1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915
#![cfg(target_feature = "sse4.1")]
use super::*;
/// Blends the `i16` lanes according to the immediate mask.
///
/// Each bit 0 though 7 controls lane 0 through 7. Use 0 for the `a` value and
/// 1 for the `b` value.
///
/// * **Intrinsic:** [`_mm_blend_epi16`]
/// * **Assembly:** `pblendw xmm, xmm, imm8`
pub fn blend_imm_i16_m128i<const IMM: i32>(a: m128i, b: m128i) -> m128i {
m128i(unsafe { _mm_blend_epi16(a.0, b.0, IMM) })
}
/// Blends the `i16` lanes according to the immediate mask.
///
/// Bits 0 and 1 control where output lane 0 and 1 come from. Use 0 for the `a`
/// value and 1 for the `b` value.
///
/// * **Intrinsic:** [`_mm_blend_pd`]
/// * **Assembly:** `blendpd xmm, xmm, imm8`
pub fn blend_imm_m128d<const IMM: i32>(a: m128d, b: m128d) -> m128d {
m128d(unsafe { _mm_blend_pd(a.0, b.0, IMM) })
}
/// Blends the lanes according to the immediate mask.
///
/// Bits 0 to 3 control where output lane 0 to 3 come from. Use 0 for the `a`
/// value and 1 for the `b` value.
///
/// * **Intrinsic:** [`_mm_blend_ps`]
/// * **Assembly:** `blendps xmm, xmm, imm8`
pub fn blend_imm_m128<const IMM: i32>(a: m128, b: m128) -> m128 {
m128(unsafe { _mm_blend_ps(a.0, b.0, IMM) })
}
/// Blend the `i8` lanes according to a runtime varying mask.
///
/// The sign bit of each `i8` lane in the `mask` value determines if the output
/// lane uses `a` (mask non-negative) or `b` (mask negative).
///
/// * **Intrinsic:** [`_mm_blendv_epi8`]
/// * **Assembly:** `pblendvb xmm, xmm`
#[must_use]
#[inline(always)]
#[cfg_attr(docs_rs, doc(cfg(target_feature = "sse4.1")))]
pub fn blend_varying_i8_m128i(a: m128i, b: m128i, mask: m128i) -> m128i {
m128i(unsafe { _mm_blendv_epi8(a.0, b.0, mask.0) })
}
/// Blend the lanes according to a runtime varying mask.
///
/// The sign bit of each lane in the `mask` value determines if the output
/// lane uses `a` (mask non-negative) or `b` (mask negative).
///
/// * **Intrinsic:** [`_mm_blendv_pd`]
/// * **Assembly:** `blendvpd xmm, xmm`
#[must_use]
#[inline(always)]
#[cfg_attr(docs_rs, doc(cfg(target_feature = "sse4.1")))]
pub fn blend_varying_m128d(a: m128d, b: m128d, mask: m128d) -> m128d {
m128d(unsafe { _mm_blendv_pd(a.0, b.0, mask.0) })
}
/// Blend the lanes according to a runtime varying mask.
///
/// The sign bit of each lane in the `mask` value determines if the output
/// lane uses `a` (mask non-negative) or `b` (mask negative).
///
/// * **Intrinsic:** [`_mm_blendv_ps`]
/// * **Assembly:** `blendvps xmm, xmm`
#[must_use]
#[inline(always)]
#[cfg_attr(docs_rs, doc(cfg(target_feature = "sse4.1")))]
pub fn blend_varying_m128(a: m128, b: m128, mask: m128) -> m128 {
m128(unsafe { _mm_blendv_ps(a.0, b.0, mask.0) })
}
/// Round each lane to a whole number, towards positive infinity.
///
/// * **Intrinsic:** [`_mm_ceil_pd`]
/// * **Assembly:** `roundpd xmm, xmm, imm8`
#[must_use]
#[inline(always)]
#[cfg_attr(docs_rs, doc(cfg(target_feature = "sse4.1")))]
pub fn ceil_m128d(a: m128d) -> m128d {
m128d(unsafe { _mm_ceil_pd(a.0) })
}
/// Round each lane to a whole number, towards positive infinity.
///
/// * **Intrinsic:** [`_mm_ceil_ps`]
/// * **Assembly:** `roundps xmm, xmm, imm8`
#[must_use]
#[inline(always)]
#[cfg_attr(docs_rs, doc(cfg(target_feature = "sse4.1")))]
pub fn ceil_m128(a: m128) -> m128 {
m128(unsafe { _mm_ceil_ps(a.0) })
}
/// Round the low lane of `b` toward positive infinity, high lane is `a`.
///
/// * **Intrinsic:** [`_mm_ceil_sd`]
/// * **Assembly:** `roundsd xmm, xmm, imm8`
#[must_use]
#[inline(always)]
#[cfg_attr(docs_rs, doc(cfg(target_feature = "sse4.1")))]
pub fn ceil_m128d_s(a: m128d, b: m128d) -> m128d {
m128d(unsafe { _mm_ceil_sd(a.0, b.0) })
}
/// Round the low lane of `b` toward positive infinity, other lanes `a`.
///
/// * **Intrinsic:** [`_mm_ceil_ss`]
/// * **Assembly:** `roundss xmm, xmm, imm8`
#[must_use]
#[inline(always)]
#[cfg_attr(docs_rs, doc(cfg(target_feature = "sse4.1")))]
pub fn ceil_m128_s(a: m128, b: m128) -> m128 {
m128(unsafe { _mm_ceil_ss(a.0, b.0) })
}
/// Lanewise `a == b` with lanes as `i64`.
