1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434
//! Public key recovery from [secp256k1] ECDSA signatures.
//!
//! [secp256k1]: https://en.bitcoin.it/wiki/Secp256k1
//!
//! _This module provides low-level cryptographic building blocks that must be
//! used carefully to ensure proper security. Read this documentation and
//! accompanying links thoroughly._
//!
//! The [`secp256k1_recover`] syscall allows a secp256k1 public key that has
//! previously signed a message to be recovered from the combination of the
//! message, the signature, and a recovery ID. The recovery ID is generated
//! during signing.
//!
//! Use cases for `secp256k1_recover` include:
//!
//! - Implementing the Ethereum [`ecrecover`] builtin contract.
//! - Performing secp256k1 public key recovery generally.
//! - Verifying a single secp256k1 signature.
//!
//! While `secp256k1_recover` can be used to verify secp256k1 signatures, Safecoin
//! also provides the [secp256k1 program][sp], which is more flexible, has lower CPU
//! cost, and can validate many signatures at once.
//!
//! [sp]: crate::secp256k1_program
//! [`ecrecover`]: https://docs.soliditylang.org/en/v0.8.14/units-and-global-variables.html?highlight=ecrecover#mathematical-and-cryptographic-functions
use {
borsh::{BorshDeserialize, BorshSchema, BorshSerialize},
core::convert::TryFrom,
thiserror::Error,
};
#[derive(Debug, Clone, PartialEq, Eq, Error)]
pub enum Secp256k1RecoverError {
#[error("The hash provided to a secp256k1_recover is invalid")]
InvalidHash,
#[error("The recovery_id provided to a secp256k1_recover is invalid")]
InvalidRecoveryId,
#[error("The signature provided to a secp256k1_recover is invalid")]
InvalidSignature,
}
impl From<u64> for Secp256k1RecoverError {
fn from(v: u64) -> Secp256k1RecoverError {
match v {
1 => Secp256k1RecoverError::InvalidHash,
2 => Secp256k1RecoverError::InvalidRecoveryId,
3 => Secp256k1RecoverError::InvalidSignature,
_ => panic!("Unsupported Secp256k1RecoverError"),
}
}
}
impl From<Secp256k1RecoverError> for u64 {
fn from(v: Secp256k1RecoverError) -> u64 {
match v {
Secp256k1RecoverError::InvalidHash => 1,
Secp256k1RecoverError::InvalidRecoveryId => 2,
Secp256k1RecoverError::InvalidSignature => 3,
}
}
}
pub const SECP256K1_SIGNATURE_LENGTH: usize = 64;
pub const SECP256K1_PUBLIC_KEY_LENGTH: usize = 64;
#[repr(transparent)]
#[derive(
BorshSerialize,
BorshDeserialize,
BorshSchema,
Clone,
Copy,
Eq,
PartialEq,
Ord,
PartialOrd,
Hash,
AbiExample,
)]
pub struct Secp256k1Pubkey(pub [u8; SECP256K1_PUBLIC_KEY_LENGTH]);
impl Secp256k1Pubkey {
pub fn new(pubkey_vec: &[u8]) -> Self {
Self(
<[u8; SECP256K1_PUBLIC_KEY_LENGTH]>::try_from(<&[u8]>::clone(&pubkey_vec))
.expect("Slice must be the same length as a Pubkey"),
)
}
pub fn to_bytes(self) -> [u8; 64] {
self.0
}
}
/// Recover the public key from a [secp256k1] ECDSA signature and
/// cryptographically-hashed message.
///
/// [secp256k1]: https://en.bitcoin.it/wiki/Secp256k1
///
/// This function is specifically intended for efficiently implementing
/// Ethereum's [`ecrecover`] builtin contract, for use by Ethereum integrators.
/// It may be useful for other purposes.
///
/// [`ecrecover`]: https://docs.soliditylang.org/en/v0.8.14/units-and-global-variables.html?highlight=ecrecover#mathematical-and-cryptographic-functions
///
/// `hash` is the 32-byte cryptographic hash (typically [`keccak`]) of an
/// arbitrary message, signed by some public key.
///
/// The recovery ID is a value in the range [0, 3] that is generated during
/// signing, and allows the recovery process to be more efficent. Note that the
/// `recovery_id` here does not directly correspond to an Ethereum recovery ID
/// as used in `ecrecover`. This function accepts recovery IDs in the range of
/// [0, 3], while Ethereum's recovery IDs have a value of 27 or 28. To convert
/// an Ethereum recovery ID to a value this function will accept subtract 27
/// from it, checking for underflow. In practice this function will not succeed
/// if given a recovery ID of 2 or 3, as these values represent an
/// "overflowing" signature, and this function returns an error when parsing
/// overflowing signatures.
