1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
//! The twisted ElGamal encryption implementation.
//!
//! The message space consists of any number that is representable as a scalar (a.k.a. "exponent")
//! for Curve25519.
//!
//! A twisted ElGamal ciphertext consists of two components:
//! - A Pedersen commitment that encodes a message to be encrypted
//! - A "decryption handle" that binds the Pedersen opening to a specific public key
//! In contrast to the traditional ElGamal encryption scheme, the twisted ElGamal encodes messages
//! directly as a Pedersen commitment. Therefore, proof systems that are designed specifically for
//! Pedersen commitments can be used on the twisted ElGamal ciphertexts.
//!
//! As the messages are encrypted as scalar elements (a.k.a. in the "exponent"), one must solve the
//! discrete log to recover the originally encrypted value.

use {
    crate::encryption::{
        discrete_log::DiscreteLog,
        pedersen::{Pedersen, PedersenCommitment, PedersenOpening, G, H},
    },
    core::ops::{Add, Mul, Sub},
    curve25519_dalek::{
        ristretto::{CompressedRistretto, RistrettoPoint},
        scalar::Scalar,
        traits::Identity,
    },
    serde::{Deserialize, Serialize},
    solana_sdk::{
        instruction::Instruction,
        message::Message,
        pubkey::Pubkey,
        signature::Signature,
        signer::{Signer, SignerError},
    },
    std::convert::TryInto,
    subtle::{Choice, ConstantTimeEq},
    zeroize::Zeroize,
};
#[cfg(not(target_os = "solana"))]
use {
    rand::rngs::OsRng,
    sha3::Sha3_512,
    std::{
        fmt,
        fs::{self, File, OpenOptions},
        io::{Read, Write},
        path::Path,
    },
};

/// Algorithm handle for the twisted ElGamal encryption scheme
pub struct ElGamal;
impl ElGamal {
    /// Generates an ElGamal keypair.
    ///
    /// This function is randomized. It internally samples a scalar element using `OsRng`.
    #[cfg(not(target_os = "solana"))]
    #[allow(non_snake_case)]
    fn keygen() -> ElGamalKeypair {
        // secret scalar should be non-zero except with negligible probability
        let mut s = Scalar::random(&mut OsRng);
        let keypair = Self::keygen_with_scalar(&s);

        s.zeroize();
        keypair
    }

    /// Generates an ElGamal keypair from a scalar input that determines the ElGamal private key.
    ///
    /// This function panics if the input scalar is zero, which is not a valid key.
    #[cfg(not(target_os = "solana"))]
    #[allow(non_snake_case)]
    fn keygen_with_scalar(s: &Scalar) -> ElGamalKeypair {
        let secret = ElGamalSecretKey(*s);
        let public = ElGamalPubkey::new(&secret);

        ElGamalKeypair { public, secret }
    }

    /// On input an ElGamal public key and an amount to be encrypted, the function returns a
    /// corresponding ElGamal ciphertext.
    ///
    /// This function is randomized. It internally samples a scalar element using `OsRng`.
    #[cfg(not(target_os = "solana"))]
    fn encrypt<T: Into<Scalar>>(public: &ElGamalPubkey, amount: T) -> ElGamalCiphertext {
        let (commitment, opening) = Pedersen::new(amount);
        let handle = public.decrypt_handle(&opening);

        ElGamalCiphertext { commitment, handle }
    }

    /// On input a public key, amount, and Pedersen opening, the function returns the corresponding
    /// ElGamal ciphertext.
    #[cfg(not(target_os = "solana"))]
    fn encrypt_with<T: Into<Scalar>>(
        amount: T,
        public: &ElGamalPubkey,
        opening: &PedersenOpening,
    ) -> ElGamalCiphertext {
        let commitment = Pedersen::with(amount, opening);
        let handle = public.decrypt_handle(opening);

