1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356
//! Instructions for the [secp256k1 native program][np].
//!
//! [np]: https://docs.solana.com/developing/runtime-facilities/programs#secp256k1-program
//!
//! _This module provides low-level cryptographic building blocks that must be
//! used carefully to ensure proper security. Read this documentation and
//! accompanying links thoroughly._
//!
//! The secp26k1 native program peforms flexible verification of [secp256k1]
//! ECDSA signatures, as used by Ethereum. It can verify up to 255 signatures on
//! up to 255 messages, with those signatures, messages, and their public keys
//! arbitrarily distributed across the instruction data of any instructions in
//! the same transaction as the secp256k1 instruction.
//!
//! The secp256k1 native program ID is located in the [`secp256k1_program`] module.
//!
//! The instruction is designed for Ethereum interoperability, but may be useful
//! for other purposes. It operates on Ethereum addresses, which are [`keccak`]
//! hashes of secp256k1 public keys, and internally is implemented using the
//! secp256k1 key recovery algorithm. Ethereum address can be created for
//! secp256k1 public keys with the [`construct_eth_pubkey`] function.
//!
//! [`keccak`]: crate::keccak
//!
//! This instruction does not directly allow for key recovery as in Ethereum's
//! [`ecrecover`] precompile. For that Safecoin provides the [`secp256k1_recover`]
//! syscall.
//!
//! [secp256k1]: https://en.bitcoin.it/wiki/Secp256k1
//! [`secp256k1_program`]: solana_program::secp256k1_program
//! [`secp256k1_recover`]: solana_program::secp256k1_recover
//! [`ecrecover`]: https://docs.soliditylang.org/en/v0.8.14/units-and-global-variables.html?highlight=ecrecover#mathematical-and-cryptographic-functions
//!
//! Use cases for the secp256k1 instruction include:
//!
//! - Verifying Ethereum transaction signatures.
//! - Verifying Ethereum [EIP-712] signatures.
//! - Verifying arbitrary secp256k1 signatures.
//! - Signing a single message with multiple signatures.
//!
//! [EIP-712]: https://eips.ethereum.org/EIPS/eip-712
//!
//! The [`new_secp256k1_instruction`] function is suitable for building a
//! secp256k1 program instruction for basic use cases were a single message must
//! be signed by a known secret key. For other uses cases, including many
//! Ethereum-integration use cases, construction of the secp256k1 instruction
//! must be done manually.
//!
//! # How to use this program
//!
//! Transactions that uses the secp256k1 native program will typically include
//! at least two instructions: one for the secp256k1 program to verify the
//! signatures, and one for a custom program that will check that the secp256k1
//! instruction data matches what the program expects (using
//! [`load_instruction_at_checked`] or [`get_instruction_relative`]). The
//! signatures, messages, and Ethereum addresses being verified may reside in the
//! instruction data of either of these instructions, or in the instruction data
//! of one or more additional instructions, as long as those instructions are in
//! the same transaction.
//!
//! [`load_instruction_at_checked`]: crate::sysvar::instructions::load_instruction_at_checked
//! [`get_instruction_relative`]: crate::sysvar::instructions::get_instruction_relative
//!
//! Correct use of this program involves multiple steps, in client code and
//! program code:
//!
//! - In the client:
//! - Sign the [`keccak`]-hashed messages with a secp256k1 ECDSA library,
//! like the [`libsecp256k1`] crate.
//! - Build any custom instruction data that contain signature, message, or
//! Ethereum address data that will be used by the secp256k1 instruction.
//! - Build the secp256k1 program instruction data, specifying the number of
//! signatures to verify, the instruction indexes within the transaction,
//! and offsets within those instruction's data, where the signatures,
//! messages, and Ethereum addresses are located.
//! - Build the custom instruction for the program that will check the results
//! of the secp256k1 native program.
//! - Package all instructions into a single transaction and submit them.
//! - In the program:
//! - Load the secp256k1 instruction data with
//! [`load_instruction_at_checked`]. or [`get_instruction_relative`].
//! - Check that the secp256k1 program ID is equal to
//! [`secp256k1_program::ID`], so that the signature verification cannot be
//! faked with a malicious program.
//! - Check that the public keys and messages are the expected values per
//! the program's requirements.
//!
//! [`secp256k1_program::ID`]: crate::secp256k1_program::ID
//!
//! The signature, message, or Ethereum addresses may reside in the secp256k1
//! instruction data itself as additional data, their bytes following the bytes
//! of the protocol required by the secp256k1 instruction to locate the
//! signature, message, and Ethereum address data. This is the technique used by
//! `new_secp256k1_instruction` for simple signature verification.
//!
//! The `solana_sdk` crate provides few APIs for building the instructions and
//! transactions necessary for properly using the secp256k1 native program.
//! Many steps must be done manually.
//!
//! The `solana_program` crate provides no APIs to assist in interpreting
//! the the secp256k1 instruction data. It must be done manually.
//!
//! The secp256k1 program is implemented with the [`libsecp256k1`] crate,
//! which clients may also want to use.
//!
//! [`libsecp256k1`]: https://docs.rs/libsecp256k1/latest/libsecp256k1
//!
//! # Layout and interpretation of the secp256k1 instruction data
//!
//! The secp256k1 instruction data contains:
//!
//! - 1 byte indicating the number of signatures to verify, 0 - 255,
//! - A number of _signature offset_ structures that indicate where in the
//! transaction to locate each signature, message, and Ethereum address.
//! - 0 or more bytes of arbitrary data, which may contain signatures,
//! messages or Ethereum addresses.
//!
//! The signature offset structure is defined by [`SecpSignatureOffsets`],
//! and can be serialized to the correct format with [`bincode::serialize_into`].
//! Note that the bincode format may not be stable,
//! and callers should ensure they use the same version of `bincode` as the Safecoin SDK.
//! This data structure is not provided to Safecoin programs,
//! which are expected to interpret the signature offsets manually.
//!
//! [`bincode::serialize_into`]: https://docs.rs/bincode/1.3.3/bincode/fn.serialize_into.html
//!
//! The serialized signature offset structure has the following 11-byte layout,
//! with data types in little-endian encoding.
//!
//! | index | bytes | type | description |
//! |--------|-------|-------|-------------|
//! | 0 | 2 | `u16` | `signature_offset` - offset to 64-byte signature plus 1-byte recovery ID. |
//! | 2 | 1 | `u8` | `signature_offset_instruction_index` - within the transaction, the index of the transaction whose instruction data contains the signature. |
//! | 3 | 2 | `u16` | `eth_address_offset` - offset to 20-byte Ethereum address. |
//! | 5 | 1 | `u8` | `eth_address_instruction_index` - within the transaction, the index of the instruction whose instruction data contains the Ethereum address. |
//! | 6 | 2 | `u16` | `message_data_offset` - Offset to start of message data. |
//! | 8 | 2 | `u16` | `message_data_size` - Size of message data in bytes. |
//! | 10 | 1 | `u8` | `message_instruction_index` - Within the transaction, the index of the instruction whose instruction data contains the message data. |
//!