///
/// All bits 1 for true (`-1`), all bit 0 for false (`0`).
///
/// * **Intrinsic:** [`_mm_cmpeq_epi64`]
/// * **Assembly:** `pcmpeqq xmm, xmm`
#[must_use]
#[inline(always)]
#[cfg_attr(docs_rs, doc(cfg(target_feature = "sse4.1")))]
pub fn cmp_eq_mask_i64_m128i(a: m128i, b: m128i) -> m128i {
m128i(unsafe { _mm_cmpeq_epi64(a.0, b.0) })
}
/// Convert the lower four `i16` lanes to four `i32` lanes.
///
/// * **Intrinsic:** [`_mm_cvtepi16_epi32`]
/// * **Assembly:** `pmovsxwd xmm, xmm`
#[must_use]
#[inline(always)]
#[cfg_attr(docs_rs, doc(cfg(target_feature = "sse4.1")))]
pub fn convert_to_i32_m128i_from_lower4_i16_m128i(a: m128i) -> m128i {
m128i(unsafe { _mm_cvtepi16_epi32(a.0) })
}
/// Convert the lower two `i64` lanes to two `i32` lanes.
///
/// * **Intrinsic:** [`_mm_cvtepi16_epi64`]
/// * **Assembly:** `pmovsxwq xmm, xmm`
#[must_use]
#[inline(always)]
#[cfg_attr(docs_rs, doc(cfg(target_feature = "sse4.1")))]
pub fn convert_to_i16_m128i_from_lower2_i16_m128i(a: m128i) -> m128i {
m128i(unsafe { _mm_cvtepi16_epi64(a.0) })
}
/// Convert the lower two `i32` lanes to two `i64` lanes.
///
/// * **Intrinsic:** [`_mm_cvtepi32_epi64`]
/// * **Assembly:** `_mm_cvtepi32_epi64`
#[must_use]
#[inline(always)]
#[cfg_attr(docs_rs, doc(cfg(target_feature = "sse4.1")))]
pub fn convert_to_i64_m128i_from_lower2_i32_m128i(a: m128i) -> m128i {
m128i(unsafe { _mm_cvtepi32_epi64(a.0) })
}
/// Convert the lower eight `i8` lanes to eight `i16` lanes.
///
/// * **Intrinsic:** [`_mm_cvtepi8_epi16`]
/// * **Assembly:** `pmovsxbw xmm, xmm`
#[must_use]
#[inline(always)]
#[cfg_attr(docs_rs, doc(cfg(target_feature = "sse4.1")))]
pub fn convert_to_i16_m128i_from_lower8_i8_m128i(a: m128i) -> m128i {
m128i(unsafe { _mm_cvtepi8_epi16(a.0) })
}
/// Convert the lower four `i8` lanes to four `i32` lanes.
///
/// * **Intrinsic:** [`_mm_cvtepi8_epi32`]
/// * **Assembly:** `pmovsxbd xmm, xmm`
#[must_use]
#[inline(always)]
#[cfg_attr(docs_rs, doc(cfg(target_feature = "sse4.1")))]
pub fn convert_to_i32_m128i_from_lower4_i8_m128i(a: m128i) -> m128i {
m128i(unsafe { _mm_cvtepi8_epi32(a.0) })
}
/// Convert the lower two `i8` lanes to two `i64` lanes.
///
/// * **Intrinsic:** [`_mm_cvtepi8_epi64`]
/// * **Assembly:** `pmovsxbq xmm, xmm`
#[must_use]
#[inline(always)]
#[cfg_attr(docs_rs, doc(cfg(target_feature = "sse4.1")))]
pub fn convert_to_i64_m128i_from_lower2_i8_m128i(a: m128i) -> m128i {
m128i(unsafe { _mm_cvtepi8_epi64(a.0) })
}
/// Convert the lower four `u16` lanes to four `u32` lanes.
///
/// * **Intrinsic:** [`_mm_cvtepu16_epi32`]
/// * **Assembly:** `pmovzxwd xmm, xmm`
#[must_use]
#[inline(always)]
#[cfg_attr(docs_rs, doc(cfg(target_feature = "sse4.1")))]
pub fn convert_to_u32_m128i_from_lower4_u16_m128i(a: m128i) -> m128i {
m128i(unsafe { _mm_cvtepu16_epi32(a.0) })
}
/// Convert the lower two `u16` lanes to two `u64` lanes.
///
/// * **Intrinsic:** [`_mm_cvtepu16_epi64`]
/// * **Assembly:** `pmovzxwq xmm, xmm`
#[must_use]
#[inline(always)]
#[cfg_attr(docs_rs, doc(cfg(target_feature = "sse4.1")))]
pub fn convert_to_u64_m128i_from_lower2_u16_m128i(a: m128i) -> m128i {
m128i(unsafe { _mm_cvtepu16_epi64(a.0) })
}
/// Convert the lower two `u32` lanes to two `u64` lanes.
///
/// * **Intrinsic:** [`_mm_cvtepu32_epi64`]
/// * **Assembly:** `pmovzxdq xmm, xmm`
#[must_use]
#[inline(always)]
#[cfg_attr(docs_rs, doc(cfg(target_feature = "sse4.1")))]
pub fn convert_to_u64_m128i_from_lower2_u32_m128i(a: m128i) -> m128i {
m128i(unsafe { _mm_cvtepu32_epi64(a.0) })
}
/// Convert the lower eight `u8` lanes to eight `u16` lanes.