        ElGamalCiphertext { commitment, handle }
    }

    /// On input an amount, the function returns a twisted ElGamal ciphertext where the associated
    /// Pedersen opening is always zero. Since the opening is zero, any twisted ElGamal ciphertext
    /// of this form is a valid ciphertext under any ElGamal public key.
    #[cfg(not(target_os = "solana"))]
    pub fn encode<T: Into<Scalar>>(amount: T) -> ElGamalCiphertext {
        let commitment = Pedersen::encode(amount);
        let handle = DecryptHandle(RistrettoPoint::identity());

        ElGamalCiphertext { commitment, handle }
    }

    /// On input a secret key and a ciphertext, the function returns the discrete log encoding of
    /// original amount.
    ///
    /// The output of this function is of type `DiscreteLog`. To recover, the originally encrypted
    /// amount, use `DiscreteLog::decode`.
    #[cfg(not(target_os = "solana"))]
    fn decrypt(secret: &ElGamalSecretKey, ciphertext: &ElGamalCiphertext) -> DiscreteLog {
        DiscreteLog::new(
            *G,
            &ciphertext.commitment.0 - &(&secret.0 * &ciphertext.handle.0),
        )
    }

    /// On input a secret key and a ciphertext, the function returns the decrypted amount
    /// interpretted as a positive 32-bit number (but still of type `u64`).
    ///
    /// If the originally encrypted amount is not a positive 32-bit number, then the function
    /// returns `None`.
    #[cfg(not(target_os = "solana"))]
    fn decrypt_u32(secret: &ElGamalSecretKey, ciphertext: &ElGamalCiphertext) -> Option<u64> {
        let discrete_log_instance = Self::decrypt(secret, ciphertext);
        discrete_log_instance.decode_u32()
    }
}

/// A (twisted) ElGamal encryption keypair.
///
/// The instances of the secret key are zeroized on drop.
#[derive(Clone, Debug, Deserialize, PartialEq, Eq, Serialize, Zeroize)]
pub struct ElGamalKeypair {
    /// The public half of this keypair.
    pub public: ElGamalPubkey,
    /// The secret half of this keypair.
    pub secret: ElGamalSecretKey,
}

impl ElGamalKeypair {
    /// Deterministically derives an ElGamal keypair from an Ed25519 signing key and a Safecoin
    /// address.
    ///
    /// This function exists for applications where a user may not wish to maintin a Safecoin
    /// (Ed25519) keypair and an ElGamal keypair separately. A user may wish to solely maintain the
    /// Safecoin keypair and then derive the ElGamal keypair on-the-fly whenever
    /// encryption/decryption is needed.
    ///
    /// For the spl token-2022 confidential extension application, the ElGamal encryption public
    /// key is specified in a token account address. A natural way to derive an ElGamal keypair is
    /// then to define it from the hash of a Safecoin keypair and a Safecoin address. However, for
    /// general hardware wallets, the signing key is not exposed in the API. Therefore, this
    /// function uses a signer to sign a pre-specified message with respect to a Safecoin address.
    /// The resulting signature is then hashed to derive an ElGamal keypair.
    #[cfg(not(target_os = "solana"))]
    #[allow(non_snake_case)]
    pub fn new(signer: &dyn Signer, address: &Pubkey) -> Result<Self, SignerError> {
        let secret = ElGamalSecretKey::new(signer, address)?;
        let public = ElGamalPubkey::new(&secret);
        Ok(ElGamalKeypair { public, secret })
    }

    /// Generates the public and secret keys for ElGamal encryption.
    ///
    /// This function is randomized. It internally samples a scalar element using `OsRng`.
    #[cfg(not(target_os = "solana"))]
    #[allow(clippy::new_ret_no_self)]
    pub fn new_rand() -> Self {
        ElGamal::keygen()
    }

    pub fn to_bytes(&self) -> [u8; 64] {
        let mut bytes = [0u8; 64];
        bytes[..32].copy_from_slice(&self.public.to_bytes());
        bytes[32..].copy_from_slice(self.secret.as_bytes());
        bytes
    }

    pub fn from_bytes(bytes: &[u8]) -> Option<Self> {
        if bytes.len() != 64 {
            return None;
        }

        Some(Self {
            public: ElGamalPubkey::from_bytes(&bytes[..32])?,
            secret: ElGamalSecretKey::from_bytes(bytes[32..].try_into().ok()?)?,
        })
    }