//! # Signature malleability
//!
//! With the ECDSA signature algorithm it is possible for any party, given a
//! valid signature of some message, to create a second signature that is
//! equally valid. This is known as _signature malleability_. In many cases this
//! is not a concern, but in cases where applications rely on signatures to have
//! a unique representation this can be the source of bugs, potentially with
//! security implications.
//!
//! **The safecoin `secp256k1_recover` function does not prevent signature
//! malleability**. This is in contrast to the Bitcoin secp256k1 library, which
//! does prevent malleability by default. Safecoin accepts signatures with `S`
//! values that are either in the _high order_ or in the _low order_, and it
//! is trivial to produce one from the other.
//!
//! For more complete documentation of the subject, and techniques to prevent
//! malleability, see the documentation for the [`secp256k1_recover`] syscall.
//!
//! # Additional security considerations
//!
//! Most programs will want to be conservative about the layout of the secp256k1 instruction
//! to prevent unforeseen bugs. The following checks may be desirable:
//!
//! - That there are exactly the expected number of signatures.
//! - That the three indexes, `signature_offset_instruction_index`,
//! `eth_address_instruction_index`, and `message_instruction_index` are as
//! expected, placing the signature, message and Ethereum address in the
//! expected instruction.
//!
//! Loading the secp256k1 instruction data within a program requires access to
//! the [instructions sysvar][is], which must be passed to the program by its
//! caller. Programs must verify the ID of this program to avoid calling an
//! imposter program. This does not need to be done manually though, as long as
//! it is only used through the [`load_instruction_at_checked`] or
//! [`get_instruction_relative`] functions. Both of these functions check their
//! sysvar argument to ensure it is the known instruction sysvar.
//!
//! [is]: crate::sysvar::instructions
//!
//! Programs should _always_ verify that the secp256k1 program ID loaded through
//! the instructions sysvar has the same value as in the [`secp256k1_program`]
//! module. Again this prevents imposter programs.
//!
//! [`secp256k1_program`]: crate::secp256k1_program
//!
//! # Errors
//!
//! The transaction will fail if any of the following are true:
//!
//! - Any signature was not created by the secret key corresponding to the
//! specified public key.
//! - Any signature is invalid.
//! - Any signature is "overflowing", a non-standard condition.
//! - The instruction data is empty.
//! - The first byte of instruction data is equal to 0 (indicating no signatures),
//! but the instruction data's length is greater than 1.
//! - The instruction data is not long enough to hold the number of signature
//! offsets specified in the first byte.
//! - Any instruction indexes specified in the signature offsets are greater or
//! equal to the number of instructions in the transaction.
//! - Any bounds specified in the signature offsets exceed the bounds of the
//! instruction data to which they are indexed.
//!
//! # Examples
//!
//! Both of the following examples make use of the following module definition
//! to parse the secp256k1 instruction data from within a Safecoin program.
//!
//! ```no_run
//! mod secp256k1_defs {
//! use solana_program::program_error::ProgramError;
//! use std::iter::Iterator;
//!
//! pub const HASHED_PUBKEY_SERIALIZED_SIZE: usize = 20;
//! pub const SIGNATURE_SERIALIZED_SIZE: usize = 64;
//! pub const SIGNATURE_OFFSETS_SERIALIZED_SIZE: usize = 11;
//!
//! /// The structure encoded in the secp2256k1 instruction data.
//! pub struct SecpSignatureOffsets {
//! pub signature_offset: u16,
//! pub signature_instruction_index: u8,
//! pub eth_address_offset: u16,
//! pub eth_address_instruction_index: u8,
//! pub message_data_offset: u16,
//! pub message_data_size: u16,
//! pub message_instruction_index: u8,
//! }
//!
//! pub fn iter_signature_offsets(
//! secp256k1_instr_data: &[u8],
//! ) -> Result<impl Iterator<Item = SecpSignatureOffsets> + '_, ProgramError> {
//! // First element is the number of `SecpSignatureOffsets`.
//! let num_structs = *secp256k1_instr_data
//! .get(0)
//! .ok_or(ProgramError::InvalidArgument)?;
//!
//! let all_structs_size = SIGNATURE_OFFSETS_SERIALIZED_SIZE * num_structs as usize;
//! let all_structs_slice = secp256k1_instr_data
//! .get(1..all_structs_size + 1)
//! .ok_or(ProgramError::InvalidArgument)?;
//!
//! fn decode_u16(chunk: &[u8], index: usize) -> u16 {
//! u16::from_le_bytes(<[u8; 2]>::try_from(&chunk[index..index + 2]).unwrap())
//! }
//!
//! Ok(all_structs_slice
//! .chunks(SIGNATURE_OFFSETS_SERIALIZED_SIZE)
//! .map(|chunk| SecpSignatureOffsets {
//! signature_offset: decode_u16(chunk, 0),
//! signature_instruction_index: chunk[2],
//! eth_address_offset: decode_u16(chunk, 3),
//! eth_address_instruction_index: chunk[5],
//! message_data_offset: decode_u16(chunk, 6),
//! message_data_size: decode_u16(chunk, 8),
//! message_instruction_index: chunk[10],
//! }))
//! }
//! }
//! ```
//!
//! ## Example: Signing and verifying with `new_secp256k1_instruction`
//!
//! This example demonstrates the simplest way to use the secp256k1 program, by
//! calling [`new_secp256k1_instruction`] to sign a single message and build the
//! corresponding secp256k1 instruction.
//!
//! This example has two components: a Safecoin program, and an RPC client that
//! sends a transaction to call it. The RPC client will sign a single message,
//! and the Safecoin program will introspect the secp256k1 instruction to verify
//! that the signer matches a known authorized public key.
//!
//! The Safecoin program. Note that it uses `libsecp256k1` version 0.7.0 to parse
//! the secp256k1 signature to prevent malleability.
//!
//! ```no_run
//! # mod secp256k1_defs {
//! # use solana_program::program_error::ProgramError;
//! # use std::iter::Iterator;
//! #
//! # pub const HASHED_PUBKEY_SERIALIZED_SIZE: usize = 20;
//! # pub const SIGNATURE_SERIALIZED_SIZE: usize = 64;
//! # pub const SIGNATURE_OFFSETS_SERIALIZED_SIZE: usize = 11;
//! #
//! # /// The structure encoded in the secp2256k1 instruction data.
