1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
//! The original and current Safecoin message format.
//!
//! This crate defines two versions of `Message` in their own modules:
//! [`legacy`] and [`v0`]. `legacy` is the current version as of Safecoin 1.10.0.
//! `v0` is a [future message format] that encodes more account keys into a
//! transaction than the legacy format.
//!
//! [`legacy`]: crate::message::legacy
//! [`v0`]: crate::message::v0
//! [future message format]: https://docs.solana.com/proposals/transactions-v2

#![allow(clippy::integer_arithmetic)]

use {
    crate::{
        bpf_loader, bpf_loader_deprecated, bpf_loader_upgradeable,
        hash::Hash,
        instruction::{CompiledInstruction, Instruction},
        message::{compiled_keys::CompiledKeys, MessageHeader},
        pubkey::Pubkey,
        sanitize::{Sanitize, SanitizeError},
        short_vec, system_instruction, system_program, sysvar, wasm_bindgen,
    },
    lazy_static::lazy_static,
    std::{convert::TryFrom, str::FromStr},
};

lazy_static! {
    // Copied keys over since direct references create cyclical dependency.
    pub static ref BUILTIN_PROGRAMS_KEYS: [Pubkey; 10] = {
        let parse = |s| Pubkey::from_str(s).unwrap();
        [
            parse("Config1111111111111111111111111111111111111"),
            parse("Feature111111111111111111111111111111111111"),
            parse("NativeLoader1111111111111111111111111111111"),
            parse("Stake11111111111111111111111111111111111111"),
            parse("StakeConfig11111111111111111111111111111111"),
            parse("Vote111111111111111111111111111111111111111"),
            system_program::id(),
            bpf_loader::id(),
            bpf_loader_deprecated::id(),
            bpf_loader_upgradeable::id(),
        ]
    };
}

lazy_static! {
    // Each element of a key is a u8. We use key[0] as an index into this table of 256 boolean
    // elements, to store whether or not the first element of any key is present in the static
    // lists of built-in-program keys or system ids. By using this lookup table, we can very
    // quickly determine that a key under consideration cannot be in either of these lists (if
    // the value is "false"), or might be in one of these lists (if the value is "true")
    pub static ref MAYBE_BUILTIN_KEY_OR_SYSVAR: [bool; 256] = {
        let mut temp_table: [bool; 256] = [false; 256];
        BUILTIN_PROGRAMS_KEYS.iter().for_each(|key| temp_table[key.0[0] as usize] = true);
        sysvar::ALL_IDS.iter().for_each(|key| temp_table[key.0[0] as usize] = true);
        temp_table
    };
}

pub fn is_builtin_key_or_sysvar(key: &Pubkey) -> bool {
    if MAYBE_BUILTIN_KEY_OR_SYSVAR[key.0[0] as usize] {
        return sysvar::is_sysvar_id(key) || BUILTIN_PROGRAMS_KEYS.contains(key);
    }
    false
}

fn position(keys: &[Pubkey], key: &Pubkey) -> u8 {
    keys.iter().position(|k| k == key).unwrap() as u8
}

fn compile_instruction(ix: &Instruction, keys: &[Pubkey]) -> CompiledInstruction {
    let accounts: Vec<_> = ix
        .accounts
        .iter()
        .map(|account_meta| position(keys, &account_meta.pubkey))
        .collect();

    CompiledInstruction {
        program_id_index: position(keys, &ix.program_id),
        data: ix.data.clone(),
        accounts,
    }
}

fn compile_instructions(ixs: &[Instruction], keys: &[Pubkey]) -> Vec<CompiledInstruction> {
    ixs.iter().map(|ix| compile_instruction(ix, keys)).collect()
}