    /// Reads a JSON-encoded keypair from a `Reader` implementor
    pub fn read_json<R: Read>(reader: &mut R) -> Result<Self, Box<dyn std::error::Error>> {
        let bytes: Vec<u8> = serde_json::from_reader(reader)?;
        Self::from_bytes(&bytes).ok_or_else(|| {
            std::io::Error::new(std::io::ErrorKind::Other, "Invalid ElGamalKeypair").into()
        })
    }

    /// Reads keypair from a file
    pub fn read_json_file<F: AsRef<Path>>(path: F) -> Result<Self, Box<dyn std::error::Error>> {
        let mut file = File::open(path.as_ref())?;
        Self::read_json(&mut file)
    }

    /// Writes to a `Write` implementer with JSON-encoding
    pub fn write_json<W: Write>(
        &self,
        writer: &mut W,
    ) -> Result<String, Box<dyn std::error::Error>> {
        let bytes = self.to_bytes();
        let json = serde_json::to_string(&bytes.to_vec())?;
        writer.write_all(&json.clone().into_bytes())?;
        Ok(json)
    }

    /// Write keypair to a file with JSON-encoding
    pub fn write_json_file<F: AsRef<Path>>(
        &self,
        outfile: F,
    ) -> Result<String, Box<dyn std::error::Error>> {
        let outfile = outfile.as_ref();

        if let Some(outdir) = outfile.parent() {
            fs::create_dir_all(outdir)?;
        }

        let mut f = {
            #[cfg(not(unix))]
            {
                OpenOptions::new()
            }
            #[cfg(unix)]
            {
                use std::os::unix::fs::OpenOptionsExt;
                OpenOptions::new().mode(0o600)
            }
        }
        .write(true)
        .truncate(true)
        .create(true)
        .open(outfile)?;

        self.write_json(&mut f)
    }
}

/// Public key for the ElGamal encryption scheme.
#[derive(Clone, Copy, Debug, Default, Deserialize, Eq, PartialEq, Serialize, Zeroize)]
pub struct ElGamalPubkey(RistrettoPoint);
impl ElGamalPubkey {
    /// Derives the `ElGamalPubkey` that uniquely corresponds to an `ElGamalSecretKey`.
    #[allow(non_snake_case)]
    pub fn new(secret: &ElGamalSecretKey) -> Self {
        let s = &secret.0;
        assert!(s != &Scalar::zero());

        ElGamalPubkey(s.invert() * &(*H))
    }

    pub fn get_point(&self) -> &RistrettoPoint {
        &self.0
    }

    #[allow(clippy::wrong_self_convention)]
    pub fn to_bytes(&self) -> [u8; 32] {
        self.0.compress().to_bytes()
    }

    pub fn from_bytes(bytes: &[u8]) -> Option<ElGamalPubkey> {
        if bytes.len() != 32 {
            return None;
        }

        Some(ElGamalPubkey(
            CompressedRistretto::from_slice(bytes).decompress()?,
        ))
    }

    /// Encrypts an amount under the public key.
    ///
    /// This function is randomized. It internally samples a scalar element using `OsRng`.
    #[cfg(not(target_os = "solana"))]
    pub fn encrypt<T: Into<Scalar>>(&self, amount: T) -> ElGamalCiphertext {
        ElGamal::encrypt(self, amount)
    }

    /// Encrypts an amount under the public key and an input Pedersen opening.
    pub fn encrypt_with<T: Into<Scalar>>(
        &self,
        amount: T,
        opening: &PedersenOpening,
    ) -> ElGamalCiphertext {
        ElGamal::encrypt_with(amount, self, opening)
    }

    /// Generates a decryption handle for an ElGamal public key under a Pedersen
    /// opening.
    pub fn decrypt_handle(self, opening: &PedersenOpening) -> DecryptHandle {
        DecryptHandle::new(&self, opening)
    }
}

impl fmt::Display for ElGamalPubkey {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", base64::encode(self.to_bytes()))
    }
}