//! # pub struct SecpSignatureOffsets {
//! # pub signature_offset: u16,
//! # pub signature_instruction_index: u8,
//! # pub eth_address_offset: u16,
//! # pub eth_address_instruction_index: u8,
//! # pub message_data_offset: u16,
//! # pub message_data_size: u16,
//! # pub message_instruction_index: u8,
//! # }
//! #
//! # pub fn iter_signature_offsets(
//! # secp256k1_instr_data: &[u8],
//! # ) -> Result<impl Iterator<Item = SecpSignatureOffsets> + '_, ProgramError> {
//! # // First element is the number of `SecpSignatureOffsets`.
//! # let num_structs = *secp256k1_instr_data
//! # .get(0)
//! # .ok_or(ProgramError::InvalidArgument)?;
//! #
//! # let all_structs_size = SIGNATURE_OFFSETS_SERIALIZED_SIZE * num_structs as usize;
//! # let all_structs_slice = secp256k1_instr_data
//! # .get(1..all_structs_size + 1)
//! # .ok_or(ProgramError::InvalidArgument)?;
//! #
//! # fn decode_u16(chunk: &[u8], index: usize) -> u16 {
//! # u16::from_le_bytes(<[u8; 2]>::try_from(&chunk[index..index + 2]).unwrap())
//! # }
//! #
//! # Ok(all_structs_slice
//! # .chunks(SIGNATURE_OFFSETS_SERIALIZED_SIZE)
//! # .map(|chunk| SecpSignatureOffsets {
//! # signature_offset: decode_u16(chunk, 0),
//! # signature_instruction_index: chunk[2],
//! # eth_address_offset: decode_u16(chunk, 3),
//! # eth_address_instruction_index: chunk[5],
//! # message_data_offset: decode_u16(chunk, 6),
//! # message_data_size: decode_u16(chunk, 8),
//! # message_instruction_index: chunk[10],
//! # }))
//! # }
//! # }
//! use solana_program::{
//! account_info::{next_account_info, AccountInfo},
//! entrypoint::ProgramResult,
//! msg,
//! program_error::ProgramError,
//! secp256k1_program,
//! sysvar,
//! };
//!
//! /// An Ethereum address corresponding to a secp256k1 secret key that is
//! /// authorized to sign our messages.
//! const AUTHORIZED_ETH_ADDRESS: [u8; 20] = [
//! 0x18, 0x8a, 0x5c, 0xf2, 0x3b, 0x0e, 0xff, 0xe9, 0xa8, 0xe1, 0x42, 0x64, 0x5b, 0x82, 0x2f, 0x3a,
//! 0x6b, 0x8b, 0x52, 0x35,
//! ];
//!
//! /// Check the secp256k1 instruction to ensure it was signed by
//! /// `AUTHORIZED_ETH_ADDRESS`s key.
//! ///
//! /// `accounts` is the slice of all accounts passed to the program
//! /// entrypoint. The only account it should contain is the instructions sysvar.
//! fn demo_secp256k1_verify_basic(
//! accounts: &[AccountInfo],
//! ) -> ProgramResult {
//! let account_info_iter = &mut accounts.iter();
//!
//! // The instructions sysvar gives access to the instructions in the transaction.
//! let instructions_sysvar_account = next_account_info(account_info_iter)?;
//! assert!(sysvar::instructions::check_id(
//! instructions_sysvar_account.key
//! ));
//!
//! // Load the secp256k1 instruction.
//! // `new_secp256k1_instruction` generates an instruction that must be at index 0.
//! let secp256k1_instr =
//! sysvar::instructions::load_instruction_at_checked(0, instructions_sysvar_account)?;
//!
//! // Verify it is a secp256k1 instruction.
//! // This is security-critical - what if the transaction uses an imposter secp256k1 program?
//! assert!(secp256k1_program::check_id(&secp256k1_instr.program_id));
//!
//! // There must be at least one byte. This is also verified by the runtime,
//! // and doesn't strictly need to be checked.
//! assert!(secp256k1_instr.data.len() > 1);
//!
//! let num_signatures = secp256k1_instr.data[0];
//! // `new_secp256k1_instruction` generates an instruction that contains one signature.
//! assert_eq!(1, num_signatures);
//!
//! // Load the first and only set of signature offsets.
//! let offsets: secp256k1_defs::SecpSignatureOffsets =
//! secp256k1_defs::iter_signature_offsets(&secp256k1_instr.data)?
//! .next()
//! .ok_or(ProgramError::InvalidArgument)?;
//!
//! // `new_secp256k1_instruction` generates an instruction that only uses instruction index 0.
//! assert_eq!(0, offsets.signature_instruction_index);
//! assert_eq!(0, offsets.eth_address_instruction_index);
//! assert_eq!(0, offsets.message_instruction_index);
//!
//! // Reject high-s value signatures to prevent malleability.
//! // Safecoin does not do this itself.
//! // This may or may not be necessary depending on use case.
//! {
//! let signature = &secp256k1_instr.data[offsets.signature_offset as usize
//! ..offsets.signature_offset as usize + secp256k1_defs::SIGNATURE_SERIALIZED_SIZE];
//! let signature = libsecp256k1::Signature::parse_standard_slice(signature)
//! .map_err(|_| ProgramError::InvalidArgument)?;
//!
//! if signature.s.is_high() {
//! msg!("signature with high-s value");
//! return Err(ProgramError::InvalidArgument);
//! }
//! }
//!
//! // There is likely at least one more verification step a real program needs
//! // to do here to ensure it trusts the secp256k1 instruction, e.g.:
//! //
//! // - verify the tx signer is authorized
//! // - verify the secp256k1 signer is authorized
//!
//! // Here we are checking the secp256k1 pubkey against a known authorized pubkey.
//! let eth_address = &secp256k1_instr.data[offsets.eth_address_offset as usize
//! ..offsets.eth_address_offset as usize + secp256k1_defs::HASHED_PUBKEY_SERIALIZED_SIZE];
//!
//! if eth_address != AUTHORIZED_ETH_ADDRESS {
//! return Err(ProgramError::InvalidArgument);
//! }
//!
//! Ok(())
//! }
//! ```
//!
//! The client program:
//!
//! ```no_run
//! # use solana_sdk::example_mocks::safecoin_client;
//! use anyhow::Result;
//! use safecoin_client::rpc_client::RpcClient;
//! use solana_sdk::{
//! instruction::{AccountMeta, Instruction},
//! secp256k1_instruction,
//! signature::{Keypair, Signer},
//! sysvar,
//! transaction::Transaction,
//! };
//!
