1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
use {
    crate::{
        instruction::{CompiledInstruction, Instruction},
        message::{v0::LoadedAddresses, CompileError},
        pubkey::Pubkey,
    },
    std::{collections::BTreeMap, ops::Index},
};

/// Collection of static and dynamically loaded keys used to load accounts
/// during transaction processing.
pub struct AccountKeys<'a> {
    static_keys: &'a [Pubkey],
    dynamic_keys: Option<&'a LoadedAddresses>,
}

impl Index<usize> for AccountKeys<'_> {
    type Output = Pubkey;
    fn index(&self, index: usize) -> &Self::Output {
        self.get(index).expect("index is invalid")
    }
}

impl<'a> AccountKeys<'a> {
    pub fn new(static_keys: &'a [Pubkey], dynamic_keys: Option<&'a LoadedAddresses>) -> Self {
        Self {
            static_keys,
            dynamic_keys,
        }
    }

    /// Returns an iterator of account key segments. The ordering of segments
    /// affects how account indexes from compiled instructions are resolved and
    /// so should not be changed.
    fn key_segment_iter(&self) -> impl Iterator<Item = &'a [Pubkey]> {
        if let Some(dynamic_keys) = self.dynamic_keys {
            [
                self.static_keys,
                &dynamic_keys.writable,
                &dynamic_keys.readonly,
            ]
            .into_iter()
        } else {
            // empty segments added for branch type compatibility
            [self.static_keys, &[], &[]].into_iter()
        }
    }

    /// Returns the address of the account at the specified index of the list of
    /// message account keys constructed from static keys, followed by dynamically
    /// loaded writable addresses, and lastly the list of dynamically loaded
    /// readonly addresses.
    pub fn get(&self, mut index: usize) -> Option<&'a Pubkey> {
        for key_segment in self.key_segment_iter() {
            if index < key_segment.len() {
                return Some(&key_segment[index]);
            }
            index = index.saturating_sub(key_segment.len());
        }

        None
    }

    /// Returns the total length of loaded accounts for a message
    pub fn len(&self) -> usize {
        let mut len = 0usize;
        for key_segment in self.key_segment_iter() {
            len = len.saturating_add(key_segment.len());
        }
        len
    }

    /// Returns true if this collection of account keys is empty
    pub fn is_empty(&self) -> bool {
        self.len() == 0
    }

    /// Iterator for the addresses of the loaded accounts for a message
    pub fn iter(&self) -> impl Iterator<Item = &'a Pubkey> {
        self.key_segment_iter().flatten()
    }

    /// Compile instructions using the order of account keys to determine
    /// compiled instruction account indexes.
    ///
    /// # Panics
    ///
    /// Panics when compiling fails. See [`AccountKeys::try_compile_instructions`]
    /// for a full description of failure scenarios.
    pub fn compile_instructions(&self, instructions: &[Instruction]) -> Vec<CompiledInstruction> {
        self.try_compile_instructions(instructions)
            .expect("compilation failure")
    }

    /// Compile instructions using the order of account keys to determine
    /// compiled instruction account indexes.
    ///
    /// # Errors
    ///
    /// Compilation will fail if any `instructions` use account keys which are not
    /// present in this account key collection.
    ///
    /// Compilation will fail if any `instructions` use account keys which are located
    /// at an index which cannot be cast to a `u8` without overflow.
    pub fn try_compile_instructions(
        &self,
        instructions: &[Instruction],
    ) -> Result<Vec<CompiledInstruction>, CompileError> {
        let mut account_index_map = BTreeMap::<&Pubkey, u8>::new();
        for (index, key) in self.iter().enumerate() {
            let index = u8::try_from(index).map_err(|_| CompileError::AccountIndexOverflow)?;
            account_index_map.insert(key, index);
        }

        let get_account_index = |key: &Pubkey| -> Result<u8, CompileError> {
            account_index_map
                .get(key)
                .cloned()
                .ok_or(CompileError::UnknownInstructionKey(*key))
        };

        instructions
            .iter()
            .map(|ix| {
                let accounts: Vec<u8> = ix
                    .accounts
                    .iter()
                    .map(|account_meta| get_account_index(&account_meta.pubkey))
                    .collect::<Result<Vec<u8>, CompileError>>()?;

                Ok(CompiledInstruction {
                    program_id_index: get_account_index(&ix.program_id)?,
                    data: ix.data.clone(),
                    accounts,
                })
            })
            .collect()
    }
}

#[cfg(test)]
mod tests {
    use {super::*, crate::instruction::AccountMeta};

    fn test_account_keys() -> [Pubkey; 6] {
        let key0 = Pubkey::new_unique();
        let key1 = Pubkey::new_unique();
        let key2 = Pubkey::new_unique();
        let key3 = Pubkey::new_unique();
        let key4 = Pubkey::new_unique();
        let key5 = Pubkey::new_unique();

        [key0, key1, key2, key3, key4, key5]
    }

    #[test]
    fn test_key_segment_iter() {
        let keys = test_account_keys();

        let static_keys = vec![keys[0], keys[1], keys[2]];
        let dynamic_keys = LoadedAddresses {
            writable: vec![keys[3], keys[4]],
            readonly: vec![keys[5]],
        };
        let account_keys = AccountKeys::new(&static_keys, Some(&dynamic_keys));

        let expected_segments = vec![
            vec![keys[0], keys[1], keys[2]],
            vec![keys[3], keys[4]],
            vec![keys[5]],
        ];

        assert!(account_keys
            .key_segment_iter()
            .into_iter()
            .eq(expected_segments.iter()));
    }