/// Secret key for the ElGamal encryption scheme.
///
/// Instances of ElGamal secret key are zeroized on drop.
#[derive(Clone, Debug, Deserialize, Serialize, Zeroize)]
#[zeroize(drop)]
pub struct ElGamalSecretKey(Scalar);
impl ElGamalSecretKey {
    /// Deterministically derives an ElGamal keypair from an Ed25519 signing key and a Safecoin
    /// address.
    ///
    /// See `ElGamalKeypair::new` for more context on the key derivation.
    pub fn new(signer: &dyn Signer, address: &Pubkey) -> Result<Self, SignerError> {
        let message = Message::new(
            &[Instruction::new_with_bytes(
                *address,
                b"ElGamalSecretKey",
                vec![],
            )],
            Some(&signer.try_pubkey()?),
        );
        let signature = signer.try_sign_message(&message.serialize())?;

        // Some `Signer` implementations return the default signature, which is not suitable for
        // use as key material
        if bool::from(signature.as_ref().ct_eq(Signature::default().as_ref())) {
            return Err(SignerError::Custom("Rejecting default signatures".into()));
        }

        Ok(ElGamalSecretKey(Scalar::hash_from_bytes::<Sha3_512>(
            signature.as_ref(),
        )))
    }

    /// Randomly samples an ElGamal secret key.
    ///
    /// This function is randomized. It internally samples a scalar element using `OsRng`.
    pub fn new_rand() -> Self {
        ElGamalSecretKey(Scalar::random(&mut OsRng))
    }

    pub fn get_scalar(&self) -> &Scalar {
        &self.0
    }

    /// Decrypts a ciphertext using the ElGamal secret key.
    ///
    /// The output of this function is of type `DiscreteLog`. To recover, the originally encrypted
    /// message, use `DiscreteLog::decode`.
    pub fn decrypt(&self, ciphertext: &ElGamalCiphertext) -> DiscreteLog {
        ElGamal::decrypt(self, ciphertext)
    }

    /// Decrypts a ciphertext using the ElGamal secret key interpretting the message as type `u32`.
    pub fn decrypt_u32(&self, ciphertext: &ElGamalCiphertext) -> Option<u64> {
        ElGamal::decrypt_u32(self, ciphertext)
    }

    pub fn as_bytes(&self) -> &[u8; 32] {
        self.0.as_bytes()
    }

    pub fn to_bytes(&self) -> [u8; 32] {
        self.0.to_bytes()
    }

    pub fn from_bytes(bytes: &[u8]) -> Option<ElGamalSecretKey> {
        match bytes.try_into() {
            Ok(bytes) => Scalar::from_canonical_bytes(bytes).map(ElGamalSecretKey),
            _ => None,
        }
    }
}

impl From<Scalar> for ElGamalSecretKey {
    fn from(scalar: Scalar) -> ElGamalSecretKey {
        ElGamalSecretKey(scalar)
    }
}

impl Eq for ElGamalSecretKey {}
impl PartialEq for ElGamalSecretKey {
    fn eq(&self, other: &Self) -> bool {
        self.ct_eq(other).unwrap_u8() == 1u8
    }
}
impl ConstantTimeEq for ElGamalSecretKey {
    fn ct_eq(&self, other: &Self) -> Choice {
        self.0.ct_eq(&other.0)
    }
}

/// Ciphertext for the ElGamal encryption scheme.
#[allow(non_snake_case)]
#[derive(Clone, Copy, Debug, Default, Deserialize, Eq, PartialEq, Serialize)]
pub struct ElGamalCiphertext {
    pub commitment: PedersenCommitment,
    pub handle: DecryptHandle,
}
impl ElGamalCiphertext {
    pub fn add_amount<T: Into<Scalar>>(&self, amount: T) -> Self {
        let commitment_to_add = PedersenCommitment(amount.into() * &(*G));
        ElGamalCiphertext {
            commitment: &self.commitment + &commitment_to_add,
            handle: self.handle,
        }
    }

    pub fn subtract_amount<T: Into<Scalar>>(&self, amount: T) -> Self {
        let commitment_to_subtract = PedersenCommitment(amount.into() * &(*G));
        ElGamalCiphertext {
            commitment: &self.commitment - &commitment_to_subtract,
            handle: self.handle,
        }
    }