//! fn demo_secp256k1_verify_basic(
//! payer_keypair: &Keypair,
//! secp256k1_secret_key: &libsecp256k1::SecretKey,
//! client: &RpcClient,
//! program_keypair: &Keypair,
//! ) -> Result<()> {
//! // Internally to `new_secp256k1_instruction` and
//! // `secp256k_instruction::verify` (the secp256k1 program), this message is
//! // keccak-hashed before signing.
//! let msg = b"hello world";
//! let secp256k1_instr = secp256k1_instruction::new_secp256k1_instruction(&secp256k1_secret_key, msg);
//!
//! let program_instr = Instruction::new_with_bytes(
//! program_keypair.pubkey(),
//! &[],
//! vec![
//! AccountMeta::new_readonly(sysvar::instructions::ID, false)
//! ],
//! );
//!
//! let blockhash = client.get_latest_blockhash()?;
//! let tx = Transaction::new_signed_with_payer(
//! &[secp256k1_instr, program_instr],
//! Some(&payer_keypair.pubkey()),
//! &[payer_keypair],
//! blockhash,
//! );
//!
//! client.send_and_confirm_transaction(&tx)?;
//!
//! Ok(())
//! }
//! ```
//!
//! ## Example: Verifying multiple signatures in one instruction
//!
//! This examples demonstrates manually creating a secp256k1 instruction
//! containing many signatures, and a Safecoin program that parses them all. This
//! example on its own has no practical purpose. It simply demonstrates advanced
//! use of the secp256k1 program.
//!
//! Recall that the secp256k1 program will accept signatures, messages, and
//! Ethereum addresses that reside in any instruction contained in the same
//! transaction. In the _previous_ example, the Safecoin program asserted that all
//! signatures, messages, and addresses were stored in the instruction at 0. In
//! this next example the Safecoin program supports signatures, messages, and
//! addresses stored in any instruction. For simplicity the client still only
//! stores signatures, messages, and addresses in a single instruction, the
//! secp256k1 instruction. The code for storing this data across multiple
//! instructions would be complex, and may not be necessary in practice.
//!
//! This example has two components: a Safecoin program, and an RPC client that
//! sends a transaction to call it.
//!
//! The Safecoin program:
//!
//! ```no_run
//! # mod secp256k1_defs {
//! # use solana_program::program_error::ProgramError;
//! # use std::iter::Iterator;
//! #
//! # pub const HASHED_PUBKEY_SERIALIZED_SIZE: usize = 20;
//! # pub const SIGNATURE_SERIALIZED_SIZE: usize = 64;
//! # pub const SIGNATURE_OFFSETS_SERIALIZED_SIZE: usize = 11;
//! #
//! # /// The structure encoded in the secp2256k1 instruction data.
//! # pub struct SecpSignatureOffsets {
//! # pub signature_offset: u16,
//! # pub signature_instruction_index: u8,
//! # pub eth_address_offset: u16,
//! # pub eth_address_instruction_index: u8,
//! # pub message_data_offset: u16,
//! # pub message_data_size: u16,
//! # pub message_instruction_index: u8,
//! # }
//! #
//! # pub fn iter_signature_offsets(
//! # secp256k1_instr_data: &[u8],
//! # ) -> Result<impl Iterator<Item = SecpSignatureOffsets> + '_, ProgramError> {
//! # // First element is the number of `SecpSignatureOffsets`.
//! # let num_structs = *secp256k1_instr_data
//! # .get(0)
//! # .ok_or(ProgramError::InvalidArgument)?;
//! #
//! # let all_structs_size = SIGNATURE_OFFSETS_SERIALIZED_SIZE * num_structs as usize;
//! # let all_structs_slice = secp256k1_instr_data
//! # .get(1..all_structs_size + 1)
//! # .ok_or(ProgramError::InvalidArgument)?;
//! #
//! # fn decode_u16(chunk: &[u8], index: usize) -> u16 {
//! # u16::from_le_bytes(<[u8; 2]>::try_from(&chunk[index..index + 2]).unwrap())
//! # }
//! #
//! # Ok(all_structs_slice
//! # .chunks(SIGNATURE_OFFSETS_SERIALIZED_SIZE)
//! # .map(|chunk| SecpSignatureOffsets {
//! # signature_offset: decode_u16(chunk, 0),
//! # signature_instruction_index: chunk[2],
//! # eth_address_offset: decode_u16(chunk, 3),
//! # eth_address_instruction_index: chunk[5],
//! # message_data_offset: decode_u16(chunk, 6),
//! # message_data_size: decode_u16(chunk, 8),
//! # message_instruction_index: chunk[10],
//! # }))
//! # }
//! # }
//! use solana_program::{
//! account_info::{next_account_info, AccountInfo},
//! entrypoint::ProgramResult,
//! msg,
//! program_error::ProgramError,
//! secp256k1_program,
//! sysvar,
//! };
//!
//! /// A struct to hold the values specified in the `SecpSignatureOffsets` struct.
//! struct SecpSignature {
//! signature: [u8; secp256k1_defs::SIGNATURE_SERIALIZED_SIZE],
//! recovery_id: u8,
//! eth_address: [u8; secp256k1_defs::HASHED_PUBKEY_SERIALIZED_SIZE],
//! message: Vec<u8>,
//! }
//!
//! /// Load all signatures indicated in the secp256k1 instruction.
//! ///
//! /// This function is quite inefficient for reloading the same instructions
//! /// repeatedly and making copies and allocations.
//! fn load_signatures(
//! secp256k1_instr_data: &[u8],
//! instructions_sysvar_account: &AccountInfo,
//! ) -> Result<Vec<SecpSignature>, ProgramError> {
//! let mut sigs = vec![];
//! for offsets in secp256k1_defs::iter_signature_offsets(secp256k1_instr_data)? {
//! let signature_instr = sysvar::instructions::load_instruction_at_checked(
//! offsets.signature_instruction_index as usize,
//! instructions_sysvar_account,
//! )?;
//! let eth_address_instr = sysvar::instructions::load_instruction_at_checked(
//! offsets.eth_address_instruction_index as usize,
//! instructions_sysvar_account,
//! )?;
//! let message_instr = sysvar::instructions::load_instruction_at_checked(
//! offsets.message_instruction_index as usize,
//! instructions_sysvar_account,
//! )?;
//!
//! // These indexes must all be valid because the runtime already verified them.
//! let signature = &signature_instr.data[offsets.signature_offset as usize
//! ..offsets.signature_offset as usize + secp256k1_defs::SIGNATURE_SERIALIZED_SIZE];
//! let recovery_id = signature_instr.data
//! [offsets.signature_offset as usize + secp256k1_defs::SIGNATURE_SERIALIZED_SIZE];
//! let eth_address = ð_address_instr.data[offsets.eth_address_offset as usize
//! ..offsets.eth_address_offset as usize + secp256k1_defs::HASHED_PUBKEY_SERIALIZED_SIZE];
//! let message = &message_instr.data[offsets.message_data_offset as usize
//! ..offsets.message_data_offset as usize + offsets.message_data_size as usize];
//!