/// A Safecoin transaction message (legacy).
///
/// See the [`message`] module documentation for further description.
///
/// [`message`]: crate::message
///
/// Some constructors accept an optional `payer`, the account responsible for
/// paying the cost of executing a transaction. In most cases, callers should
/// specify the payer explicitly in these constructors. In some cases though,
/// the caller is not _required_ to specify the payer, but is still allowed to:
/// in the `Message` structure, the first account is always the fee-payer, so if
/// the caller has knowledge that the first account of the constructed
/// transaction's `Message` is both a signer and the expected fee-payer, then
/// redundantly specifying the fee-payer is not strictly required.
// NOTE: Serialization-related changes must be paired with the custom serialization
// for versioned messages in the `RemainingLegacyMessage` struct.
#[wasm_bindgen]
#[frozen_abi(digest = "2KnLEqfLcTBQqitE22Pp8JYkaqVVbAkGbCfdeHoyxcAU")]
#[derive(Serialize, Deserialize, Default, Debug, PartialEq, Eq, Clone, AbiExample)]
#[serde(rename_all = "camelCase")]
pub struct Message {
    /// The message header, identifying signed and read-only `account_keys`.
    // NOTE: Serialization-related changes must be paired with the direct read at sigverify.
    #[wasm_bindgen(skip)]
    pub header: MessageHeader,

    /// All the account keys used by this transaction.
    #[wasm_bindgen(skip)]
    #[serde(with = "short_vec")]
    pub account_keys: Vec<Pubkey>,

    /// The id of a recent ledger entry.
    pub recent_blockhash: Hash,

    /// Programs that will be executed in sequence and committed in one atomic transaction if all
    /// succeed.
    #[wasm_bindgen(skip)]
    #[serde(with = "short_vec")]
    pub instructions: Vec<CompiledInstruction>,
}

impl Sanitize for Message {
    fn sanitize(&self) -> std::result::Result<(), SanitizeError> {
        // signing area and read-only non-signing area should not overlap
        if self.header.num_required_signatures as usize
            + self.header.num_readonly_unsigned_accounts as usize
            > self.account_keys.len()
        {
            return Err(SanitizeError::IndexOutOfBounds);
        }

        // there should be at least 1 RW fee-payer account.
        if self.header.num_readonly_signed_accounts >= self.header.num_required_signatures {
            return Err(SanitizeError::IndexOutOfBounds);
        }

        for ci in &self.instructions {
            if ci.program_id_index as usize >= self.account_keys.len() {
                return Err(SanitizeError::IndexOutOfBounds);
            }
            // A program cannot be a payer.
            if ci.program_id_index == 0 {
                return Err(SanitizeError::IndexOutOfBounds);
            }
            for ai in &ci.accounts {
                if *ai as usize >= self.account_keys.len() {
                    return Err(SanitizeError::IndexOutOfBounds);
                }
            }
        }
        self.account_keys.sanitize()?;
        self.recent_blockhash.sanitize()?;
        self.instructions.sanitize()?;
        Ok(())
    }
}

impl Message {
    /// Create a new `Message`.
    ///
    /// # Examples
    ///
    /// This example uses the [`solana_sdk`], [`safecoin_client`] and [`anyhow`] crates.
    ///
    /// [`solana_sdk`]: https://docs.rs/safecoin-sdk
    /// [`safecoin_client`]: https://docs.rs/safecoin-client
    /// [`anyhow`]: https://docs.rs/anyhow
    ///
    /// ```
    /// # use solana_program::example_mocks::solana_sdk;
    /// # use solana_program::example_mocks::safecoin_client;
    /// use anyhow::Result;
    /// use borsh::{BorshSerialize, BorshDeserialize};
    /// use safecoin_client::rpc_client::RpcClient;
    /// use solana_sdk::{
    ///     instruction::Instruction,
    ///     message::Message,
    ///     pubkey::Pubkey,
    ///     signature::{Keypair, Signer},
    ///     transaction::Transaction,
    /// };
    ///
    /// // A custom program instruction. This would typically be defined in
    /// // another crate so it can be shared between the on-chain program and
    /// // the client.
    /// #[derive(BorshSerialize, BorshDeserialize)]
    /// enum BankInstruction {
    ///     Initialize,
    ///     Deposit { lamports: u64 },
    ///     Withdraw { lamports: u64 },
    /// }
    ///
    /// fn send_initialize_tx(
    ///     client: &RpcClient,
    ///     program_id: Pubkey,
    ///     payer: &Keypair
    /// ) -> Result<()> {
    ///
    ///     let bank_instruction = BankInstruction::Initialize;
    ///
    ///     let instruction = Instruction::new_with_borsh(
    ///         program_id,
    ///         &bank_instruction,
    ///         vec![],
    ///     );
    ///
    ///     let message = Message::new(
    ///         &[instruction],
    ///         Some(&payer.pubkey()),
    ///     );
    ///
    ///     let blockhash = client.get_latest_blockhash()?;
    ///     let mut tx = Transaction::new(&[payer], message, blockhash);
    ///     client.send_and_confirm_transaction(&tx)?;
    ///
    ///     Ok(())
    /// }
    /// #
    /// # let client = RpcClient::new(String::new());
    /// # let program_id = Pubkey::new_unique();
    /// # let payer = Keypair::new();
    /// # send_initialize_tx(&client, program_id, &payer)?;
    /// #
    /// # Ok::<(), anyhow::Error>(())
    /// ```
    pub fn new(instructions: &[Instruction], payer: Option<&Pubkey>) -> Self {
        Self::new_with_blockhash(instructions, payer, &Hash::default())
    }