///
/// * **Intrinsic:** [`_mm_cvtepu8_epi16`]
/// * **Assembly:** `pmovzxbw xmm, xmm`
#[must_use]
#[inline(always)]
#[cfg_attr(docs_rs, doc(cfg(target_feature = "sse4.1")))]
pub fn convert_to_u16_m128i_from_lower8_u8_m128i(a: m128i) -> m128i {
m128i(unsafe { _mm_cvtepu8_epi16(a.0) })
}
/// Convert the lower four `u8` lanes to four `u32` lanes.
///
/// * **Intrinsic:** [`_mm_cvtepu8_epi32`]
/// * **Assembly:** `pmovzxbd xmm, xmm`
#[must_use]
#[inline(always)]
#[cfg_attr(docs_rs, doc(cfg(target_feature = "sse4.1")))]
pub fn convert_to_u32_m128i_from_lower4_u8_m128i(a: m128i) -> m128i {
m128i(unsafe { _mm_cvtepu8_epi32(a.0) })
}
/// Convert the lower two `u8` lanes to two `u64` lanes.
///
/// * **Intrinsic:** [`_mm_cvtepu8_epi64`]
/// * **Assembly:** `pmovzxbq xmm, xmm`
#[must_use]
#[inline(always)]
#[cfg_attr(docs_rs, doc(cfg(target_feature = "sse4.1")))]
pub fn convert_to_u64_m128i_from_lower2_u8_m128i(a: m128i) -> m128i {
m128i(unsafe { _mm_cvtepu8_epi64(a.0) })
}
/// Performs a dot product of two `m128d` registers.
///
/// The output details are determined by the constant:
/// * For each lane, you can multiply that lane from `a` and `b` or you can take
/// a default of 0.0
/// * Bits 4 and 5 determines if we mul lanes 0 in `a` and `b`, and lanes 1 in
/// `a` and `b`.
/// * This forms two temporary `f64` values which are summed to a single `f64`.
/// * For each output lane, you can have the sum in that lane or 0.0.
/// * Bits 0 and 1 determines if an output lane is our sum or 0.0.
///
/// * **Intrinsic:** [`_mm_dp_pd`]
/// * **Assembly:** `dppd xmm, xmm, imm8`
#[must_use]
#[inline(always)]
#[cfg_attr(docs_rs, doc(cfg(target_feature = "sse4.1")))]
pub fn dot_product_m128d<const IMM: i32>(a: m128d, b: m128d) -> m128d {
m128d(unsafe { _mm_dp_pd(a.0, b.0, IMM) })
}
/// Performs a dot product of two `m128` registers.
///
/// The output details are determined by a control mask:
/// * For each lane, you can multiply that lane from `a` and `b` or you can take
/// a default of 0.0
/// * Bits 4 through 7 determine if we should mul lanes 0 through 3.
/// * This forms four temporary `f32` values which are summed to a single `f32`.
/// * For each output lane, you can have the sum in that lane or 0.0.
/// * Bits 0 through 3 determines if the `sum` is in lanes 0 through 3.
///
/// * **Intrinsic:** [`_mm_dp_ps`]
/// * **Assembly:** `dpps xmm, xmm, imm8`
#[must_use]
#[inline(always)]
#[cfg_attr(docs_rs, doc(cfg(target_feature = "sse4.1")))]
pub fn dot_product_m128<const IMM: i32>(a: m128, b: m128) -> m128 {
m128(unsafe { _mm_dp_ps(a.0, b.0, IMM) })
}
/// Gets the `i32` lane requested. Only the lowest 2 bits are considered.
///
/// * **Intrinsic:** [`_mm_extract_epi32`]
/// * **Assembly:** `pextrd r32, xmm, imm8`
#[must_use]
#[inline(always)]
#[cfg_attr(docs_rs, doc(cfg(target_feature = "sse4.1")))]
pub fn extract_i32_imm_m128i<const IMM: i32>(a: m128i) -> i32 {
unsafe { _mm_extract_epi32(a.0, IMM) }
}
/// Gets the `i64` lane requested. Only the lowest bit is considered.
///
/// ```
/// # use safe_arch::*;
/// let a = m128i::from([5_i64, 6]);
/// assert_eq!(extract_i64_imm_m128i::<1>(a), 6_i64);
/// ```
#[must_use]
#[inline(always)]
#[cfg(target_arch = "x86_64")]
#[cfg_attr(docs_rs, doc(cfg(target_feature = "sse4.1")))]
pub fn extract_i64_imm_m128i<const IMM: i32>(a: m128i) -> i64 {
unsafe { _mm_extract_epi64(a.0, IMM) }
}
/// Gets the `i8` lane requested. Only the lowest 4 bits are considered.
///
/// ```
/// # use safe_arch::*;
/// let a = m128i::from([0_i8, 1, 2, 3, 4, 5, 6, 101, 8, 9, 10, 11, 12, 13, 14, 15]);
/// assert_eq!(extract_i8_as_i32_imm_m128i::<7>(a), 101_i32);
/// ```
#[must_use]
#[inline(always)]
#[cfg_attr(docs_rs, doc(cfg(target_feature = "sse4.1")))]
pub fn extract_i8_as_i32_imm_m128i<const IMM: i32>(a: m128i) -> i32 {
unsafe { _mm_extract_epi8(a.0, IMM) }
}
/// Gets the `f32` lane requested. Returns as an `i32` bit pattern.