//! let signature =
//! <[u8; secp256k1_defs::SIGNATURE_SERIALIZED_SIZE]>::try_from(signature).unwrap();
//! let eth_address =
//! <[u8; secp256k1_defs::HASHED_PUBKEY_SERIALIZED_SIZE]>::try_from(eth_address).unwrap();
//! let message = Vec::from(message);
//!
//! sigs.push(SecpSignature {
//! signature,
//! recovery_id,
//! eth_address,
//! message,
//! })
//! }
//! Ok(sigs)
//! }
//!
//! fn demo_secp256k1_custom_many(
//! accounts: &[AccountInfo],
//! ) -> ProgramResult {
//! let account_info_iter = &mut accounts.iter();
//!
//! let instructions_sysvar_account = next_account_info(account_info_iter)?;
//! assert!(sysvar::instructions::check_id(
//! instructions_sysvar_account.key
//! ));
//!
//! let secp256k1_instr =
//! sysvar::instructions::get_instruction_relative(-1, instructions_sysvar_account)?;
//!
//! assert!(secp256k1_program::check_id(&secp256k1_instr.program_id));
//!
//! let signatures = load_signatures(&secp256k1_instr.data, instructions_sysvar_account)?;
//! for (idx, signature_bundle) in signatures.iter().enumerate() {
//! let signature = hex::encode(&signature_bundle.signature);
//! let eth_address = hex::encode(&signature_bundle.eth_address);
//! let message = hex::encode(&signature_bundle.message);
//! msg!("sig {}: {:?}", idx, signature);
//! msg!("recid: {}: {}", idx, signature_bundle.recovery_id);
//! msg!("eth address {}: {}", idx, eth_address);
//! msg!("message {}: {}", idx, message);
//! }
//!
//! Ok(())
//! }
//! ```
//!
//! The client program:
//!
//! ```no_run
//! # use solana_sdk::example_mocks::safecoin_client;
//! use anyhow::Result;
//! use safecoin_client::rpc_client::RpcClient;
//! use solana_sdk::{
//! instruction::{AccountMeta, Instruction},
//! keccak,
//! secp256k1_instruction::{
//! self, SecpSignatureOffsets, HASHED_PUBKEY_SERIALIZED_SIZE,
//! SIGNATURE_OFFSETS_SERIALIZED_SIZE, SIGNATURE_SERIALIZED_SIZE,
//! },
//! signature::{Keypair, Signer},
//! sysvar,
//! transaction::Transaction,
//! };
//!
//! /// A struct to hold the values specified in the `SecpSignatureOffsets` struct.
//! struct SecpSignature {
//! signature: [u8; SIGNATURE_SERIALIZED_SIZE],
//! recovery_id: u8,
//! eth_address: [u8; HASHED_PUBKEY_SERIALIZED_SIZE],
//! message: Vec<u8>,
//! }
//!
//! /// Create the instruction data for a secp256k1 instruction.
//! ///
//! /// `instruction_index` is the index the secp256k1 instruction will appear
//! /// within the transaction. For simplicity, this function only supports packing
//! /// the signatures into the secp256k1 instruction data, and not into any other
//! /// instructions within the transaction.
//! fn make_secp256k1_instruction_data(
//! signatures: &[SecpSignature],
//! instruction_index: u8,
//! ) -> Result<Vec<u8>> {
//! assert!(signatures.len() <= u8::max_value().into());
//!
//! // We're going to pack all the signatures into the secp256k1 instruction data.
//! // Before our signatures though is the signature offset structures
//! // the secp256k1 program parses to find those signatures.
//! // This value represents the byte offset where the signatures begin.
//! let data_start = 1 + signatures.len() * SIGNATURE_OFFSETS_SERIALIZED_SIZE;
//!
//! let mut signature_offsets = vec![];
//! let mut signature_buffer = vec![];
//!
//! for signature_bundle in signatures {
//! let data_start = data_start
//! .checked_add(signature_buffer.len())
//! .expect("overflow");
//!
//! let signature_offset = data_start;
//! let eth_address_offset = data_start
//! .checked_add(SIGNATURE_SERIALIZED_SIZE + 1)
//! .expect("overflow");
//! let message_data_offset = eth_address_offset
//! .checked_add(HASHED_PUBKEY_SERIALIZED_SIZE)
//! .expect("overflow");
//! let message_data_size = signature_bundle.message.len();
//!
//! let signature_offset = u16::try_from(signature_offset)?;
//! let eth_address_offset = u16::try_from(eth_address_offset)?;
//! let message_data_offset = u16::try_from(message_data_offset)?;
//! let message_data_size = u16::try_from(message_data_size)?;
//!
//! signature_offsets.push(SecpSignatureOffsets {
//! signature_offset,
//! signature_instruction_index: instruction_index,
//! eth_address_offset,
//! eth_address_instruction_index: instruction_index,
//! message_data_offset,
//! message_data_size,
//! message_instruction_index: instruction_index,
//! });
//!
//! signature_buffer.extend(signature_bundle.signature);
//! signature_buffer.push(signature_bundle.recovery_id);
//! signature_buffer.extend(&signature_bundle.eth_address);
//! signature_buffer.extend(&signature_bundle.message);
//! }
//!
//! let mut instr_data = vec![];
//! instr_data.push(signatures.len() as u8);
//!
//! for offsets in signature_offsets {
//! let offsets = bincode::serialize(&offsets)?;
//! instr_data.extend(offsets);
//! }
//!
//! instr_data.extend(signature_buffer);
//!
//! Ok(instr_data)
//! }
//!
//! fn demo_secp256k1_custom_many(
//! payer_keypair: &Keypair,
//! client: &RpcClient,
//! program_keypair: &Keypair,
//! ) -> Result<()> {
//! // Sign some messages.
//! let mut signatures = vec![];
//! for idx in 0..2 {
//! let secret_key = libsecp256k1::SecretKey::random(&mut rand::thread_rng());
//! let message = format!("hello world {}", idx).into_bytes();
//! let message_hash = {
//! let mut hasher = keccak::Hasher::default();
//! hasher.hash(&message);
//! hasher.result()
//! };
//! let secp_message = libsecp256k1::Message::parse(&message_hash.0);
//! let (signature, recovery_id) = libsecp256k1::sign(&secp_message, &secret_key);
//! let signature = signature.serialize();
//! let recovery_id = recovery_id.serialize();
//!
//! let public_key = libsecp256k1::PublicKey::from_secret_key(&secret_key);
//! let eth_address = secp256k1_instruction::construct_eth_pubkey(&public_key);
//!
