset`
// is stabilized (#44488)
let ptr = data.as_ptr();
let offset = ptr as usize % align_of::<T>();
if offset > 0 {
// reverse the offset (from "bytes to insert" to "bytes to remove")
Err(size_of::<T>() - offset)
} else {
Ok(())
}
}
/// Check whether the given data slice of `S`s is properly aligned for reading
/// and writing as a slice of `T`s.
///
/// # Errors
///
/// An `Error::Unaligned` error is returned with the number of bytes to discard
/// from the front in order to make the conversion safe from alignment concerns.
pub fn check_alignment<S, T>(data: &[S]) -> Result<(), UnalignedError<S, T>> {
validate_alignment::<_, T>(data).map_err(move |off| UnalignedError::new(off, data))
}
/// Check whether the given mutable data slice of `S`s is properly aligned for
/// reading and writing as a slice of `T`s, returning the same slice back if
/// it is.
///
/// # Errors
///
/// An `Error::Unaligned` error is returned with the number of bytes to discard
/// from the front in order to make the conversion safe from alignment concerns.
pub fn check_alignment_mut<S, T>(data: &mut [S]) -> Result<&mut [S], UnalignedError<S, T>> {
match validate_alignment::<_, T>(data) {
Ok(()) => Ok(data),
Err(off) => Err(UnalignedError::new(off, data)),
}
}