    /// Create a new message while setting the blockhash.
    ///
    /// # Examples
    ///
    /// This example uses the [`solana_sdk`], [`safecoin_client`] and [`anyhow`] crates.
    ///
    /// [`solana_sdk`]: https://docs.rs/safecoin-sdk
    /// [`safecoin_client`]: https://docs.rs/safecoin-client
    /// [`anyhow`]: https://docs.rs/anyhow
    ///
    /// ```
    /// # use solana_program::example_mocks::solana_sdk;
    /// # use solana_program::example_mocks::safecoin_client;
    /// use anyhow::Result;
    /// use borsh::{BorshSerialize, BorshDeserialize};
    /// use safecoin_client::rpc_client::RpcClient;
    /// use solana_sdk::{
    ///     instruction::Instruction,
    ///     message::Message,
    ///     pubkey::Pubkey,
    ///     signature::{Keypair, Signer},
    ///     transaction::Transaction,
    /// };
    ///
    /// // A custom program instruction. This would typically be defined in
    /// // another crate so it can be shared between the on-chain program and
    /// // the client.
    /// #[derive(BorshSerialize, BorshDeserialize)]
    /// enum BankInstruction {
    ///     Initialize,
    ///     Deposit { lamports: u64 },
    ///     Withdraw { lamports: u64 },
    /// }
    ///
    /// fn send_initialize_tx(
    ///     client: &RpcClient,
    ///     program_id: Pubkey,
    ///     payer: &Keypair
    /// ) -> Result<()> {
    ///
    ///     let bank_instruction = BankInstruction::Initialize;
    ///
    ///     let instruction = Instruction::new_with_borsh(
    ///         program_id,
    ///         &bank_instruction,
    ///         vec![],
    ///     );
    ///
    ///     let blockhash = client.get_latest_blockhash()?;
    ///
    ///     let message = Message::new_with_blockhash(
    ///         &[instruction],
    ///         Some(&payer.pubkey()),
    ///         &blockhash,
    ///     );
    ///
    ///     let mut tx = Transaction::new_unsigned(message);
    ///     tx.sign(&[payer], tx.message.recent_blockhash);
    ///     client.send_and_confirm_transaction(&tx)?;
    ///
    ///     Ok(())
    /// }
    /// #
    /// # let client = RpcClient::new(String::new());
    /// # let program_id = Pubkey::new_unique();
    /// # let payer = Keypair::new();
    /// # send_initialize_tx(&client, program_id, &payer)?;
    /// #
    /// # Ok::<(), anyhow::Error>(())
    /// ```
    pub fn new_with_blockhash(
        instructions: &[Instruction],
        payer: Option<&Pubkey>,
        blockhash: &Hash,
    ) -> Self {
        let compiled_keys = CompiledKeys::compile(instructions, payer.cloned());
        let (header, account_keys) = compiled_keys
            .try_into_message_components()
            .expect("overflow when compiling message keys");
        let instructions = compile_instructions(instructions, &account_keys);
        Self::new_with_compiled_instructions(
            header.num_required_signatures,
            header.num_readonly_signed_accounts,
            header.num_readonly_unsigned_accounts,
            account_keys,
            *blockhash,
            instructions,
        )
    }