    #[allow(clippy::wrong_self_convention)]
    pub fn to_bytes(&self) -> [u8; 64] {
        let mut bytes = [0u8; 64];
        bytes[..32].copy_from_slice(&self.commitment.to_bytes());
        bytes[32..].copy_from_slice(&self.handle.to_bytes());
        bytes
    }

    pub fn from_bytes(bytes: &[u8]) -> Option<ElGamalCiphertext> {
        if bytes.len() != 64 {
            return None;
        }

        Some(ElGamalCiphertext {
            commitment: PedersenCommitment::from_bytes(&bytes[..32])?,
            handle: DecryptHandle::from_bytes(&bytes[32..])?,
        })
    }

    /// Decrypts the ciphertext using an ElGamal secret key.
    ///
    /// The output of this function is of type `DiscreteLog`. To recover, the originally encrypted
    /// amount, use `DiscreteLog::decode`.
    pub fn decrypt(&self, secret: &ElGamalSecretKey) -> DiscreteLog {
        ElGamal::decrypt(secret, self)
    }

    /// Decrypts the ciphertext using an ElGamal secret key assuming that the message is a positive
    /// 32-bit number.
    ///
    /// If the originally encrypted amount is not a positive 32-bit number, then the function
    /// returns `None`.
    pub fn decrypt_u32(&self, secret: &ElGamalSecretKey) -> Option<u64> {
        ElGamal::decrypt_u32(secret, self)
    }
}

impl fmt::Display for ElGamalCiphertext {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", base64::encode(self.to_bytes()))
    }
}

impl<'a, 'b> Add<&'b ElGamalCiphertext> for &'a ElGamalCiphertext {
    type Output = ElGamalCiphertext;

    fn add(self, ciphertext: &'b ElGamalCiphertext) -> ElGamalCiphertext {
        ElGamalCiphertext {
            commitment: &self.commitment + &ciphertext.commitment,
            handle: &self.handle + &ciphertext.handle,
        }
    }
}

define_add_variants!(
    LHS = ElGamalCiphertext,
    RHS = ElGamalCiphertext,
    Output = ElGamalCiphertext
);

impl<'a, 'b> Sub<&'b ElGamalCiphertext> for &'a ElGamalCiphertext {
    type Output = ElGamalCiphertext;

    fn sub(self, ciphertext: &'b ElGamalCiphertext) -> ElGamalCiphertext {
        ElGamalCiphertext {
            commitment: &self.commitment - &ciphertext.commitment,
            handle: &self.handle - &ciphertext.handle,
        }
    }
}

define_sub_variants!(
    LHS = ElGamalCiphertext,
    RHS = ElGamalCiphertext,
    Output = ElGamalCiphertext
);

impl<'a, 'b> Mul<&'b Scalar> for &'a ElGamalCiphertext {
    type Output = ElGamalCiphertext;

    fn mul(self, scalar: &'b Scalar) -> ElGamalCiphertext {
        ElGamalCiphertext {
            commitment: &self.commitment * scalar,
            handle: &self.handle * scalar,
        }
    }
}

define_mul_variants!(
    LHS = ElGamalCiphertext,
    RHS = Scalar,
    Output = ElGamalCiphertext
);

impl<'a, 'b> Mul<&'b ElGamalCiphertext> for &'a Scalar {
    type Output = ElGamalCiphertext;

    fn mul(self, ciphertext: &'b ElGamalCiphertext) -> ElGamalCiphertext {
        ElGamalCiphertext {
            commitment: self * &ciphertext.commitment,
            handle: self * &ciphertext.handle,
        }
    }
}

define_mul_variants!(
    LHS = Scalar,
    RHS = ElGamalCiphertext,
    Output = ElGamalCiphertext
);