//! signatures.push(SecpSignature {
//! signature,
//! recovery_id,
//! eth_address,
//! message,
//! });
//! }
//!
//! let secp256k1_instr_data = make_secp256k1_instruction_data(&signatures, 0)?;
//! let secp256k1_instr = Instruction::new_with_bytes(
//! solana_sdk::secp256k1_program::ID,
//! &secp256k1_instr_data,
//! vec![],
//! );
//!
//! let program_instr = Instruction::new_with_bytes(
//! program_keypair.pubkey(),
//! &[],
//! vec![
//! AccountMeta::new_readonly(sysvar::instructions::ID, false)
//! ],
//! );
//!
//! let blockhash = client.get_latest_blockhash()?;
//! let tx = Transaction::new_signed_with_payer(
//! &[secp256k1_instr, program_instr],
//! Some(&payer_keypair.pubkey()),
//! &[payer_keypair],
//! blockhash,
//! );
//!
//! client.send_and_confirm_transaction(&tx)?;
//!
//! Ok(())
//! }
//! ```
#![cfg(feature = "full")]
use {
crate::{
feature_set::{
libsecp256k1_0_5_upgrade_enabled, libsecp256k1_fail_on_bad_count,
libsecp256k1_fail_on_bad_count2, FeatureSet,
},
instruction::Instruction,
precompiles::PrecompileError,
},
digest::Digest,
serde_derive::{Deserialize, Serialize},
std::sync::Arc,
};
pub const HASHED_PUBKEY_SERIALIZED_SIZE: usize = 20;
pub const SIGNATURE_SERIALIZED_SIZE: usize = 64;
pub const SIGNATURE_OFFSETS_SERIALIZED_SIZE: usize = 11;
pub const DATA_START: usize = SIGNATURE_OFFSETS_SERIALIZED_SIZE + 1;
/// Offsets of signature data within a secp256k1 instruction.
///
/// See the [module documentation][md] for a complete description.
///
/// [md]: self
#[derive(Default, Serialize, Deserialize, Debug)]
pub struct SecpSignatureOffsets {
/// Offset to 64-byte signature plus 1-byte recovery ID.
pub signature_offset: u16,
/// Within the transaction, the index of the instruction whose instruction data contains the signature.
pub signature_instruction_index: u8,
/// Offset to 20-byte Ethereum address.
pub eth_address_offset: u16,
/// Within the transaction, the index of the instruction whose instruction data contains the address.
pub eth_address_instruction_index: u8,
/// Offset to start of message data.
pub message_data_offset: u16,
/// Size of message data in bytes.
pub message_data_size: u16,
/// Within the transaction, the index of the instruction whose instruction data contains the message.
pub message_instruction_index: u8,
}
/// Sign a message and create a secp256k1 program instruction to verify the signature.
///
/// This function is suitable for simple uses of the secp256k1 program.
/// More complex uses must encode the secp256k1 instruction data manually.
/// See the [module documentation][md] for examples.
///
/// [md]: self
///
/// The instruction generated by this function must be the first instruction
/// included in a transaction or it will not verify. The
/// [`SecpSignatureOffsets`] structure encoded in the instruction data specify
/// the instruction indexes as 0.
///
/// `message_arr` is hashed with the [`keccak`] hash function prior to signing.
///
/// [`keccak`]: crate::keccak
pub fn new_secp256k1_instruction(
priv_key: &libsecp256k1::SecretKey,
message_arr: &[u8],
) -> Instruction {
let secp_pubkey = libsecp256k1::PublicKey::from_secret_key(priv_key);
let eth_pubkey = construct_eth_pubkey(&secp_pubkey);
let mut hasher = sha3::Keccak256::new();
hasher.update(message_arr);
let message_hash = hasher.finalize();
let mut message_hash_arr = [0u8; 32];
message_hash_arr.copy_from_slice(message_hash.as_slice());
let message = libsecp256k1::Message::parse(&message_hash_arr);
let (signature, recovery_id) = libsecp256k1::sign(&message, priv_key);
let signature_arr = signature.serialize();
assert_eq!(signature_arr.len(), SIGNATURE_SERIALIZED_SIZE);
let mut instruction_data = vec![];
instruction_data.resize(
DATA_START
.saturating_add(eth_pubkey.len())
.saturating_add(signature_arr.len())
.saturating_add(message_arr.len())
.saturating_add(1),
0,
);
let eth_address_offset = DATA_START;
instruction_data[eth_address_offset..eth_address_offset.saturating_add(eth_pubkey.len())]
.copy_from_slice(ð_pubkey);
let signature_offset = DATA_START.saturating_add(eth_pubkey.len());
instruction_data[signature_offset..signature_offset.saturating_add(signature_arr.len())]
.copy_from_slice(&signature_arr);
instruction_data[signature_offset.saturating_add(signature_arr.len())] =
recovery_id.serialize();
let message_data_offset = signature_offset
.saturating_add(signature_arr.len())
.saturating_add(1);
instruction_data[message_data_offset..].copy_from_slice(message_arr);
let num_signatures = 1;
instruction_data[0] = num_signatures;
let offsets = SecpSignatureOffsets {
signature_offset: signature_offset as u16,
signature_instruction_index: 0,
eth_address_offset: eth_address_offset as u16,
eth_address_instruction_index: 0,
message_data_offset: message_data_offset as u16,
message_data_size: message_arr.len() as u16,
message_instruction_index: 0,
};
let writer = std::io::Cursor::new(&mut instruction_data[1..DATA_START]);
bincode::serialize_into(writer, &offsets).unwrap();
Instruction {
program_id: solana_sdk::secp256k1_program::id(),
accounts: vec![],
data: instruction_data,
}
}
/// Creates an Ethereum address from a secp256k1 public key.
pub fn construct_eth_pubkey(
pubkey: &libsecp256k1::PublicKey,
) -> [u8; HASHED_PUBKEY_SERIALIZED_SIZE] {
let mut addr = [0u8; HASHED_PUBKEY_SERIALIZED_SIZE];
addr.copy_from_slice(&sha3::Keccak256::digest(&pubkey.serialize()[1..])[12..]);
assert_eq!(addr.len(), HASHED_PUBKEY_SERIALIZED_SIZE);
addr
}
/// Verifies the signatures specified in the secp256k1 instruction data.
///
/// This is same the verification routine executed by the runtime's secp256k1 native program,
/// and is primarily of use to the runtime.
///
/// `data` is the secp256k1 program's instruction data. `instruction_datas` is
/// the full slice of instruction datas for all instructions in the transaction,
/// including the secp256k1 program's instruction data.