    #[test]
    fn test_len() {
        let keys = test_account_keys();

        let static_keys = vec![keys[0], keys[1], keys[2], keys[3], keys[4], keys[5]];
        let account_keys = AccountKeys::new(&static_keys, None);

        assert_eq!(account_keys.len(), keys.len());
    }

    #[test]
    fn test_len_with_dynamic_keys() {
        let keys = test_account_keys();

        let static_keys = vec![keys[0], keys[1], keys[2]];
        let dynamic_keys = LoadedAddresses {
            writable: vec![keys[3], keys[4]],
            readonly: vec![keys[5]],
        };
        let account_keys = AccountKeys::new(&static_keys, Some(&dynamic_keys));

        assert_eq!(account_keys.len(), keys.len());
    }

    #[test]
    fn test_iter() {
        let keys = test_account_keys();

        let static_keys = vec![keys[0], keys[1], keys[2], keys[3], keys[4], keys[5]];
        let account_keys = AccountKeys::new(&static_keys, None);

        assert!(account_keys.iter().eq(keys.iter()));
    }

    #[test]
    fn test_iter_with_dynamic_keys() {
        let keys = test_account_keys();

        let static_keys = vec![keys[0], keys[1], keys[2]];
        let dynamic_keys = LoadedAddresses {
            writable: vec![keys[3], keys[4]],
            readonly: vec![keys[5]],
        };
        let account_keys = AccountKeys::new(&static_keys, Some(&dynamic_keys));

        assert!(account_keys.iter().eq(keys.iter()));
    }

    #[test]
    fn test_get() {
        let keys = test_account_keys();

        let static_keys = vec![keys[0], keys[1], keys[2], keys[3]];
        let account_keys = AccountKeys::new(&static_keys, None);

        assert_eq!(account_keys.get(0), Some(&keys[0]));
        assert_eq!(account_keys.get(1), Some(&keys[1]));
        assert_eq!(account_keys.get(2), Some(&keys[2]));
        assert_eq!(account_keys.get(3), Some(&keys[3]));
        assert_eq!(account_keys.get(4), None);
        assert_eq!(account_keys.get(5), None);
    }

    #[test]
    fn test_get_with_dynamic_keys() {
        let keys = test_account_keys();

        let static_keys = vec![keys[0], keys[1], keys[2]];
        let dynamic_keys = LoadedAddresses {
            writable: vec![keys[3], keys[4]],
            readonly: vec![keys[5]],
        };
        let account_keys = AccountKeys::new(&static_keys, Some(&dynamic_keys));

        assert_eq!(account_keys.get(0), Some(&keys[0]));
        assert_eq!(account_keys.get(1), Some(&keys[1]));
        assert_eq!(account_keys.get(2), Some(&keys[2]));
        assert_eq!(account_keys.get(3), Some(&keys[3]));
        assert_eq!(account_keys.get(4), Some(&keys[4]));
        assert_eq!(account_keys.get(5), Some(&keys[5]));
    }

    #[test]
    fn test_try_compile_instructions() {
        let keys = test_account_keys();

        let static_keys = vec![keys[0]];
        let dynamic_keys = LoadedAddresses {
            writable: vec![keys[1]],
            readonly: vec![keys[2]],
        };
        let account_keys = AccountKeys::new(&static_keys, Some(&dynamic_keys));

        let instruction = Instruction {
            program_id: keys[0],
            accounts: vec![
                AccountMeta::new(keys[1], true),
                AccountMeta::new(keys[2], true),
            ],
            data: vec![0],
        };

        assert_eq!(
            account_keys.try_compile_instructions(&[instruction]),
            Ok(vec![CompiledInstruction {
                program_id_index: 0,
                accounts: vec![1, 2],
                data: vec![0],
            }]),
        );
    }

    #[test]
    fn test_try_compile_instructions_with_unknown_key() {
        let static_keys = test_account_keys();
        let account_keys = AccountKeys::new(&static_keys, None);

        let unknown_key = Pubkey::new_unique();
        let test_instructions = [
            Instruction {
                program_id: unknown_key,
                accounts: vec![],
                data: vec![],
            },
            Instruction {
                program_id: static_keys[0],
                accounts: vec![
                    AccountMeta::new(static_keys[1], false),
                    AccountMeta::new(unknown_key, false),
                ],
                data: vec![],
            },
        ];

        for ix in test_instructions {
            assert_eq!(
                account_keys.try_compile_instructions(&[ix]),
                Err(CompileError::UnknownInstructionKey(unknown_key))
            );
        }
    }

    #[test]
    fn test_try_compile_instructions_with_too_many_account_keys() {
        const MAX_LENGTH_WITHOUT_OVERFLOW: usize = u8::MAX as usize + 1;
        let static_keys = vec![Pubkey::default(); MAX_LENGTH_WITHOUT_OVERFLOW];
        let dynamic_keys = LoadedAddresses {
            writable: vec![Pubkey::default()],
            readonly: vec![],
        };
        let account_keys = AccountKeys::new(&static_keys, Some(&dynamic_keys));
        assert_eq!(
            account_keys.try_compile_instructions(&[]),
            Err(CompileError::AccountIndexOverflow)
        );
    }
}