/// Decryption handle for Pedersen commitment.
#[derive(Clone, Copy, Debug, Default, Deserialize, Eq, PartialEq, Serialize)]
pub struct DecryptHandle(RistrettoPoint);
impl DecryptHandle {
    pub fn new(public: &ElGamalPubkey, opening: &PedersenOpening) -> Self {
        Self(&public.0 * &opening.0)
    }

    pub fn get_point(&self) -> &RistrettoPoint {
        &self.0
    }

    #[allow(clippy::wrong_self_convention)]
    pub fn to_bytes(&self) -> [u8; 32] {
        self.0.compress().to_bytes()
    }

    pub fn from_bytes(bytes: &[u8]) -> Option<DecryptHandle> {
        if bytes.len() != 32 {
            return None;
        }

        Some(DecryptHandle(
            CompressedRistretto::from_slice(bytes).decompress()?,
        ))
    }
}

impl<'a, 'b> Add<&'b DecryptHandle> for &'a DecryptHandle {
    type Output = DecryptHandle;

    fn add(self, handle: &'b DecryptHandle) -> DecryptHandle {
        DecryptHandle(&self.0 + &handle.0)
    }
}

define_add_variants!(
    LHS = DecryptHandle,
    RHS = DecryptHandle,
    Output = DecryptHandle
);

impl<'a, 'b> Sub<&'b DecryptHandle> for &'a DecryptHandle {
    type Output = DecryptHandle;

    fn sub(self, handle: &'b DecryptHandle) -> DecryptHandle {
        DecryptHandle(&self.0 - &handle.0)
    }
}

define_sub_variants!(
    LHS = DecryptHandle,
    RHS = DecryptHandle,
    Output = DecryptHandle
);

impl<'a, 'b> Mul<&'b Scalar> for &'a DecryptHandle {
    type Output = DecryptHandle;

    fn mul(self, scalar: &'b Scalar) -> DecryptHandle {
        DecryptHandle(&self.0 * scalar)
    }
}

define_mul_variants!(LHS = DecryptHandle, RHS = Scalar, Output = DecryptHandle);

impl<'a, 'b> Mul<&'b DecryptHandle> for &'a Scalar {
    type Output = DecryptHandle;

    fn mul(self, handle: &'b DecryptHandle) -> DecryptHandle {
        DecryptHandle(self * &handle.0)
    }
}

define_mul_variants!(LHS = Scalar, RHS = DecryptHandle, Output = DecryptHandle);

#[cfg(test)]
mod tests {
    use {
        super::*,
        crate::encryption::pedersen::Pedersen,
        solana_sdk::{signature::Keypair, signer::null_signer::NullSigner},
    };

    #[test]
    fn test_encrypt_decrypt_correctness() {
        let ElGamalKeypair { public, secret } = ElGamalKeypair::new_rand();
        let amount: u32 = 57;
        let ciphertext = ElGamal::encrypt(&public, amount);

        let expected_instance = DiscreteLog::new(*G, Scalar::from(amount) * &(*G));

        assert_eq!(expected_instance, ElGamal::decrypt(&secret, &ciphertext));
        assert_eq!(57_u64, secret.decrypt_u32(&ciphertext).unwrap());
    }

    #[test]
    fn test_encrypt_decrypt_correctness_multithreaded() {
        let ElGamalKeypair { public, secret } = ElGamalKeypair::new_rand();
        let amount: u32 = 57;
        let ciphertext = ElGamal::encrypt(&public, amount);

        let mut instance = ElGamal::decrypt(&secret, &ciphertext);
        instance.num_threads(4).unwrap();
        assert_eq!(57_u64, instance.decode_u32().unwrap());
    }

    #[test]
    fn test_decrypt_handle() {
        let ElGamalKeypair {
            public: public_0,
            secret: secret_0,
        } = ElGamalKeypair::new_rand();
        let ElGamalKeypair {
            public: public_1,
            secret: secret_1,
        } = ElGamalKeypair::new_rand();

        let amount: u32 = 77;
        let (commitment, opening) = Pedersen::new(amount);

        let handle_0 = public_0.decrypt_handle(&opening);
        let handle_1 = public_1.decrypt_handle(&opening);

        let ciphertext_0 = ElGamalCiphertext {
            commitment,
            handle: handle_0,
        };
        let ciphertext_1 = ElGamalCiphertext {
            commitment,
            handle: handle_1,
        };

        let expected_instance = DiscreteLog::new(*G, Scalar::from(amount) * &(*G));

        assert_eq!(expected_instance, secret_0.decrypt(&ciphertext_0));
        assert_eq!(expected_instance, secret_1.decrypt(&ciphertext_1));
    }

