1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
use {
    crate::accounts_db::SnapshotStorage,
    log::*,
    safecoin_measure::measure::Measure,
    solana_sdk::clock::Slot,
    std::ops::{Bound, Range, RangeBounds},
};

/// Provide access to SnapshotStorages sorted by slot
pub struct SortedStorages<'a> {
    /// range of slots where storages exist (likely sparse)
    range: Range<Slot>,
    /// the actual storages. index is (slot - range.start)
    storages: Vec<Option<&'a SnapshotStorage>>,
    slot_count: usize,
    storage_count: usize,
}

impl<'a> SortedStorages<'a> {
    /// containing nothing
    pub fn empty() -> Self {
        SortedStorages {
            range: Range::default(),
            storages: Vec::default(),
            slot_count: 0,
            storage_count: 0,
        }
    }

    /// primary method of retrieving (Slot, SnapshotStorage)
    pub fn iter_range<R>(&'a self, range: R) -> SortedStoragesIter<'a>
    where
        R: RangeBounds<Slot>,
    {
        SortedStoragesIter::new(self, range)
    }

    fn get(&self, slot: Slot) -> Option<&SnapshotStorage> {
        if !self.range.contains(&slot) {
            None
        } else {
            let index = (slot - self.range.start) as usize;
            self.storages[index]
        }
    }

    pub fn range_width(&self) -> Slot {
        self.range.end - self.range.start
    }

    pub fn range(&self) -> &Range<Slot> {
        &self.range
    }

    pub fn max_slot_inclusive(&self) -> Slot {
        self.range.end.saturating_sub(1)
    }

    pub fn slot_count(&self) -> usize {
        self.slot_count
    }

    pub fn storage_count(&self) -> usize {
        self.storage_count
    }

    // assumptions:
    // 1. each SnapshotStorage.!is_empty()
    // 2. SnapshotStorage.first().unwrap().get_slot() is unique from all other SnapshotStorage items.
    pub fn new(source: &'a [SnapshotStorage]) -> Self {
        let slots = source.iter().map(|storages| {
            let first = storages.first();
            assert!(first.is_some(), "SnapshotStorage.is_empty()");
            let storage = first.unwrap();
            storage.slot() // this must be unique. Will be enforced in new_with_slots
        });
        Self::new_with_slots(source.iter().zip(slots.into_iter()), None, None)
    }

    /// create `SortedStorages` from 'source' iterator.
    /// 'source' contains a SnapshotStorage and its associated slot
    /// 'source' does not have to be sorted in any way, but is assumed to not have duplicate slot #s
    pub fn new_with_slots(
        source: impl Iterator<Item = (&'a SnapshotStorage, Slot)> + Clone,
        // A slot used as a lower bound, but potentially smaller than the smallest slot in the given 'source' iterator
        min_slot: Option<Slot>,
        // highest valid slot. Only matters if source array does not contain a slot >= max_slot_inclusive.
        // An example is a slot that has accounts in the write cache at slots <= 'max_slot_inclusive' but no storages at those slots.
        // None => self.range.end = source.1.max() + 1
        // Some(slot) => self.range.end = std::cmp::max(slot, source.1.max())
        max_slot_inclusive: Option<Slot>,
    ) -> Self {
        let mut min = Slot::MAX;
        let mut max = Slot::MIN;
        let mut adjust_min_max = |slot| {
            min = std::cmp::min(slot, min);
            max = std::cmp::max(slot + 1, max);
        };
        // none, either, or both of min/max could be specified
        if let Some(slot) = min_slot {
            adjust_min_max(slot);
        }
        if let Some(slot) = max_slot_inclusive {
            adjust_min_max(slot);
        }

        let mut slot_count = 0;
        let mut time = Measure::start("get slot");
        let source_ = source.clone();
        let mut storage_count = 0;
        source_.for_each(|(storages, slot)| {
            storage_count += storages.len();
            slot_count += 1;
            adjust_min_max(slot);
        });
        time.stop();
        let mut time2 = Measure::start("sort");
        let range;
        let mut storages;
        if min > max {
            range = Range::default();
            storages = vec![];
        } else {
            range = Range {
                start: min,
                end: max,
            };
            let len = max - min;
            storages = vec![None; len as usize];
            source.for_each(|(original_storages, slot)| {
                let index = (slot - min) as usize;
                assert!(storages[index].is_none(), "slots are not unique"); // we should not encounter the same slot twice
                storages[index] = Some(original_storages);
            });
        }
        time2.stop();
        debug!("SortedStorages, times: {}, {}", time.as_us(), time2.as_us());
        Self {
            range,
            storages,
            slot_count,
            storage_count,
        }
    }
}