///
/// ```
/// # use safe_arch::*;
/// let a = m128::from_array([5.0, 6.0, 7.0, 8.0]);
/// assert_eq!(extract_f32_as_i32_bits_imm_m128::<3>(a), 8_f32.to_bits() as i32);
/// ```
#[must_use]
#[inline(always)]
#[cfg_attr(docs_rs, doc(cfg(target_feature = "sse4.1")))]
pub fn extract_f32_as_i32_bits_imm_m128<const IMM: i32>(a: m128) -> i32 {
unsafe { _mm_extract_ps(a.0, IMM) }
}
/// Round each lane to a whole number, towards negative infinity
///
/// ```
/// # use safe_arch::*;
/// let a = m128d::from_array([-0.1, 1.8]);
/// assert_eq!(floor_m128d(a).to_array(), [-1.0, 1.0]);
/// ```
#[must_use]
#[inline(always)]
#[cfg_attr(docs_rs, doc(cfg(target_feature = "sse4.1")))]
pub fn floor_m128d(a: m128d) -> m128d {
m128d(unsafe { _mm_floor_pd(a.0) })
}
/// Round each lane to a whole number, towards negative infinity
///
/// ```
/// # use safe_arch::*;
/// let a = m128::from_array([-0.1, 1.8, 2.5, 3.0]);
/// assert_eq!(floor_m128(a).to_array(), [-1.0, 1.0, 2.0, 3.0]);
/// ```
#[must_use]
#[inline(always)]
#[cfg_attr(docs_rs, doc(cfg(target_feature = "sse4.1")))]
pub fn floor_m128(a: m128) -> m128 {
m128(unsafe { _mm_floor_ps(a.0) })
}
/// Round the low lane of `b` toward negative infinity, high lane is `a`.
///
/// ```
/// # use safe_arch::*;
/// let a = m128d::from_array([-0.1, 1.8]);
/// let b = m128d::from_array([2.5, 3.0]);
/// assert_eq!(floor_m128d_s(a, b).to_array(), [2.0, 1.8]);
/// ```
#[must_use]
#[inline(always)]
#[cfg_attr(docs_rs, doc(cfg(target_feature = "sse4.1")))]
pub fn floor_m128d_s(a: m128d, b: m128d) -> m128d {
m128d(unsafe { _mm_floor_sd(a.0, b.0) })
}
/// Round the low lane of `b` toward negative infinity, other lanes `a`.
///
/// ```
/// # use safe_arch::*;
/// let a = m128::from_array([-0.1, 1.8, 5.0, 6.0]);
/// let b = m128::from_array([2.5, 3.0, 10.0, 20.0]);
/// assert_eq!(floor_m128_s(a, b).to_array(), [2.0, 1.8, 5.0, 6.0]);
/// ```
#[must_use]
#[inline(always)]
#[cfg_attr(docs_rs, doc(cfg(target_feature = "sse4.1")))]
pub fn floor_m128_s(a: m128, b: m128) -> m128 {
m128(unsafe { _mm_floor_ss(a.0, b.0) })
}
/// Inserts a new value for the `i32` lane specified.
///
/// ```
/// # use safe_arch::*;
/// let a = m128i::from([5, 6, 7, 8]);
/// let b: [i32; 4] = insert_i32_imm_m128i::<1>(a, 23).into();
/// assert_eq!(b, [5, 23, 7, 8]);
/// ```
#[must_use]
#[inline(always)]
#[cfg_attr(docs_rs, doc(cfg(target_feature = "sse4.1")))]
pub fn insert_i32_imm_m128i<const IMM: i32>(a: m128i, new: i32) -> m128i {
m128i(unsafe { _mm_insert_epi32(a.0, new, IMM) })
}
/// Inserts a new value for the `i64` lane specified.
///
/// ```
/// # use safe_arch::*;
/// let a = m128i::from([5_i64, 6]);
/// let b: [i64; 2] = insert_i64_imm_m128i::<1>(a, 23).into();
/// assert_eq!(b, [5_i64, 23]);
/// ```
#[must_use]
#[inline(always)]
#[cfg(target_arch = "x86_64")]
#[cfg_attr(docs_rs, doc(cfg(target_feature = "sse4.1")))]
pub fn insert_i64_imm_m128i<const IMM: i32>(a: m128i, new: i64) -> m128i {
m128i(unsafe { _mm_insert_epi64(a.0, new, IMM) })
}
/// Inserts a new value for the `i64` lane specified.
///
/// ```
/// # use safe_arch::*;
/// let a = m128i::from([0_i8, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]);
/// let b: [i8; 16] = insert_i8_imm_m128i::<1>(a, 23).into();
/// assert_eq!(b, [0_i8, 23, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]);
/// ```
#[must_use]
#[inline(always)]
#[cfg_attr(docs_rs, doc(cfg(target_feature = "sse4.1")))]
pub fn insert_i8_imm_m128i<const IMM: i32>(a: m128i, new: i32) -> m128i {
m128i(unsafe { _mm_insert_epi8(a.0, new, IMM) })
}
/// Inserts a lane from `$b` into `$a`, optionally at a new position.
///
/// Also, you can zero out any lanes you like for free as part of the same
/// operation. If you don't specify the mask argument then no lanes are zeroed.
///
/// ```
/// # use safe_arch::*;
/// let a = m128::from_array([1.0, 2.0, 3.0, 4.0]);
/// let b = m128::from_array([5.0, 6.0, 7.0, 8.0]);
/// //
/// let c = insert_f32_imm_m128::<0b00_11_0000>(a, b).to_array();
/// assert_eq!(c, [1.0, 2.0, 3.0, 5.0]);
/// //
/// let c = insert_f32_imm_m128::<0b00_11_0110>(a, b).to_array();
/// assert_eq!(c, [1.0, 0.0, 0.0, 5.0]);
/// ```
#[must_use]
#[inline(always)]
#[cfg_attr(docs_rs, doc(cfg(target_feature = "sse4.1")))]
pub fn insert_f32_imm_m128<const IMM: i32>(a: m128, b: m128) -> m128 {
m128(unsafe { _mm_insert_ps(a.0, b.0, IMM) })
}
/// Lanewise `max(a, b)` with lanes as `i32`.