///
/// [`keccak`]: crate::keccak
/// [`wrapping_sub`]: https://doc.rust-lang.org/std/primitive.u8.html#method.wrapping_sub
///
/// On success this function returns a [`Secp256k1Pubkey`], a wrapper around a
/// 64-byte secp256k1 public key. This public key corresponds to the secret key
/// that previously signed the message `hash` to produce the provided
/// `signature`.
///
/// While `secp256k1_recover` can be used to verify secp256k1 signatures by
/// comparing the recovered key against an expected key, Safecoin also provides
/// the [secp256k1 program][sp], which is more flexible, has lower CPU cost, and
/// can validate many signatures at once.
///
/// [sp]: crate::secp256k1_program
///
/// The `secp256k1_recover` syscall is implemented with the [`libsecp256k1`]
/// crate, which clients may also want to use.
///
/// [`libsecp256k1`]: https://docs.rs/libsecp256k1/latest/libsecp256k1
///
/// # Hashing messages
///
/// In ECDSA signing and key recovery the signed "message" is always a
/// crytographic hash, not the original message itself. If not a cryptographic
/// hash, then an adversary can craft signatures that recover to arbitrary
/// public keys. This means the caller of this function generally must hash the
/// original message themselves and not rely on another party to provide the
/// hash.
///
/// Ethereum uses the [`keccak`] hash.
///
/// # Signature malleability
///
/// With the ECDSA signature algorithm it is possible for any party, given a
/// valid signature of some message, to create a second signature that is
/// equally valid. This is known as _signature malleability_. In many cases this
/// is not a concern, but in cases where applications rely on signatures to have
/// a unique representation this can be the source of bugs, potentially with
/// security implications.
///
/// **The safecoin `secp256k1_recover` function does not prevent signature
/// malleability**. This is in contrast to the Bitcoin secp256k1 library, which
/// does prevent malleability by default. Safecoin accepts signatures with `S`
/// values that are either in the _high order_ or in the _low order_, and it
/// is trivial to produce one from the other.
///
/// To prevent signature malleability, it is common for secp256k1 signature
/// validators to only accept signatures with low-order `S` values, and reject
/// signatures with high-order `S` values. The following code will accomplish
/// this:
///
/// ```rust
/// # use solana_program::program_error::ProgramError;
/// # let signature_bytes = [
/// # 0x83, 0x55, 0x81, 0xDF, 0xB1, 0x02, 0xA7, 0xD2,
/// # 0x2D, 0x33, 0xA4, 0x07, 0xDD, 0x7E, 0xFA, 0x9A,
/// # 0xE8, 0x5F, 0x42, 0x6B, 0x2A, 0x05, 0xBB, 0xFB,
/// # 0xA1, 0xAE, 0x93, 0x84, 0x46, 0x48, 0xE3, 0x35,
/// # 0x74, 0xE1, 0x6D, 0xB4, 0xD0, 0x2D, 0xB2, 0x0B,
/// # 0x3C, 0x89, 0x8D, 0x0A, 0x44, 0xDF, 0x73, 0x9C,
/// # 0x1E, 0xBF, 0x06, 0x8E, 0x8A, 0x9F, 0xA9, 0xC3,
/// # 0xA5, 0xEA, 0x21, 0xAC, 0xED, 0x5B, 0x22, 0x13,
/// # ];
/// let signature = libsecp256k1::Signature::parse_standard_slice(&signature_bytes)
/// .map_err(|_| ProgramError::InvalidArgument)?;
///
/// if signature.s.is_high() {
/// return Err(ProgramError::InvalidArgument);
/// }
/// # Ok::<_, ProgramError>(())
/// ```
///
/// This has the downside that the program must link to the [`libsecp256k1`]
/// crate and parse the signature just for this check. Note that `libsecp256k1`
/// version 0.7.0 or greater is required for running on the Safecoin BPF target.
///
/// [`libsecp256k1`]: https://docs.rs/libsecp256k1/latest/libsecp256k1
///
/// For the most accurate description of signature malleability, and its
/// prevention in secp256k1, refer to comments in [`secp256k1.h`] in the Bitcoin
/// Core secp256k1 library, the documentation of the [OpenZeppelin `recover`
/// method for Solidity][ozr], and [this description of the problem on
/// StackExchange][sxr].