/// Iterator over successive slots in 'storages' within 'range'.
/// This enforces sequential access so that random access does not have to be implemented.
/// Random access could be expensive with large sparse sets.
pub struct SortedStoragesIter<'a> {
    /// range for the iterator to iterate over (start_inclusive..end_exclusive)
    range: Range<Slot>,
    /// the data to return per slot
    storages: &'a SortedStorages<'a>,
    /// the slot to be returned the next time 'Next' is called
    next_slot: Slot,
}

impl<'a> Iterator for SortedStoragesIter<'a> {
    type Item = (Slot, Option<&'a SnapshotStorage>);

    fn next(&mut self) -> Option<Self::Item> {
        let slot = self.next_slot;
        if slot < self.range.end {
            // iterator is still in range. Storage may or may not exist at this slot, but the iterator still needs to return the slot
            self.next_slot += 1;
            Some((slot, self.storages.get(slot)))
        } else {
            // iterator passed the end of the range, so from now on it returns None
            None
        }
    }
}

impl<'a> SortedStoragesIter<'a> {
    pub fn new<R: RangeBounds<Slot>>(
        storages: &'a SortedStorages<'a>,
        range: R,
    ) -> SortedStoragesIter<'a> {
        let storage_range = storages.range();
        let next_slot = match range.start_bound() {
            Bound::Unbounded => {
                storage_range.start // unbounded beginning starts with the min known slot (which is inclusive)
            }
            Bound::Included(x) => *x,
            Bound::Excluded(x) => *x + 1, // make inclusive
        };
        let end_exclusive_slot = match range.end_bound() {
            Bound::Unbounded => {
                storage_range.end // unbounded end ends with the max known slot (which is exclusive)
            }
            Bound::Included(x) => *x + 1, // make exclusive
            Bound::Excluded(x) => *x,
        };
        // Note that the range can be outside the range of known storages.
        // This is because the storages may not be the only source of valid slots.
        // The write cache is another source of slots that 'storages' knows nothing about.
        let range = next_slot..end_exclusive_slot;
        SortedStoragesIter {
            range,
            storages,
            next_slot,
        }
    }
}

#[cfg(test)]
pub mod tests {
    use super::*;
    impl<'a> SortedStorages<'a> {
        pub fn new_debug(source: &[(&'a SnapshotStorage, Slot)], min: Slot, len: usize) -> Self {
            let mut storages = vec![None; len];
            let range = Range {
                start: min,
                end: min + len as Slot,
            };
            let slot_count = source.len();
            for (storage, slot) in source {
                storages[*slot as usize] = Some(*storage);
            }

            Self {
                range,
                storages,
                slot_count,
                storage_count: 0,
            }
        }

        pub fn new_for_tests(storages: &[&'a SnapshotStorage], slots: &[Slot]) -> Self {
            assert_eq!(storages.len(), slots.len());
            SortedStorages::new_with_slots(
                storages.iter().cloned().zip(slots.iter().cloned()),
                None,
                None,
            )
        }
    }

    #[test]
    fn test_sorted_storages_range_iter() {
        let storages = SortedStorages::empty();
        let check = |(slot, storages): (Slot, Option<&SnapshotStorage>)| {
            assert!(storages.is_none());
            slot
        };
        assert_eq!(
            (0..5).into_iter().collect::<Vec<_>>(),
            storages.iter_range(..5).map(check).collect::<Vec<_>>()
        );
        assert_eq!(
            (1..5).into_iter().collect::<Vec<_>>(),
            storages.iter_range(1..5).map(check).collect::<Vec<_>>()
        );
        assert_eq!(
            (0..0).into_iter().collect::<Vec<_>>(),
            storages.iter_range(..).map(check).collect::<Vec<_>>()
        );
        assert_eq!(
            (0..0).into_iter().collect::<Vec<_>>(),
            storages.iter_range(1..).map(check).collect::<Vec<_>>()
        );