/// ```
/// # use safe_arch::*;
/// let a = m128i::from([1, 2, 3, 4]);
/// let b = m128i::from([5, 6, -7, 8]);
/// let c: [i32; 4] = max_i32_m128i(a, b).into();
/// assert_eq!(c, [5, 6, 3, 8]);
/// ```
#[must_use]
#[inline(always)]
#[cfg_attr(docs_rs, doc(cfg(target_feature = "sse4.1")))]
pub fn max_i32_m128i(a: m128i, b: m128i) -> m128i {
m128i(unsafe { _mm_max_epi32(a.0, b.0) })
}
/// Lanewise `max(a, b)` with lanes as `i8`.
/// ```
/// # use safe_arch::*;
/// let a = m128i::from([0_i8, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 127]);
/// let b = m128i::from([0_i8, 11, 2, -13, 4, 15, 6, -17, -8, 19, -20, 21, 22, -23, 24, 127]);
/// let c: [i8; 16] = max_i8_m128i(a, b).into();
/// assert_eq!(c, [0, 11, 2, 3, 4, 15, 6, 7, 8, 19, 10, 21, 22, 13, 24, 127]);
/// ```
#[must_use]
#[inline(always)]
#[cfg_attr(docs_rs, doc(cfg(target_feature = "sse4.1")))]
pub fn max_i8_m128i(a: m128i, b: m128i) -> m128i {
m128i(unsafe { _mm_max_epi8(a.0, b.0) })
}
/// Lanewise `max(a, b)` with lanes as `u16`.
/// ```
/// # use safe_arch::*;
/// let a = m128i::from([1_u16, 2, 300, 400, 1, 2, 3, 4]);
/// let b = m128i::from([5_u16, 6, 7, 8, 15, 26, 37, 48]);
/// let c: [u16; 8] = max_u16_m128i(a, b).into();
/// assert_eq!(c, [5_u16, 6, 300, 400, 15, 26, 37, 48]);
/// ```
#[must_use]
#[inline(always)]
#[cfg_attr(docs_rs, doc(cfg(target_feature = "sse4.1")))]
pub fn max_u16_m128i(a: m128i, b: m128i) -> m128i {
m128i(unsafe { _mm_max_epu16(a.0, b.0) })
}
/// Lanewise `max(a, b)` with lanes as `u32`.
/// ```
/// # use safe_arch::*;
/// let a = m128i::from([1, 200, 3, 4]);
/// let b = m128i::from([5, 6, 7, 8]);
/// let c: [u32; 4] = max_u32_m128i(a, b).into();
/// assert_eq!(c, [5, 200, 7, 8]);
/// ```
#[must_use]
#[inline(always)]
#[cfg_attr(docs_rs, doc(cfg(target_feature = "sse4.1")))]
pub fn max_u32_m128i(a: m128i, b: m128i) -> m128i {
m128i(unsafe { _mm_max_epu32(a.0, b.0) })
}
/// Lanewise `min(a, b)` with lanes as `i32`.
/// ```
/// # use safe_arch::*;
/// let a = m128i::from([1, 2, 3, 4]);
/// let b = m128i::from([5, 6, -7, 8]);
/// let c: [i32; 4] = min_i32_m128i(a, b).into();
/// assert_eq!(c, [1, 2, -7, 4]);
/// ```
#[must_use]
#[inline(always)]
#[cfg_attr(docs_rs, doc(cfg(target_feature = "sse4.1")))]
pub fn min_i32_m128i(a: m128i, b: m128i) -> m128i {
m128i(unsafe { _mm_min_epi32(a.0, b.0) })
}
/// Lanewise `min(a, b)` with lanes as `i8`.
/// ```
/// # use safe_arch::*;
/// let a = m128i::from([0_i8, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 127]);
/// let b = m128i::from([0_i8, 11, 2, -13, 4, 15, 6, -17, -8, 19, -20, 21, 22, -23, 24, 127]);
/// let c: [i8; 16] = min_i8_m128i(a, b).into();
/// assert_eq!(c, [0_i8, 1, 2, -13, 4, 5, 6, -17, -8, 9, -20, 11, 12, -23, 14, 127]);
/// ```
#[must_use]
#[inline(always)]
#[cfg_attr(docs_rs, doc(cfg(target_feature = "sse4.1")))]
pub fn min_i8_m128i(a: m128i, b: m128i) -> m128i {
m128i(unsafe { _mm_min_epi8(a.0, b.0) })
}
/// Lanewise `min(a, b)` with lanes as `u16`.
/// ```
/// # use safe_arch::*;
/// let a = m128i::from([1_u16, 2, 300, 400, 1, 2, 3, 4]);
/// let b = m128i::from([5_u16, 6, 7, 8, 15, 26, 37, 48]);
/// let c: [u16; 8] = min_u16_m128i(a, b).into();
/// assert_eq!(c, [1_u16, 2, 7, 8, 1, 2, 3, 4]);
/// ```
#[must_use]
#[inline(always)]
#[cfg_attr(docs_rs, doc(cfg(target_feature = "sse4.1")))]
pub fn min_u16_m128i(a: m128i, b: m128i) -> m128i {
m128i(unsafe { _mm_min_epu16(a.0, b.0) })
}
/// Lanewise `min(a, b)` with lanes as `u32`.
