1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842
//! Core sampling strategies, along with useful implementations for samplers on
//! types from [`std`] and the [`quickcheck`] crate.
//!
//! The core of this library is the [`Sample`] trait, which uses [`Random`] to
//! generate arbitrary values from a sampled `Output` type with a custom
//! "sampling strategy". It also defines a procedure for "shrinking" generated
//! values, which can be used to generate simple counterexamples against
//! expected properties.
//!
//! This library is generally intended for usage alongside the [`sample_test`][1]
//! crate. See that crate for macros and examples for using samplers within unit
//! tests.
//!
//! # Sampling Strategies
//!
//! The simplest [`Sample`] implementation is for [`Range`]. It is a sampler
//! that generates values uniformly from the given range, and attempts to shrink
//! down to the start of the range:
//!
//! ```
//! use sample_std::{Sample, Random};
//!
//! let mut s = 10..100;
//! let v = s.generate(&mut Random::new());
//! assert!(s.contains(&v));
//! let mut shrunk = s.shrink(v);
//! assert_eq!(shrunk.next(), Some(s.start));
//! if v > s.start {
//! assert!(shrunk.next().unwrap() < v)
//! }
//! ```
//!
//! Samplers are defined for tuples of samplers up to size 8, which can be
//! used in concert with [`Sample::try_convert`] to combine samplers into a
//! sampler for a larger type:
//!
//! ```
//! use sample_std::{Chance, Sample, VecSampler, choice};
//!
//! struct Large {
//! values: Vec<usize>,
//! is_blue: bool,
//! name: String,
//! }
//!
//! let sampler = (
//! VecSampler { length: 0..10, el: 5..20 },
//! Chance(0.5),
//! choice(["cora".to_string(), "james".to_string()])
//! ).try_convert(
//! |(values, is_blue, name)| Large { values, is_blue, name },
//! |large| Some((large.values, large.is_blue, large.name))
//! );
//! ```
//!
//! For an example of sampling an `enum`, see [`sampler_choice`].
//!
//! # Prior Work
//!
//! This crate is heavily inspired by [`quickcheck`]. It builds upon it, in
//! particular by defining samplers for [`Arbitrary`] (see [`arbitrary`]). Many
//! methods and structs in here were derived from their [`quickcheck`]
//! counterparts.
//!
//! It attempts to iterate and improve on the [`quickcheck`] core idea:
//!
//! - Allow definition of multiple sampling strategies for the same type.
//! - No need to define newtypes for custom sampling strategies.
//!
//! There is still some cruft and weirdness from this early attempt to combine
//! these worldviews:
//!
//! - The concept of `size` isn't really necessary in a world with sampling
//! strategies.
//! - The [`Random`] struct could probably just become a type definition around
//! the underlying `rng`.
//!
//! The core idea for sampling "strategies" comes from [`proptest`][2], which
//! uses macros instead of combinators for composition, and has more complex
//! shrinking functionality.
//!
//! [1]: https://docs.rs/sample_test/latest/sample_test/
//! [2]: https://docs.rs/proptest/latest/proptest/
pub use quickcheck::{Arbitrary, Gen, TestResult, Testable};
use std::{marker::PhantomData, ops::Range};
pub use rand;
use rand::{
distributions::uniform::SampleUniform, prelude::Distribution, seq::SliceRandom, Rng,
SeedableRng,
};
pub mod recursive;
/// [`Random`] represents a PRNG.
///
/// It is a reimplementation of [`quickcheck::Gen`], which does not export the
/// methods we need to properly generate random values.