    #[test]
    fn test_homomorphic_addition() {
        let ElGamalKeypair { public, secret: _ } = ElGamalKeypair::new_rand();
        let amount_0: u64 = 57;
        let amount_1: u64 = 77;

        // Add two ElGamal ciphertexts
        let opening_0 = PedersenOpening::new_rand();
        let opening_1 = PedersenOpening::new_rand();

        let ciphertext_0 = ElGamal::encrypt_with(amount_0, &public, &opening_0);
        let ciphertext_1 = ElGamal::encrypt_with(amount_1, &public, &opening_1);

        let ciphertext_sum =
            ElGamal::encrypt_with(amount_0 + amount_1, &public, &(&opening_0 + &opening_1));

        assert_eq!(ciphertext_sum, ciphertext_0 + ciphertext_1);

        // Add to ElGamal ciphertext
        let opening = PedersenOpening::new_rand();
        let ciphertext = ElGamal::encrypt_with(amount_0, &public, &opening);
        let ciphertext_sum = ElGamal::encrypt_with(amount_0 + amount_1, &public, &opening);

        assert_eq!(ciphertext_sum, ciphertext.add_amount(amount_1));
    }

    #[test]
    fn test_homomorphic_subtraction() {
        let ElGamalKeypair { public, secret: _ } = ElGamalKeypair::new_rand();
        let amount_0: u64 = 77;
        let amount_1: u64 = 55;

        // Subtract two ElGamal ciphertexts
        let opening_0 = PedersenOpening::new_rand();
        let opening_1 = PedersenOpening::new_rand();

        let ciphertext_0 = ElGamal::encrypt_with(amount_0, &public, &opening_0);
        let ciphertext_1 = ElGamal::encrypt_with(amount_1, &public, &opening_1);

        let ciphertext_sub =
            ElGamal::encrypt_with(amount_0 - amount_1, &public, &(&opening_0 - &opening_1));

        assert_eq!(ciphertext_sub, ciphertext_0 - ciphertext_1);

        // Subtract to ElGamal ciphertext
        let opening = PedersenOpening::new_rand();
        let ciphertext = ElGamal::encrypt_with(amount_0, &public, &opening);
        let ciphertext_sub = ElGamal::encrypt_with(amount_0 - amount_1, &public, &opening);

        assert_eq!(ciphertext_sub, ciphertext.subtract_amount(amount_1));
    }

    #[test]
    fn test_homomorphic_multiplication() {
        let ElGamalKeypair { public, secret: _ } = ElGamalKeypair::new_rand();
        let amount_0: u64 = 57;
        let amount_1: u64 = 77;

        let opening = PedersenOpening::new_rand();

        let ciphertext = ElGamal::encrypt_with(amount_0, &public, &opening);
        let scalar = Scalar::from(amount_1);

        let ciphertext_prod =
            ElGamal::encrypt_with(amount_0 * amount_1, &public, &(&opening * scalar));

        assert_eq!(ciphertext_prod, ciphertext * scalar);
        assert_eq!(ciphertext_prod, scalar * ciphertext);
    }