/// ```
/// # use safe_arch::*;
/// let a = m128i::from([1, 200, 3, 4]);
/// let b = m128i::from([5, 6, 7, 8]);
/// let c: [u32; 4] = min_u32_m128i(a, b).into();
/// assert_eq!(c, [1, 6, 3, 4]);
/// ```
#[must_use]
#[inline(always)]
#[cfg_attr(docs_rs, doc(cfg(target_feature = "sse4.1")))]
pub fn min_u32_m128i(a: m128i, b: m128i) -> m128i {
m128i(unsafe { _mm_min_epu32(a.0, b.0) })
}
/// Min `u16` value, position, and other lanes zeroed.
///
/// ```
/// # use safe_arch::*;
/// let a = m128i::from([120_u16, 24, 300, 400, 90, 129, 31, 114]);
/// let c: [u16; 8] = min_position_u16_m128i(a).into();
/// assert_eq!(c, [24_u16, 1, 0, 0, 0, 0, 0, 0]);
///
/// // the position favors the leftmost minimum
/// let a = m128i::from([120_u16, 24, 24, 400, 90, 129, 31, 114]);
/// let c: [u16; 8] = min_position_u16_m128i(a).into();
/// assert_eq!(c, [24_u16, 1, 0, 0, 0, 0, 0, 0]);
/// ```
#[must_use]
#[inline(always)]
#[cfg_attr(docs_rs, doc(cfg(target_feature = "sse4.1")))]
pub fn min_position_u16_m128i(a: m128i) -> m128i {
m128i(unsafe { _mm_minpos_epu16(a.0) })
}
/// Computes eight `u16` "sum of absolute difference" values according to the
/// bytes selected.
///
/// * `a` can be 0 or 1, and specifies to skip the first fur `$a` values or not.
/// * `b` can be 0, 1, 2, or 3 and specifies to skip the first four times that
/// many values in `$b`.
///
/// This is used for some HD codec thing, and I don't really get what the point
/// is, but I'm sure someone uses it. If you can write better docs about what
/// this does please file a PR.
///
/// ```
/// # use safe_arch::*;
/// let a = m128i::from([0_u8, 1, 56, 3, 255, 5, 127, 7, 128, 9, 100, 101, 123, 13, 154, 125]);
/// let b = m128i::from([12_u8, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]);
/// //
/// let c: [u16; 8] = multi_packed_sum_abs_diff_u8_m128i::<0b00_00>(a, b).into();
/// assert_eq!(c, [66, 319, 301, 390, 376, 263, 253, 236]);
/// //
/// let c: [u16; 8] = multi_packed_sum_abs_diff_u8_m128i::<0b00_01>(a, b).into();
/// assert_eq!(c, [62, 305, 305, 372, 372, 245, 249, 222]);
/// //
/// let c: [u16; 8] = multi_packed_sum_abs_diff_u8_m128i::<0b00_10>(a, b).into();
/// assert_eq!(c, [70, 305, 305, 372, 372, 241, 241, 210]);
/// //
/// let c: [u16; 8] = multi_packed_sum_abs_diff_u8_m128i::<0b00_11>(a, b).into();
/// assert_eq!(c, [78, 305, 305, 372, 372, 241, 241, 210]);
/// //
/// let c: [u16; 8] = multi_packed_sum_abs_diff_u8_m128i::<0b01_00>(a, b).into();
/// assert_eq!(c, [376, 263, 253, 236, 320, 321, 319, 373]);
/// //
/// let c: [u16; 8] = multi_packed_sum_abs_diff_u8_m128i::<0b01_01>(a, b).into();
/// assert_eq!(c, [372, 245, 249, 222, 316, 311, 315, 369]);
/// //
/// let c: [u16; 8] = multi_packed_sum_abs_diff_u8_m128i::<0b01_10>(a, b).into();
/// assert_eq!(c, [372, 241, 241, 210, 300, 295, 299, 353]);
/// //
/// let c: [u16; 8] = multi_packed_sum_abs_diff_u8_m128i::<0b01_11>(a, b).into();
/// assert_eq!(c, [372, 241, 241, 210, 292, 285, 287, 339]);
/// ```
#[must_use]
#[inline(always)]
#[cfg_attr(docs_rs, doc(cfg(target_feature = "sse4.1")))]
pub fn multi_packed_sum_abs_diff_u8_m128i<const IMM: i32>(a: m128i, b: m128i) -> m128i {
m128i(unsafe { _mm_mpsadbw_epu8(a.0, b.0, IMM) })
}
/// Multiplies the odd `i32` lanes and gives the widened (`i64`) results.
///
/// ```
/// # use safe_arch::*;
/// let a = m128i::from([1, 7, i32::MAX, 7]);
/// let b = m128i::from([-5, 7, i32::MAX, 7]);
/// let c: [i64; 2] = mul_widen_i32_odd_m128i(a, b).into();
/// assert_eq!(c, [(-1 * 5), (i32::MAX as i64 * i32::MAX as i64)]);
/// ```
#[must_use]
#[inline(always)]
#[cfg_attr(docs_rs, doc(cfg(target_feature = "sse4.1")))]
pub fn mul_widen_i32_odd_m128i(a: m128i, b: m128i) -> m128i {
m128i(unsafe { _mm_mul_epi32(a.0, b.0) })
}
/// Lanewise `a * b` with 32-bit lanes.