///
/// [`secp256k1.h`]: https://github.com/bitcoin-core/secp256k1/blob/44c2452fd387f7ca604ab42d73746e7d3a44d8a2/include/secp256k1.h
/// [ozr]: https://docs.openzeppelin.com/contracts/2.x/api/cryptography#ECDSA-recover-bytes32-bytes-
/// [sxr]: https://bitcoin.stackexchange.com/questions/81115/if-someone-wanted-to-pretend-to-be-satoshi-by-posting-a-fake-signature-to-defrau/81116#81116
///
/// # Errors
///
/// If `hash` is not 32 bytes in length this function returns
/// [`Secp256k1RecoverError::InvalidHash`], though see notes
/// on BPF-specific behavior below.
///
/// If `recovery_id` is not in the range [0, 3] this function returns
/// [`Secp256k1RecoverError::InvalidRecoveryId`].
///
/// If `signature` is not 64 bytes in length this function returns
/// [`Secp256k1RecoverError::InvalidSignature`], though see notes
/// on BPF-specific behavior below.
///
/// If `signature` represents an "overflowing" signature this function returns
/// [`Secp256k1RecoverError::InvalidSignature`]. Overflowing signatures are
/// non-standard and should not be encountered in practice.
///
/// If `signature` is otherwise invalid this function returns
/// [`Secp256k1RecoverError::InvalidSignature`].
///
/// # BPF-specific behavior
///
/// When calling this function on-chain the caller must verify the correct
/// lengths of `hash` and `signature` beforehand.
///
/// When run on-chain this function will not directly validate the lengths of
/// `hash` and `signature`. It will assume they are the the correct lengths and
/// pass their pointers to the runtime, which will interpret them as 32-byte and
/// 64-byte buffers. If the provided slices are too short, the runtime will read
/// invalid data and attempt to interpret it, most likely returning an error,
/// though in some scenarios it may be possible to incorrectly return
/// successfully, or the transaction will abort if the syscall reads data
/// outside of the program's memory space. If the provided slices are too long
/// then they may be used to "smuggle" uninterpreted data.
///
/// # Examples
///
/// This example demonstrates recovering a public key and using it to very a
/// signature with the `secp256k1_recover` syscall. It has three parts: a Safecoin
/// program, an RPC client to call the program, and common definitions shared
/// between the two.
///
/// Common definitions:
///
/// ```
/// use borsh::{BorshDeserialize, BorshSerialize};
///
/// #[derive(BorshSerialize, BorshDeserialize, Debug)]
/// pub struct DemoSecp256k1RecoverInstruction {
/// pub message: Vec<u8>,
/// pub signature: [u8; 64],
/// pub recovery_id: u8,
/// }
/// ```
///
/// The Safecoin program. Note that it uses `libsecp256k1` version 0.7.0 to parse
/// the secp256k1 signature to prevent malleability.
///
/// ```no_run
/// use solana_program::{
/// entrypoint::ProgramResult,
/// keccak, msg,
/// program_error::ProgramError,
/// secp256k1_recover::secp256k1_recover,
/// };
///
/// /// The key we expect to sign secp256k1 messages,
/// /// as serialized by `libsecp256k1::PublicKey::serialize`.
/// const AUTHORIZED_PUBLIC_KEY: [u8; 64] = [
/// 0x8C, 0xD6, 0x47, 0xF8, 0xA5, 0xBF, 0x59, 0xA0, 0x4F, 0x77, 0xFA, 0xFA, 0x6C, 0xA0, 0xE6, 0x4D,
/// 0x94, 0x5B, 0x46, 0x55, 0xA6, 0x2B, 0xB0, 0x6F, 0x10, 0x4C, 0x9E, 0x2C, 0x6F, 0x42, 0x0A, 0xBE,
/// 0x18, 0xDF, 0x0B, 0xF0, 0x87, 0x42, 0xBA, 0x88, 0xB4, 0xCF, 0x87, 0x5A, 0x35, 0x27, 0xBE, 0x0F,
/// 0x45, 0xAE, 0xFC, 0x66, 0x9C, 0x2C, 0x6B, 0xF3, 0xEF, 0xCA, 0x5C, 0x32, 0x11, 0xF7, 0x2A, 0xC7,
/// ];
/// # pub struct DemoSecp256k1RecoverInstruction {
/// # pub message: Vec<u8>,
/// # pub signature: [u8; 64],
/// # pub recovery_id: u8,
/// # }
///
/// pub fn process_secp256k1_recover(
/// instruction: DemoSecp256k1RecoverInstruction,
/// ) -> ProgramResult {
/// // The secp256k1 recovery operation accepts a cryptographically-hashed
/// // message only. Passing it anything else is insecure and allows signatures
/// // to be forged.
/// //
/// // This means that the code calling `secp256k1_recover` must perform the hash
/// // itself, and not assume that data passed to it has been properly hashed.
/// let message_hash = {
/// let mut hasher = keccak::Hasher::default();
/// hasher.hash(&instruction.message);
/// hasher.result()
/// };
///
/// // Reject high-s value signatures to prevent malleability.