///
/// `feature_set` is the set of active Safecoin features. It is used to enable or
/// disable a few minor additional checks that were activated on chain
/// subsequent to the addition of the secp256k1 native program. For many
/// purposes passing `Arc::new<FeatureSet::all_enabled()>` is reasonable.
pub fn verify(
data: &[u8],
instruction_datas: &[&[u8]],
feature_set: &Arc<FeatureSet>,
) -> Result<(), PrecompileError> {
if data.is_empty() {
return Err(PrecompileError::InvalidInstructionDataSize);
}
let count = data[0] as usize;
if (feature_set.is_active(&libsecp256k1_fail_on_bad_count::id())
|| feature_set.is_active(&libsecp256k1_fail_on_bad_count2::id()))
&& count == 0
&& data.len() > 1
{
// count is zero but the instruction data indicates that is probably not
// correct, fail the instruction to catch probable invalid secp256k1
// instruction construction.
return Err(PrecompileError::InvalidInstructionDataSize);
}
let expected_data_size = count
.saturating_mul(SIGNATURE_OFFSETS_SERIALIZED_SIZE)
.saturating_add(1);
if data.len() < expected_data_size {
return Err(PrecompileError::InvalidInstructionDataSize);
}
for i in 0..count {
let start = i
.saturating_mul(SIGNATURE_OFFSETS_SERIALIZED_SIZE)
.saturating_add(1);
let end = start.saturating_add(SIGNATURE_OFFSETS_SERIALIZED_SIZE);
let offsets: SecpSignatureOffsets = bincode::deserialize(&data[start..end])
.map_err(|_| PrecompileError::InvalidSignature)?;
// Parse out signature
let signature_index = offsets.signature_instruction_index as usize;
if signature_index >= instruction_datas.len() {
return Err(PrecompileError::InvalidInstructionDataSize);
}
let signature_instruction = instruction_datas[signature_index];
let sig_start = offsets.signature_offset as usize;
let sig_end = sig_start.saturating_add(SIGNATURE_SERIALIZED_SIZE);
if sig_end >= signature_instruction.len() {
return Err(PrecompileError::InvalidSignature);
}
let sig_parse_result = if feature_set.is_active(&libsecp256k1_0_5_upgrade_enabled::id()) {
libsecp256k1::Signature::parse_standard_slice(
&signature_instruction[sig_start..sig_end],
)
} else {
libsecp256k1::Signature::parse_overflowing_slice(
&signature_instruction[sig_start..sig_end],
)
};
let signature = sig_parse_result.map_err(|_| PrecompileError::InvalidSignature)?;
let recovery_id = libsecp256k1::RecoveryId::parse(signature_instruction[sig_end])
.map_err(|_| PrecompileError::InvalidRecoveryId)?;
// Parse out pubkey
let eth_address_slice = get_data_slice(
instruction_datas,
offsets.eth_address_instruction_index,
offsets.eth_address_offset,
HASHED_PUBKEY_SERIALIZED_SIZE,
)?;
// Parse out message
let message_slice = get_data_slice(
instruction_datas,
offsets.message_instruction_index,
offsets.message_data_offset,
offsets.message_data_size as usize,
)?;
let mut hasher = sha3::Keccak256::new();
hasher.update(message_slice);
let message_hash = hasher.finalize();
let pubkey = libsecp256k1::recover(
&libsecp256k1::Message::parse_slice(&message_hash).unwrap(),
&signature,
&recovery_id,
)
.map_err(|_| PrecompileError::InvalidSignature)?;
let eth_address = construct_eth_pubkey(&pubkey);
if eth_address_slice != eth_address {
return Err(PrecompileError::InvalidSignature);
}
}
Ok(())
}
fn get_data_slice<'a>(
instruction_datas: &'a [&[u8]],
instruction_index: u8,
offset_start: u16,
size: usize,
) -> Result<&'a [u8], PrecompileError> {
let signature_index = instruction_index as usize;
if signature_index >= instruction_datas.len() {
return Err(PrecompileError::InvalidDataOffsets);
}
let signature_instruction = &instruction_datas[signature_index];
let start = offset_start as usize;
let end = start.saturating_add(size);
if end > signature_instruction.len() {
return Err(PrecompileError::InvalidSignature);
}
Ok(&instruction_datas[signature_index][start..end])
}
#[cfg(test)]
pub mod test {
use {
super::*,
crate::{
feature_set,
hash::Hash,
keccak,
secp256k1_instruction::{
new_secp256k1_instruction, SecpSignatureOffsets, SIGNATURE_OFFSETS_SERIALIZED_SIZE,
},
signature::{Keypair, Signer},
transaction::Transaction,
},
rand::{thread_rng, Rng},
std::sync::Arc,
};
fn test_case(
num_signatures: u8,
offsets: &SecpSignatureOffsets,
) -> Result<(), PrecompileError> {
let mut instruction_data = vec![0u8; DATA_START];
instruction_data[0] = num_signatures;
let writer = std::io::Cursor::new(&mut instruction_data[1..]);
bincode::serialize_into(writer, &offsets).unwrap();
let mut feature_set = FeatureSet::all_enabled();
feature_set
.active
.remove(&libsecp256k1_0_5_upgrade_enabled::id());
feature_set
.inactive
.insert(libsecp256k1_0_5_upgrade_enabled::id());
verify(&instruction_data, &[&[0u8; 100]], &Arc::new(feature_set))
}
#[test]
fn test_invalid_offsets() {
solana_logger::setup();
let mut instruction_data = vec![0u8; DATA_START];
let offsets = SecpSignatureOffsets::default();
instruction_data[0] = 1;
let writer = std::io::Cursor::new(&mut instruction_data[1..]);
bincode::serialize_into(writer, &offsets).unwrap();
instruction_data.truncate(instruction_data.len() - 1);
let mut feature_set = FeatureSet::all_enabled();
feature_set
.active
.remove(&libsecp256k1_0_5_upgrade_enabled::id());
feature_set
.inactive
.insert(libsecp256k1_0_5_upgrade_enabled::id());
assert_eq!(
verify(&instruction_data, &[&[0u8; 100]], &Arc::new(feature_set)),
Err(PrecompileError::InvalidInstructionDataSize)
);
let offsets = SecpSignatureOffsets {
signature_instruction_index: 1,
..SecpSignatureOffsets::default()
};
assert_eq!(
test_case(1, &offsets),
Err(PrecompileError::InvalidInstructionDataSize)
);
let offsets = SecpSignatureOffsets {
message_instruction_index: 1,
..SecpSignatureOffsets::default()
};
assert_eq!(
test_case(1, &offsets),
Err(PrecompileError::InvalidDataOffsets)
);
let offsets = SecpSignatureOffsets {