    #[test]
    fn test_serde_ciphertext() {
        let ElGamalKeypair { public, secret: _ } = ElGamalKeypair::new_rand();
        let amount: u64 = 77;
        let ciphertext = public.encrypt(amount);

        let encoded = bincode::serialize(&ciphertext).unwrap();
        let decoded: ElGamalCiphertext = bincode::deserialize(&encoded).unwrap();

        assert_eq!(ciphertext, decoded);
    }

    #[test]
    fn test_serde_pubkey() {
        let ElGamalKeypair { public, secret: _ } = ElGamalKeypair::new_rand();

        let encoded = bincode::serialize(&public).unwrap();
        let decoded: ElGamalPubkey = bincode::deserialize(&encoded).unwrap();

        assert_eq!(public, decoded);
    }

    #[test]
    fn test_serde_secretkey() {
        let ElGamalKeypair { public: _, secret } = ElGamalKeypair::new_rand();

        let encoded = bincode::serialize(&secret).unwrap();
        let decoded: ElGamalSecretKey = bincode::deserialize(&encoded).unwrap();

        assert_eq!(secret, decoded);
    }

    fn tmp_file_path(name: &str) -> String {
        use std::env;
        let out_dir = env::var("FARF_DIR").unwrap_or_else(|_| "farf".to_string());
        let keypair = ElGamalKeypair::new_rand();
        format!("{}/tmp/{}-{}", out_dir, name, keypair.public)
    }

    #[test]
    fn test_write_keypair_file() {
        let outfile = tmp_file_path("test_write_keypair_file.json");
        let serialized_keypair = ElGamalKeypair::new_rand()
            .write_json_file(&outfile)
            .unwrap();
        let keypair_vec: Vec<u8> = serde_json::from_str(&serialized_keypair).unwrap();
        assert!(Path::new(&outfile).exists());
        assert_eq!(
            keypair_vec,
            ElGamalKeypair::read_json_file(&outfile)
                .unwrap()
                .to_bytes()
                .to_vec()
        );

        #[cfg(unix)]
        {
            use std::os::unix::fs::PermissionsExt;
            assert_eq!(
                File::open(&outfile)
                    .expect("open")
                    .metadata()
                    .expect("metadata")
                    .permissions()
                    .mode()
                    & 0o777,
                0o600
            );
        }
        fs::remove_file(&outfile).unwrap();
    }

    #[test]
    fn test_write_keypair_file_overwrite_ok() {
        let outfile = tmp_file_path("test_write_keypair_file_overwrite_ok.json");

        ElGamalKeypair::new_rand()
            .write_json_file(&outfile)
            .unwrap();
        ElGamalKeypair::new_rand()
            .write_json_file(&outfile)
            .unwrap();
    }

    #[test]
    fn test_write_keypair_file_truncate() {
        let outfile = tmp_file_path("test_write_keypair_file_truncate.json");

        ElGamalKeypair::new_rand()
            .write_json_file(&outfile)
            .unwrap();
        ElGamalKeypair::read_json_file(&outfile).unwrap();

        // Ensure outfile is truncated
        {
            let mut f = File::create(&outfile).unwrap();
            f.write_all(String::from_utf8([b'a'; 2048].to_vec()).unwrap().as_bytes())
                .unwrap();
        }
        ElGamalKeypair::new_rand()
            .write_json_file(&outfile)
            .unwrap();
        ElGamalKeypair::read_json_file(&outfile).unwrap();
    }

    #[test]
    fn test_secret_key_new() {
        let keypair1 = Keypair::new();
        let keypair2 = Keypair::new();

        assert_ne!(
            ElGamalSecretKey::new(&keypair1, &Pubkey::default())
                .unwrap()
                .0,
            ElGamalSecretKey::new(&keypair2, &Pubkey::default())
                .unwrap()
                .0,
        );

        let null_signer = NullSigner::new(&Pubkey::default());
        assert!(ElGamalSecretKey::new(&null_signer, &Pubkey::default()).is_err());
    }

    #[test]
    fn test_decrypt_handle_bytes() {
        let handle = DecryptHandle(RistrettoPoint::default());

        let encoded = handle.to_bytes();
        let decoded = DecryptHandle::from_bytes(&encoded).unwrap();

        assert_eq!(handle, decoded);
    }

    #[test]
    fn test_serde_decrypt_handle() {
        let handle = DecryptHandle(RistrettoPoint::default());

        let encoded = bincode::serialize(&handle).unwrap();
        let decoded: DecryptHandle = bincode::deserialize(&encoded).unwrap();

        assert_eq!(handle, decoded);
    }
}