    /// Create a new message for a [nonced transaction].
    ///
    /// [nonced transaction]: https://docs.solana.com/implemented-proposals/durable-tx-nonces
    ///
    /// In this type of transaction, the blockhash is replaced with a _durable
    /// transaction nonce_, allowing for extended time to pass between the
    /// transaction's signing and submission to the blockchain.
    ///
    /// # Examples
    ///
    /// This example uses the [`solana_sdk`], [`safecoin_client`] and [`anyhow`] crates.
    ///
    /// [`solana_sdk`]: https://docs.rs/safecoin-sdk
    /// [`safecoin_client`]: https://docs.rs/safecoin-client
    /// [`anyhow`]: https://docs.rs/anyhow
    ///
    /// ```
    /// # use solana_program::example_mocks::solana_sdk;
    /// # use solana_program::example_mocks::safecoin_client;
    /// use anyhow::Result;
    /// use borsh::{BorshSerialize, BorshDeserialize};
    /// use safecoin_client::rpc_client::RpcClient;
    /// use solana_sdk::{
    ///     hash::Hash,
    ///     instruction::Instruction,
    ///     message::Message,
    ///     nonce,
    ///     pubkey::Pubkey,
    ///     signature::{Keypair, Signer},
    ///     system_instruction,
    ///     transaction::Transaction,
    /// };
    ///
    /// // A custom program instruction. This would typically be defined in
    /// // another crate so it can be shared between the on-chain program and
    /// // the client.
    /// #[derive(BorshSerialize, BorshDeserialize)]
    /// enum BankInstruction {
    ///     Initialize,
    ///     Deposit { lamports: u64 },
    ///     Withdraw { lamports: u64 },
    /// }
    ///
    /// // Create a nonced transaction for later signing and submission,
    /// // returning it and the nonce account's pubkey.
    /// fn create_offline_initialize_tx(
    ///     client: &RpcClient,
    ///     program_id: Pubkey,
    ///     payer: &Keypair
    /// ) -> Result<(Transaction, Pubkey)> {
    ///
    ///     let bank_instruction = BankInstruction::Initialize;
    ///     let bank_instruction = Instruction::new_with_borsh(
    ///         program_id,
    ///         &bank_instruction,
    ///         vec![],
    ///     );
    ///
    ///     // This will create a nonce account and assign authority to the
    ///     // payer so they can sign to advance the nonce and withdraw its rent.
    ///     let nonce_account = make_nonce_account(client, payer)?;
    ///
    ///     let mut message = Message::new_with_nonce(
    ///         vec![bank_instruction],
    ///         Some(&payer.pubkey()),
    ///         &nonce_account,
    ///         &payer.pubkey()
    ///     );
    ///
    ///     // This transaction will need to be signed later, using the blockhash
    ///     // stored in the nonce account.
    ///     let tx = Transaction::new_unsigned(message);
    ///
    ///     Ok((tx, nonce_account))
    /// }
    ///
    /// fn make_nonce_account(client: &RpcClient, payer: &Keypair)
    ///     -> Result<Pubkey>
    /// {
    ///     let nonce_account_address = Keypair::new();
    ///     let nonce_account_size = nonce::State::size();
    ///     let nonce_rent = client.get_minimum_balance_for_rent_exemption(nonce_account_size)?;
    ///
    ///     // Assigning the nonce authority to the payer so they can sign for the withdrawal,
    ///     // and we can throw away the nonce address secret key.
    ///     let create_nonce_instr = system_instruction::create_nonce_account(
    ///         &payer.pubkey(),
    ///         &nonce_account_address.pubkey(),
    ///         &payer.pubkey(),
    ///         nonce_rent,
    ///     );
    ///
    ///     let mut nonce_tx = Transaction::new_with_payer(&create_nonce_instr, Some(&payer.pubkey()));
    ///     let blockhash = client.get_latest_blockhash()?;
    ///     nonce_tx.sign(&[&payer, &nonce_account_address], blockhash);
    ///     client.send_and_confirm_transaction(&nonce_tx)?;
    ///
    ///     Ok(nonce_account_address.pubkey())
    /// }
    /// #
    /// # let client = RpcClient::new(String::new());
    /// # let program_id = Pubkey::new_unique();
    /// # let payer = Keypair::new();
    /// # create_offline_initialize_tx(&client, program_id, &payer)?;
    /// # Ok::<(), anyhow::Error>(())
    /// ```
    pub fn new_with_nonce(
        mut instructions: Vec<Instruction>,
        payer: Option<&Pubkey>,
        nonce_account_pubkey: &Pubkey,
        nonce_authority_pubkey: &Pubkey,
    ) -> Self {
        let nonce_ix =
            system_instruction::advance_nonce_account(nonce_account_pubkey, nonce_authority_pubkey);
        instructions.insert(0, nonce_ix);
        Self::new(&instructions, payer)
    }