///
/// This keeps the low 32-bits from each 64-bit output,
/// so it actually works for both `i32` and `u32`.
/// ```
/// # use safe_arch::*;
/// let ai = m128i::from([1, 2000000, -300, 45689]);
/// let bi = m128i::from([5, 6000000, 700, -89109]);
/// let ci: [i32; 4] = mul_32_m128i(ai, bi).into();
/// assert_eq!(ci, [5, -138625024, -210000, 223666195]);
///
/// let au = m128i::from([u32::MAX, 26, 5678, 1234567890]);
/// let bu = m128i::from([u32::MAX, 74, 9101112, 765]);
/// let cu: [u32; 4] = mul_32_m128i(au, bu).into();
/// assert_eq!(cu, [1, 1924, 136506384, 3846598026]);
/// ```
#[must_use]
#[inline(always)]
#[cfg_attr(docs_rs, doc(cfg(target_feature = "sse4.1")))]
pub fn mul_32_m128i(a: m128i, b: m128i) -> m128i {
m128i(unsafe { _mm_mullo_epi32(a.0, b.0) })
}
/// Saturating convert `i32` to `u16`, and pack the values.
/// ```
/// # use safe_arch::*;
/// let a = m128i::from([1, 2, 3, 4]);
/// let b = m128i::from([9, -10, -11, i32::MAX]);
/// let c: [u16; 8] = pack_i32_to_u16_m128i(a, b).into();
/// assert_eq!(c, [1, 2, 3, 4, 9, 0, 0, u16::MAX]);
/// ```
#[must_use]
#[inline(always)]
#[cfg_attr(docs_rs, doc(cfg(target_feature = "sse4.1")))]
pub fn pack_i32_to_u16_m128i(a: m128i, b: m128i) -> m128i {
m128i(unsafe { _mm_packus_epi32(a.0, b.0) })
}
/// Rounds each lane in the style specified.
///
/// ```
/// # use safe_arch::*;
/// let a = m128d::from_array([-0.1, 1.6]);
/// //
/// assert_eq!(round_m128d::<{ round_op!(Nearest) }>(a).to_array(), [0.0, 2.0]);
/// //
/// assert_eq!(round_m128d::<{ round_op!(NegInf) }>(a).to_array(), [-1.0, 1.0]);
/// //
/// assert_eq!(round_m128d::<{ round_op!(PosInf) }>(a).to_array(), [0.0, 2.0]);
/// //
/// assert_eq!(round_m128d::<{ round_op!(Zero) }>(a).to_array(), [0.0, 1.0]);
/// ```
#[must_use]
#[inline(always)]
#[cfg_attr(docs_rs, doc(cfg(target_feature = "sse4.1")))]
pub fn round_m128d<const MODE: i32>(a: m128d) -> m128d {
m128d(unsafe { _mm_round_pd(a.0, MODE) })
}
/// Rounds `$b` low as specified, keeps `$a` high.
///
/// ```
/// # use safe_arch::*;
/// let a = m128d::from_array([f64::NAN, 900.0]);
/// //
/// let b = m128d::from_array([-0.1, f64::NAN]);
/// //
/// assert_eq!(round_m128d_s::<{ round_op!(Nearest) }>(a, b).to_array(), [0.0, 900.0]);
/// assert_eq!(round_m128d_s::<{ round_op!(NegInf) }>(a, b).to_array(), [-1.0, 900.0]);
/// //
/// let b = m128d::from_array([2.4, f64::NAN]);
/// //
/// assert_eq!(round_m128d_s::<{ round_op!(PosInf) }>(a, b).to_array(), [3.0, 900.0]);
/// assert_eq!(round_m128d_s::<{ round_op!(Zero) }>(a, b).to_array(), [2.0, 900.0]);
/// ```
#[must_use]
#[inline(always)]
#[cfg_attr(docs_rs, doc(cfg(target_feature = "sse4.1")))]
pub fn round_m128d_s<const MODE: i32>(a: m128d, b: m128d) -> m128d {
m128d(unsafe { _mm_round_sd(a.0, b.0, MODE) })
}
/// Rounds each lane in the style specified.
///
/// ```
/// # use safe_arch::*;
/// let a = m128::from_array([-0.1, 1.6, 3.3, 4.5]);
/// //
/// assert_eq!(round_m128::<{ round_op!(Nearest) }>(a).to_array(), [0.0, 2.0, 3.0, 4.0]);
/// //
/// assert_eq!(round_m128::<{ round_op!(NegInf) }>(a).to_array(), [-1.0, 1.0, 3.0, 4.0]);
/// //
/// assert_eq!(round_m128::<{ round_op!(PosInf) }>(a).to_array(), [0.0, 2.0, 4.0, 5.0]);
/// //
/// assert_eq!(round_m128::<{ round_op!(Zero) }>(a).to_array(), [0.0, 1.0, 3.0, 4.0]);
/// ```
#[must_use]
#[inline(always)]
#[cfg_attr(docs_rs, doc(cfg(target_feature = "sse4.1")))]
pub fn round_m128<const MODE: i32>(a: m128) -> m128 {
m128(unsafe { _mm_round_ps(a.0, MODE) })
}
/// Rounds `$b` low as specified, other lanes use `$a`.