        // only item is slot 3
        let s1 = Vec::new();
        let storages = SortedStorages::new_for_tests(&[&s1], &[3]);
        let check = |(slot, storages): (Slot, Option<&SnapshotStorage>)| {
            assert!(
                (slot != 3) ^ storages.is_some(),
                "slot: {}, storages: {:?}",
                slot,
                storages
            );
            slot
        };
        for start in 0..5 {
            for end in 0..5 {
                assert_eq!(
                    (start..end).into_iter().collect::<Vec<_>>(),
                    storages
                        .iter_range(start..end)
                        .map(check)
                        .collect::<Vec<_>>()
                );
            }
        }
        assert_eq!(
            (3..5).into_iter().collect::<Vec<_>>(),
            storages.iter_range(..5).map(check).collect::<Vec<_>>()
        );
        assert_eq!(
            (1..=3).into_iter().collect::<Vec<_>>(),
            storages.iter_range(1..).map(check).collect::<Vec<_>>()
        );
        assert_eq!(
            (3..=3).into_iter().collect::<Vec<_>>(),
            storages.iter_range(..).map(check).collect::<Vec<_>>()
        );

        // items in slots 2 and 4
        let s2 = Vec::with_capacity(2);
        let s4 = Vec::with_capacity(4);
        let storages = SortedStorages::new_for_tests(&[&s2, &s4], &[2, 4]);
        let check = |(slot, storages): (Slot, Option<&SnapshotStorage>)| {
            assert!(
                (slot != 2 && slot != 4)
                    ^ storages
                        .map(|storages| storages.capacity() == (slot as usize))
                        .unwrap_or(false),
                "slot: {}, storages: {:?}",
                slot,
                storages
            );
            slot
        };
        for start in 0..5 {
            for end in 0..5 {
                assert_eq!(
                    (start..end).into_iter().collect::<Vec<_>>(),
                    storages
                        .iter_range(start..end)
                        .map(check)
                        .collect::<Vec<_>>()
                );
            }
        }
        assert_eq!(
            (2..5).into_iter().collect::<Vec<_>>(),
            storages.iter_range(..5).map(check).collect::<Vec<_>>()
        );
        assert_eq!(
            (1..=4).into_iter().collect::<Vec<_>>(),
            storages.iter_range(1..).map(check).collect::<Vec<_>>()
        );
        assert_eq!(
            (2..=4).into_iter().collect::<Vec<_>>(),
            storages.iter_range(..).map(check).collect::<Vec<_>>()
        );
    }

    #[test]
    #[should_panic(expected = "SnapshotStorage.is_empty()")]
    fn test_sorted_storages_empty() {
        SortedStorages::new(&[Vec::new()]);
    }

    #[test]
    #[should_panic(expected = "slots are not unique")]
    fn test_sorted_storages_duplicate_slots() {
        SortedStorages::new_for_tests(&[&Vec::new(), &Vec::new()], &[0, 0]);
    }

    #[test]
    fn test_sorted_storages_none() {
        let result = SortedStorages::empty();
        assert_eq!(result.range, Range::default());
        assert_eq!(result.slot_count, 0);
        assert_eq!(result.storages.len(), 0);
        assert!(result.get(0).is_none());
    }

    #[test]
    fn test_sorted_storages_1() {
        let vec = vec![];
        let vec_check = vec.clone();
        let slot = 4;
        let vecs = [&vec];
        let result = SortedStorages::new_for_tests(&vecs, &[slot]);
        assert_eq!(
            result.range,
            Range {
                start: slot,
                end: slot + 1
            }
        );
        assert_eq!(result.slot_count, 1);
        assert_eq!(result.storages.len(), 1);
        assert_eq!(result.get(slot).unwrap().len(), vec_check.len());
    }

    #[test]
    fn test_sorted_storages_2() {
        let vec = vec![];
        let vec_check = vec.clone();
        let slots = [4, 7];
        let vecs = [&vec, &vec];
        let result = SortedStorages::new_for_tests(&vecs, &slots);
        assert_eq!(
            result.range,
            Range {
                start: slots[0],
                end: slots[1] + 1,
            }
        );
        assert_eq!(result.slot_count, 2);
        assert_eq!(result.storages.len() as Slot, slots[1] - slots[0] + 1);
        assert!(result.get(0).is_none());
        assert!(result.get(3).is_none());
        assert!(result.get(5).is_none());
        assert!(result.get(6).is_none());
        assert!(result.get(8).is_none());
        assert_eq!(result.get(slots[0]).unwrap().len(), vec_check.len());
        assert_eq!(result.get(slots[1]).unwrap().len(), vec_check.len());
    }
}