    pub fn new_with_compiled_instructions(
        num_required_signatures: u8,
        num_readonly_signed_accounts: u8,
        num_readonly_unsigned_accounts: u8,
        account_keys: Vec<Pubkey>,
        recent_blockhash: Hash,
        instructions: Vec<CompiledInstruction>,
    ) -> Self {
        Self {
            header: MessageHeader {
                num_required_signatures,
                num_readonly_signed_accounts,
                num_readonly_unsigned_accounts,
            },
            account_keys,
            recent_blockhash,
            instructions,
        }
    }

    /// Compute the blake3 hash of this transaction's message.
    #[cfg(not(target_os = "solana"))]
    pub fn hash(&self) -> Hash {
        let message_bytes = self.serialize();
        Self::hash_raw_message(&message_bytes)
    }

    /// Compute the blake3 hash of a raw transaction message.
    #[cfg(not(target_os = "solana"))]
    pub fn hash_raw_message(message_bytes: &[u8]) -> Hash {
        use blake3::traits::digest::Digest;
        let mut hasher = blake3::Hasher::new();
        hasher.update(b"solana-tx-message-v1");
        hasher.update(message_bytes);
        Hash(<[u8; crate::hash::HASH_BYTES]>::try_from(hasher.finalize().as_slice()).unwrap())
    }

    pub fn compile_instruction(&self, ix: &Instruction) -> CompiledInstruction {
        compile_instruction(ix, &self.account_keys)
    }

    pub fn serialize(&self) -> Vec<u8> {
        bincode::serialize(self).unwrap()
    }

    pub fn program_id(&self, instruction_index: usize) -> Option<&Pubkey> {
        Some(
            &self.account_keys[self.instructions.get(instruction_index)?.program_id_index as usize],
        )
    }

    pub fn program_index(&self, instruction_index: usize) -> Option<usize> {
        Some(self.instructions.get(instruction_index)?.program_id_index as usize)
    }

    pub fn program_ids(&self) -> Vec<&Pubkey> {
        self.instructions
            .iter()
            .map(|ix| &self.account_keys[ix.program_id_index as usize])
            .collect()
    }

    pub fn is_key_passed_to_program(&self, key_index: usize) -> bool {
        if let Ok(key_index) = u8::try_from(key_index) {
            self.instructions
                .iter()
                .any(|ix| ix.accounts.contains(&key_index))
        } else {
            false
        }
    }

    pub fn is_key_called_as_program(&self, key_index: usize) -> bool {
        if let Ok(key_index) = u8::try_from(key_index) {
            self.instructions
                .iter()
                .any(|ix| ix.program_id_index == key_index)
        } else {
            false
        }
    }

    pub fn is_non_loader_key(&self, key_index: usize) -> bool {
        !self.is_key_called_as_program(key_index) || self.is_key_passed_to_program(key_index)
    }

    pub fn program_position(&self, index: usize) -> Option<usize> {
        let program_ids = self.program_ids();
        program_ids
            .iter()
            .position(|&&pubkey| pubkey == self.account_keys[index])
    }

    pub fn maybe_executable(&self, i: usize) -> bool {
        self.program_position(i).is_some()
    }

    pub fn demote_program_id(&self, i: usize) -> bool {
        self.is_key_called_as_program(i) && !self.is_upgradeable_loader_present()
    }

    pub fn is_writable(&self, i: usize) -> bool {
        (i < (self.header.num_required_signatures - self.header.num_readonly_signed_accounts)
            as usize
            || (i >= self.header.num_required_signatures as usize
                && i < self.account_keys.len()
                    - self.header.num_readonly_unsigned_accounts as usize))
            && !is_builtin_key_or_sysvar(&self.account_keys[i])
            && !self.demote_program_id(i)
    }

    pub fn is_signer(&self, i: usize) -> bool {
        i < self.header.num_required_signatures as usize
    }