/// // Safecoin does not do this itself.
/// // This may or may not be necessary depending on use case.
/// {
/// let signature = libsecp256k1::Signature::parse_standard_slice(&instruction.signature)
/// .map_err(|_| ProgramError::InvalidArgument)?;
///
/// if signature.s.is_high() {
/// msg!("signature with high-s value");
/// return Err(ProgramError::InvalidArgument);
/// }
/// }
///
/// let recovered_pubkey = secp256k1_recover(
/// &message_hash.0,
/// instruction.recovery_id,
/// &instruction.signature,
/// )
/// .map_err(|_| ProgramError::InvalidArgument)?;
///
/// // If we're using this function for signature verification then we
/// // need to check the pubkey is an expected value.
/// // Here we are checking the secp256k1 pubkey against a known authorized pubkey.
/// if recovered_pubkey.0 != AUTHORIZED_PUBLIC_KEY {
/// return Err(ProgramError::InvalidArgument);
/// }
///
/// Ok(())
/// }
/// ```
///
/// The RPC client program:
///
/// ```no_run
/// # use solana_program::example_mocks::safecoin_client;
/// # use solana_program::example_mocks::solana_sdk;
/// use anyhow::Result;
/// use safecoin_client::rpc_client::RpcClient;
/// use solana_sdk::{
/// instruction::Instruction,
/// keccak,
/// pubkey::Pubkey,
/// signature::{Keypair, Signer},
/// transaction::Transaction,
/// };
/// # use borsh::{BorshDeserialize, BorshSerialize};
/// # #[derive(BorshSerialize, BorshDeserialize, Debug)]
/// # pub struct DemoSecp256k1RecoverInstruction {
/// # pub message: Vec<u8>,
/// # pub signature: [u8; 64],
/// # pub recovery_id: u8,
/// # }
///
/// pub fn demo_secp256k1_recover(
/// payer_keypair: &Keypair,
/// secp256k1_secret_key: &libsecp256k1::SecretKey,
/// client: &RpcClient,
/// program_keypair: &Keypair,
/// ) -> Result<()> {
/// let message = b"hello world";
/// let message_hash = {
/// let mut hasher = keccak::Hasher::default();
/// hasher.hash(message);
/// hasher.result()
/// };
///
/// let secp_message = libsecp256k1::Message::parse(&message_hash.0);
/// let (signature, recovery_id) = libsecp256k1::sign(&secp_message, &secp256k1_secret_key);
///
/// let signature = signature.serialize();
///
/// let instr = DemoSecp256k1RecoverInstruction {
/// message: message.to_vec(),
/// signature,
/// recovery_id: recovery_id.serialize(),
/// };
/// let instr = Instruction::new_with_borsh(
/// program_keypair.pubkey(),
/// &instr,
/// vec![],
/// );
///
/// let blockhash = client.get_latest_blockhash()?;
/// let tx = Transaction::new_signed_with_payer(
/// &[instr],
/// Some(&payer_keypair.pubkey()),
/// &[payer_keypair],
/// blockhash,
/// );
///
/// client.send_and_confirm_transaction(&tx)?;
///
/// Ok(())
/// }
/// ```
pub fn secp256k1_recover(
hash: &[u8],
recovery_id: u8,
signature: &[u8],
) -> Result<Secp256k1Pubkey, Secp256k1RecoverError> {
#[cfg(target_os = "solana")]
{
let mut pubkey_buffer = [0u8; SECP256K1_PUBLIC_KEY_LENGTH];
let result = unsafe {
crate::syscalls::sol_secp256k1_recover(
hash.as_ptr(),
recovery_id as u64,
signature.as_ptr(),
pubkey_buffer.as_mut_ptr(),
)
};
match result {
0 => Ok(Secp256k1Pubkey::new(&pubkey_buffer)),
error => Err(Secp256k1RecoverError::from(error)),
}
}
#[cfg(not(target_os = "solana"))]
{
let message = libsecp256k1::Message::parse_slice(hash)
.map_err(|_| Secp256k1RecoverError::InvalidHash)?;
let recovery_id = libsecp256k1::RecoveryId::parse(recovery_id)
.map_err(|_| Secp256k1RecoverError::InvalidRecoveryId)?;
let signature = libsecp256k1::Signature::parse_standard_slice(signature)
.map_err(|_| Secp256k1RecoverError::InvalidSignature)?;
let secp256k1_key = libsecp256k1::recover(&message, &signature, &recovery_id)
.map_err(|_| Secp256k1RecoverError::InvalidSignature)?;
Ok(Secp256k1Pubkey::new(&secp256k1_key.serialize()[1..65]))
}
}