///
/// ```
/// # use safe_arch::*;
/// let a = m128::from_array([f32::NAN, 6.0, 7.0, 8.0]);
/// //
/// let b = m128::from_array([-0.1, f32::NAN, f32::NAN, f32::NAN]);
/// //
/// assert_eq!(round_m128_s::<{ round_op!(Nearest) }>(a, b).to_array(), [0.0, 6.0, 7.0, 8.0]);
/// assert_eq!(round_m128_s::<{ round_op!(NegInf) }>(a, b).to_array(), [-1.0, 6.0, 7.0, 8.0]);
/// //
/// let b = m128::from_array([2.4, f32::NAN, f32::NAN, f32::NAN]);
/// //
/// assert_eq!(round_m128_s::<{ round_op!(PosInf) }>(a, b).to_array(), [3.0, 6.0, 7.0, 8.0]);
/// assert_eq!(round_m128_s::<{ round_op!(Zero) }>(a, b).to_array(), [2.0, 6.0, 7.0, 8.0]);
/// ```
#[must_use]
#[inline(always)]
#[cfg_attr(docs_rs, doc(cfg(target_feature = "sse4.1")))]
pub fn round_m128_s<const MODE: i32>(a: m128, b: m128) -> m128 {
m128(unsafe { _mm_round_ss(a.0, b.0, MODE) })
}
/// Computes the bitwise AND of 256 bits in `a` and
/// `b`, returns 1 if the result is zero, otherwise 0.
/// * **Intrinsic:** [`_mm_testz_si128`]
/// * **Assembly:** ptest xmm, xmm
#[must_use]
#[inline(always)]
#[cfg_attr(docs_rs, doc(cfg(target_feature = "sse4.1")))]
pub fn testz_m128i(a: m128i, b: m128i) -> i32 {
unsafe { _mm_testz_si128(a.0, b.0) }
}
/// Compute the bitwise NOT of `a` and then AND with `b`,
/// returns 1 if the result is zero, otherwise 0.
/// * **Intrinsic:** [`_mm_testc_si128`]
/// * **Assembly:** ptest xmm, xmm
#[must_use]
#[inline(always)]
#[cfg_attr(docs_rs, doc(cfg(target_feature = "sse4.1")))]
pub fn testc_m128i(a: m128i, b: m128i) -> i32 {
unsafe { _mm_testc_si128(a.0, b.0) }
}
/// Tests if all bits are 1.
/// * **Intrinsic:** [`_mm_test_all_ones`]
/// * **Assembly:** pcmpeqd xmm, xmm / ptest xmm, xmm
///
/// ```
/// # use safe_arch::*;
/// let a = m128i::from(0_u128);
/// let b = m128i::from(u128::MAX);
/// assert_eq!(test_all_ones_m128i(a), 0);
/// assert_eq!(test_all_ones_m128i(b), 1);
/// ```
#[must_use]
#[inline(always)]
#[cfg_attr(docs_rs, doc(cfg(target_feature = "sse4.1")))]
pub fn test_all_ones_m128i(a: m128i) -> i32 {
unsafe { _mm_test_all_ones(a.0) }
}
/// Returns if all masked bits are 0, `(a & mask) as u128 == 0`
/// * **Intrinsic:** [`_mm_test_all_zeros`]
/// * **Assembly:** ptest xmm, xmm
///
/// ```
/// # use safe_arch::*;
/// let a = m128i::from(0b111_u128);
/// let mask = m128i::from(u128::MAX);
/// assert_eq!(test_all_zeroes_m128i(a, mask), 0);
/// //
/// let a = m128i::from(0b0_u128);
/// let mask = m128i::from(u128::MAX);
/// assert_eq!(test_all_zeroes_m128i(a, mask), 1);
/// //
/// let a = m128i::from(0b1_0000_u128);
/// let mask = m128i::from(0b0_1111_u128);
/// assert_eq!(test_all_zeroes_m128i(a, mask), 1);
/// ```
#[must_use]
#[inline(always)]
#[cfg_attr(docs_rs, doc(cfg(target_feature = "sse4.1")))]
pub fn test_all_zeroes_m128i(a: m128i, mask: m128i) -> i32 {
unsafe { _mm_test_all_zeros(a.0, mask.0) }
}
/// Returns if, among the masked bits, there's both 0s and 1s
/// * **Intrinsic:** [`_mm_test_mix_ones_zeros`]
/// * **Assembly:** ptest xmm, xmm
///
/// * Zero Flag = `(a & mask) as u128 == 0`
/// * Carry Flag = `((!a) & mask) as u128 == 0`
/// * Return `ZeroFlag == 0 && Carry Flag == 0`
///
/// ```
/// # use safe_arch::*;
/// let a = m128i::from(0b111_u128);
/// let mask = m128i::from(u128::MAX);
/// assert_eq!(test_mixed_ones_and_zeroes_m128i(a, mask), 1);
/// //
/// let a = m128i::from(0b0_u128);
/// let mask = m128i::from(u128::MAX);
/// assert_eq!(test_mixed_ones_and_zeroes_m128i(a, mask), 0);
/// //
/// let a = m128i::from(0b1_0000_u128);
/// let mask = m128i::from(0b0_1111_u128);
/// assert_eq!(test_mixed_ones_and_zeroes_m128i(a, mask), 0);
/// //
/// let a = m128i::from(0b1_0000_u128);
/// let mask = m128i::from(0b1_1111_u128);
/// assert_eq!(test_mixed_ones_and_zeroes_m128i(a, mask), 1);
/// ```
#[must_use]
#[inline(always)]
#[cfg_attr(docs_rs, doc(cfg(target_feature = "sse4.1")))]
pub fn test_mixed_ones_and_zeroes_m128i(a: m128i, mask: m128i) -> i32 {
unsafe { _mm_test_mix_ones_zeros(a.0, mask.0) }
}