    #[deprecated]
    pub fn get_account_keys_by_lock_type(&self) -> (Vec<&Pubkey>, Vec<&Pubkey>) {
        let mut writable_keys = vec![];
        let mut readonly_keys = vec![];
        for (i, key) in self.account_keys.iter().enumerate() {
            if self.is_writable(i) {
                writable_keys.push(key);
            } else {
                readonly_keys.push(key);
            }
        }
        (writable_keys, readonly_keys)
    }

    #[deprecated]
    pub fn deserialize_instruction(
        index: usize,
        data: &[u8],
    ) -> Result<Instruction, SanitizeError> {
        #[allow(deprecated)]
        sysvar::instructions::load_instruction_at(index, data)
    }

    pub fn signer_keys(&self) -> Vec<&Pubkey> {
        // Clamp in case we're working on un-`sanitize()`ed input
        let last_key = self
            .account_keys
            .len()
            .min(self.header.num_required_signatures as usize);
        self.account_keys[..last_key].iter().collect()
    }

    /// Returns `true` if `account_keys` has any duplicate keys.
    pub fn has_duplicates(&self) -> bool {
        // Note: This is an O(n^2) algorithm, but requires no heap allocations. The benchmark
        // `bench_has_duplicates` in benches/message_processor.rs shows that this implementation is
        // ~50 times faster than using HashSet for very short slices.
        for i in 1..self.account_keys.len() {
            #[allow(clippy::integer_arithmetic)]
            if self.account_keys[i..].contains(&self.account_keys[i - 1]) {
                return true;
            }
        }
        false
    }

    /// Returns `true` if any account is the BPF upgradeable loader.
    pub fn is_upgradeable_loader_present(&self) -> bool {
        self.account_keys
            .iter()
            .any(|&key| key == bpf_loader_upgradeable::id())
    }
}

#[cfg(test)]
mod tests {
    #![allow(deprecated)]
    use {
        super::*,
        crate::{hash, instruction::AccountMeta, message::MESSAGE_HEADER_LENGTH},
        std::collections::HashSet,
    };

    #[test]
    fn test_builtin_program_keys() {
        let keys: HashSet<Pubkey> = BUILTIN_PROGRAMS_KEYS.iter().copied().collect();
        assert_eq!(keys.len(), 10);
        for k in keys {
            let k = format!("{}", k);
            assert!(k.ends_with("11111111111111111111111"));
        }
    }

    #[test]
    fn test_builtin_program_keys_abi_freeze() {
        // Once the feature is flipped on, we can't further modify
        // BUILTIN_PROGRAMS_KEYS without the risk of breaking consensus.
        let builtins = format!("{:?}", *BUILTIN_PROGRAMS_KEYS);
        assert_eq!(
            format!("{}", hash::hash(builtins.as_bytes())),
            "ACqmMkYbo9eqK6QrRSrB3HLyR6uHhLf31SCfGUAJjiWj"
        );
    }

    #[test]
    // Ensure there's a way to calculate the number of required signatures.
    fn test_message_signed_keys_len() {
        let program_id = Pubkey::default();
        let id0 = Pubkey::default();
        let ix = Instruction::new_with_bincode(program_id, &0, vec![AccountMeta::new(id0, false)]);
        let message = Message::new(&[ix], None);
        assert_eq!(message.header.num_required_signatures, 0);

        let ix = Instruction::new_with_bincode(program_id, &0, vec![AccountMeta::new(id0, true)]);
        let message = Message::new(&[ix], Some(&id0));
        assert_eq!(message.header.num_required_signatures, 1);
    }