eth_address_instruction_index: 1,
..SecpSignatureOffsets::default()
};
assert_eq!(
test_case(1, &offsets),
Err(PrecompileError::InvalidDataOffsets)
);
}
#[test]
fn test_message_data_offsets() {
let offsets = SecpSignatureOffsets {
message_data_offset: 99,
message_data_size: 1,
..SecpSignatureOffsets::default()
};
assert_eq!(
test_case(1, &offsets),
Err(PrecompileError::InvalidSignature)
);
let offsets = SecpSignatureOffsets {
message_data_offset: 100,
message_data_size: 1,
..SecpSignatureOffsets::default()
};
assert_eq!(
test_case(1, &offsets),
Err(PrecompileError::InvalidSignature)
);
let offsets = SecpSignatureOffsets {
message_data_offset: 100,
message_data_size: 1000,
..SecpSignatureOffsets::default()
};
assert_eq!(
test_case(1, &offsets),
Err(PrecompileError::InvalidSignature)
);
let offsets = SecpSignatureOffsets {
message_data_offset: std::u16::MAX,
message_data_size: std::u16::MAX,
..SecpSignatureOffsets::default()
};
assert_eq!(
test_case(1, &offsets),
Err(PrecompileError::InvalidSignature)
);
}
#[test]
fn test_eth_offset() {
let offsets = SecpSignatureOffsets {
eth_address_offset: std::u16::MAX,
..SecpSignatureOffsets::default()
};
assert_eq!(
test_case(1, &offsets),
Err(PrecompileError::InvalidSignature)
);
let offsets = SecpSignatureOffsets {
eth_address_offset: 100 - HASHED_PUBKEY_SERIALIZED_SIZE as u16 + 1,
..SecpSignatureOffsets::default()
};
assert_eq!(
test_case(1, &offsets),
Err(PrecompileError::InvalidSignature)
);
}
#[test]
fn test_signature_offset() {
let offsets = SecpSignatureOffsets {
signature_offset: std::u16::MAX,
..SecpSignatureOffsets::default()
};
assert_eq!(
test_case(1, &offsets),
Err(PrecompileError::InvalidSignature)
);
let offsets = SecpSignatureOffsets {
signature_offset: 100 - SIGNATURE_SERIALIZED_SIZE as u16 + 1,
..SecpSignatureOffsets::default()
};
assert_eq!(
test_case(1, &offsets),
Err(PrecompileError::InvalidSignature)
);
}
#[test]
fn test_count_is_zero_but_sig_data_exists() {
solana_logger::setup();
let mut instruction_data = vec![0u8; DATA_START];
let offsets = SecpSignatureOffsets::default();
instruction_data[0] = 0;
let writer = std::io::Cursor::new(&mut instruction_data[1..]);
bincode::serialize_into(writer, &offsets).unwrap();
let mut feature_set = FeatureSet::all_enabled();
feature_set
.active
.remove(&libsecp256k1_0_5_upgrade_enabled::id());
feature_set
.inactive
.insert(libsecp256k1_0_5_upgrade_enabled::id());
assert_eq!(
verify(&instruction_data, &[&[0u8; 100]], &Arc::new(feature_set)),
Err(PrecompileError::InvalidInstructionDataSize)
);
}
#[test]
fn test_secp256k1() {
solana_logger::setup();
let offsets = SecpSignatureOffsets::default();
assert_eq!(
bincode::serialized_size(&offsets).unwrap() as usize,
SIGNATURE_OFFSETS_SERIALIZED_SIZE
);
let secp_privkey = libsecp256k1::SecretKey::random(&mut thread_rng());
let message_arr = b"hello";
let mut secp_instruction = new_secp256k1_instruction(&secp_privkey, message_arr);
let mint_keypair = Keypair::new();
let mut feature_set = feature_set::FeatureSet::all_enabled();
feature_set
.active
.remove(&feature_set::libsecp256k1_0_5_upgrade_enabled::id());
feature_set
.inactive
.insert(feature_set::libsecp256k1_0_5_upgrade_enabled::id());
let feature_set = Arc::new(feature_set);
let tx = Transaction::new_signed_with_payer(
&[secp_instruction.clone()],
Some(&mint_keypair.pubkey()),
&[&mint_keypair],
Hash::default(),
);
assert!(tx.verify_precompiles(&feature_set).is_ok());
let index = thread_rng().gen_range(0, secp_instruction.data.len());
secp_instruction.data[index] = secp_instruction.data[index].wrapping_add(12);
let tx = Transaction::new_signed_with_payer(
&[secp_instruction],
Some(&mint_keypair.pubkey()),
&[&mint_keypair],
Hash::default(),
);
assert!(tx.verify_precompiles(&feature_set).is_err());
}
// Signatures are malleable.
#[test]
fn test_malleability() {
solana_logger::setup();
let secret_key = libsecp256k1::SecretKey::random(&mut thread_rng());
let public_key = libsecp256k1::PublicKey::from_secret_key(&secret_key);
let eth_address = construct_eth_pubkey(&public_key);
let message = b"hello";
let message_hash = {
let mut hasher = keccak::Hasher::default();
hasher.hash(message);
hasher.result()
};
let secp_message = libsecp256k1::Message::parse(&message_hash.0);
let (signature, recovery_id) = libsecp256k1::sign(&secp_message, &secret_key);
// Flip the S value in the signature to make a different but valid signature.
let mut alt_signature = signature;
alt_signature.s = -alt_signature.s;
let alt_recovery_id = libsecp256k1::RecoveryId::parse(recovery_id.serialize() ^ 1).unwrap();
let mut data: Vec<u8> = vec![];
let mut both_offsets = vec![];
// Verify both signatures of the same message.
let sigs = [(signature, recovery_id), (alt_signature, alt_recovery_id)];
for (signature, recovery_id) in sigs.iter() {
let signature_offset = data.len();
data.extend(signature.serialize());
data.push(recovery_id.serialize());
let eth_address_offset = data.len();
data.extend(eth_address);
let message_data_offset = data.len();
data.extend(message);
let data_start = 1 + SIGNATURE_OFFSETS_SERIALIZED_SIZE * 2;
let offsets = SecpSignatureOffsets {
signature_offset: (signature_offset + data_start) as u16,
signature_instruction_index: 0,
eth_address_offset: (eth_address_offset + data_start) as u16,
eth_address_instruction_index: 0,
message_data_offset: (message_data_offset + data_start) as u16,
message_data_size: message.len() as u16,
message_instruction_index: 0,
};
both_offsets.push(offsets);
}
let mut instruction_data: Vec<u8> = vec![2];
for offsets in both_offsets {
let offsets = bincode::serialize(&offsets).unwrap();
instruction_data.extend(offsets);
}
instruction_data.extend(data);
verify(
&instruction_data,
&[&instruction_data],
&Arc::new(FeatureSet::all_enabled()),
)
.unwrap();
}
}