    #[test]
    fn test_message_kitchen_sink() {
        let program_id0 = Pubkey::new_unique();
        let program_id1 = Pubkey::new_unique();
        let id0 = Pubkey::default();
        let id1 = Pubkey::new_unique();
        let message = Message::new(
            &[
                Instruction::new_with_bincode(program_id0, &0, vec![AccountMeta::new(id0, false)]),
                Instruction::new_with_bincode(program_id1, &0, vec![AccountMeta::new(id1, true)]),
                Instruction::new_with_bincode(program_id0, &0, vec![AccountMeta::new(id1, false)]),
            ],
            Some(&id1),
        );
        assert_eq!(
            message.instructions[0],
            CompiledInstruction::new(2, &0, vec![1])
        );
        assert_eq!(
            message.instructions[1],
            CompiledInstruction::new(3, &0, vec![0])
        );
        assert_eq!(
            message.instructions[2],
            CompiledInstruction::new(2, &0, vec![0])
        );
    }

    #[test]
    fn test_message_payer_first() {
        let program_id = Pubkey::default();
        let payer = Pubkey::new_unique();
        let id0 = Pubkey::default();

        let ix = Instruction::new_with_bincode(program_id, &0, vec![AccountMeta::new(id0, false)]);
        let message = Message::new(&[ix], Some(&payer));
        assert_eq!(message.header.num_required_signatures, 1);

        let ix = Instruction::new_with_bincode(program_id, &0, vec![AccountMeta::new(id0, true)]);
        let message = Message::new(&[ix], Some(&payer));
        assert_eq!(message.header.num_required_signatures, 2);

        let ix = Instruction::new_with_bincode(
            program_id,
            &0,
            vec![AccountMeta::new(payer, true), AccountMeta::new(id0, true)],
        );
        let message = Message::new(&[ix], Some(&payer));
        assert_eq!(message.header.num_required_signatures, 2);
    }

    #[test]
    fn test_program_position() {
        let program_id0 = Pubkey::default();
        let program_id1 = Pubkey::new_unique();
        let id = Pubkey::new_unique();
        let message = Message::new(
            &[
                Instruction::new_with_bincode(program_id0, &0, vec![AccountMeta::new(id, false)]),
                Instruction::new_with_bincode(program_id1, &0, vec![AccountMeta::new(id, true)]),
            ],
            Some(&id),
        );
        assert_eq!(message.program_position(0), None);
        assert_eq!(message.program_position(1), Some(0));
        assert_eq!(message.program_position(2), Some(1));
    }

    #[test]
    fn test_is_writable() {
        let key0 = Pubkey::new_unique();
        let key1 = Pubkey::new_unique();
        let key2 = Pubkey::new_unique();
        let key3 = Pubkey::new_unique();
        let key4 = Pubkey::new_unique();
        let key5 = Pubkey::new_unique();

        let message = Message {
            header: MessageHeader {
                num_required_signatures: 3,
                num_readonly_signed_accounts: 2,
                num_readonly_unsigned_accounts: 1,
            },
            account_keys: vec![key0, key1, key2, key3, key4, key5],
            recent_blockhash: Hash::default(),
            instructions: vec![],
        };
        assert!(message.is_writable(0));
        assert!(!message.is_writable(1));
        assert!(!message.is_writable(2));
        assert!(message.is_writable(3));
        assert!(message.is_writable(4));
        assert!(!message.is_writable(5));
    }

    #[test]
    fn test_get_account_keys_by_lock_type() {
        let program_id = Pubkey::default();
        let id0 = Pubkey::new_unique();
        let id1 = Pubkey::new_unique();
        let id2 = Pubkey::new_unique();
        let id3 = Pubkey::new_unique();
        let message = Message::new(
            &[
                Instruction::new_with_bincode(program_id, &0, vec![AccountMeta::new(id0, false)]),
                Instruction::new_with_bincode(program_id, &0, vec![AccountMeta::new(id1, true)]),
                Instruction::new_with_bincode(
                    program_id,
                    &0,
                    vec![AccountMeta::new_readonly(id2, false)],
                ),
                Instruction::new_with_bincode(
                    program_id,
                    &0,
                    vec![AccountMeta::new_readonly(id3, true)],
                ),
            ],
            Some(&id1),
        );
        assert_eq!(
            message.get_account_keys_by_lock_type(),
            (vec![&id1, &id0], vec![&id3, &program_id, &id2])
        );
    }

    #[test]
    fn test_program_ids() {
        let key0 = Pubkey::new_unique();
        let key1 = Pubkey::new_unique();
        let loader2 = Pubkey::new_unique();
        let instructions = vec![CompiledInstruction::new(2, &(), vec![0, 1])];
        let message = Message::new_with_compiled_instructions(
            1,
            0,
            2,
            vec![key0, key1, loader2],
            Hash::default(),
            instructions,
        );
        assert_eq!(message.program_ids(), vec![&loader2]);
    }

    #[test]
    fn test_is_key_passed_to_program() {
        let key0 = Pubkey::new_unique();
        let key1 = Pubkey::new_unique();
        let loader2 = Pubkey::new_unique();
        let instructions = vec![CompiledInstruction::new(2, &(), vec![0, 1])];
        let message = Message::new_with_compiled_instructions(
            1,
            0,
            2,
            vec![key0, key1, loader2],
            Hash::default(),
            instructions,
        );

        assert!(message.is_key_passed_to_program(0));
        assert!(message.is_key_passed_to_program(1));
        assert!(!message.is_key_passed_to_program(2));
    }

    #[test]
    fn test_is_non_loader_key() {
        let key0 = Pubkey::new_unique();
        let key1 = Pubkey::new_unique();
        let loader2 = Pubkey::new_unique();
        let instructions = vec![CompiledInstruction::new(2, &(), vec![0, 1])];
        let message = Message::new_with_compiled_instructions(
            1,
            0,
            2,
            vec![key0, key1, loader2],
            Hash::default(),
            instructions,
        );
        assert!(message.is_non_loader_key(0));
        assert!(message.is_non_loader_key(1));
        assert!(!message.is_non_loader_key(2));
    }

    #[test]
    fn test_message_header_len_constant() {
        assert_eq!(
            bincode::serialized_size(&MessageHeader::default()).unwrap() as usize,
            MESSAGE_HEADER_LENGTH
        );
    }

    #[test]
    fn test_message_hash() {
        // when this test fails, it's most likely due to a new serialized format of a message.
        // in this case, the domain prefix `solana-tx-message-v1` should be updated.
        let program_id0 = Pubkey::from_str("4uQeVj5tqViQh7yWWGStvkEG1Zmhx6uasJtWCJziofM").unwrap();
        let program_id1 = Pubkey::from_str("8opHzTAnfzRpPEx21XtnrVTX28YQuCpAjcn1PczScKh").unwrap();
        let id0 = Pubkey::from_str("CiDwVBFgWV9E5MvXWoLgnEgn2hK7rJikbvfWavzAQz3").unwrap();
        let id1 = Pubkey::from_str("GcdayuLaLyrdmUu324nahyv33G5poQdLUEZ1nEytDeP").unwrap();
        let id2 = Pubkey::from_str("LX3EUdRUBUa3TbsYXLEUdj9J3prXkWXvLYSWyYyc2Jj").unwrap();
        let id3 = Pubkey::from_str("QRSsyMWN1yHT9ir42bgNZUNZ4PdEhcSWCrL2AryKpy5").unwrap();
        let instructions = vec![
            Instruction::new_with_bincode(program_id0, &0, vec![AccountMeta::new(id0, false)]),
            Instruction::new_with_bincode(program_id0, &0, vec![AccountMeta::new(id1, true)]),
            Instruction::new_with_bincode(
                program_id1,
                &0,
                vec![AccountMeta::new_readonly(id2, false)],
            ),
            Instruction::new_with_bincode(
                program_id1,
                &0,
                vec![AccountMeta::new_readonly(id3, true)],
            ),
        ];

        let message = Message::new(&instructions, Some(&id1));
        assert_eq!(
            message.hash(),
            Hash::from_str("7VWCF4quo2CcWQFNUayZiorxpiR5ix8YzLebrXKf3fMF").unwrap()
        )
    }
}