///
/// It is unspecified whether this is a secure RNG or not. Therefore, callers
/// should assume it is insecure.
pub struct Random {
pub rng: rand::rngs::SmallRng,
}
impl Random {
pub fn arbitrary<T: Arbitrary>(&self) -> T {
let mut qcg = Gen::new(100);
Arbitrary::arbitrary(&mut qcg)
}
/// Returns a new [Random] instance.
pub fn new() -> Self {
Random {
rng: rand::rngs::SmallRng::from_entropy(),
}
}
pub fn from_seed(seed: u64) -> Self {
let seed: Vec<u8> = seed
.to_be_bytes()
.into_iter()
.chain(std::iter::repeat(0))
.take(32)
.collect();
Random {
rng: rand::rngs::SmallRng::from_seed(seed[0..32].try_into().unwrap()),
}
}
/// Choose among the possible alternatives in the slice given. If the slice
/// is empty, then `None` is returned. Otherwise, a non-`None` value is
/// guaranteed to be returned.
pub fn choose<'a, T>(&mut self, slice: &'a [T]) -> Option<&'a T> {
slice.choose(&mut self.rng)
}
pub fn gen<T>(&mut self) -> T
where
rand::distributions::Standard: rand::distributions::Distribution<T>,
{
self.rng.gen()
}
pub fn gen_range<T, R>(&mut self, range: R) -> T
where
T: rand::distributions::uniform::SampleUniform,
R: rand::distributions::uniform::SampleRange<T>,
{
self.rng.gen_range(range)
}
}
/// An [`Iterator`] of "smaller" values derived from a given value.
pub type Shrunk<'a, T> = Box<dyn Iterator<Item = T> + 'a>;
/// User-defined strategies for generating and shrinking an `Output` type.
pub trait Sample {
type Output;
/// Randomly generate the requested type.
fn generate(&mut self, g: &mut Random) -> Self::Output;
/// Shrink the given value into a "smaller" value. Defaults to an empty
/// iterator (which represents that the value cannot be shrunk).
fn shrink(&self, _: Self::Output) -> Shrunk<'_, Self::Output> {
Box::new(std::iter::empty())
}
/// Convert this sampler into a new sampler with `from` and `try_into`
/// functions:
///
/// ```
/// use sample_std::{Sample, VecSampler};
///
/// struct Wrapper {
/// vec: Vec<usize>
/// }
///
/// impl Wrapper {
/// fn new(vec: Vec<usize>) -> Self {
/// Self { vec }
/// }
/// }
///
/// let sampler = VecSampler { length: 10..20, el: 1..5 }.try_convert(
/// Wrapper::new,
/// |w| Some(w.vec)
/// );
/// ```
///
/// [`Sample::generate`] will use `from` to convert the inner sampled value
/// to the desired type.
///
/// [`Sample::shrink`] will use `try_into` to convert the desired type back
/// to the inner sampled type, if possible. The inner `shrink` method will
/// be called on that type, and all values will be converted back to the
/// target type again with `into`.
fn try_convert<T, I, F>(self, from: F, try_into: I) -> TryConvert<Self, F, I>
where
Self: Sized,
F: Fn(Self::Output) -> T,
I: Fn(T) -> Option<Self::Output>,
{
TryConvert {
inner: self,
from,
try_into,
}
}
/// "Zip" two samplers together. Functionally equivalent to `(self, other)`.
fn zip<OS>(self, other: OS) -> Zip<Self, OS>
where
Self: Sized,
OS: Sample,
{
Zip { t: (self, other) }
}
/// "Resampling" method for chaining samplers.
///
/// For sampling, use this sampler as a "supersampler" that creates a
/// "seed" value. The provided function then converts this seed into an
/// inner sampler that is used to generate a final value.
///
/// This value is returned within a [Chained] wrapper that also captures the
/// seed. This allows us to use the "supersampler" in the shrinking process.
/// This then shrinks the seed, and then "resamples" (generates new samples)
/// with the shrunk inner sampler.
///
/// Note that the resulting sampler will only perform a very shallow search
/// (`subsamples`) of the shrunk inner sampler space.
fn chain_resample<F, RS>(self, transform: F, subsamples: usize) -> ChainResample<Self, F>
where
Self: Sized,
F: Fn(Self::Output) -> RS,
RS: Sample,
{
ChainResample {
supersampler: self,
transform,
subsamples,
}
}
}
/// See [`Sample::try_convert`].
#[derive(Clone)]
pub struct TryConvert<P, F, I> {
pub inner: P,
from: F,
try_into: I,
}
impl<P, F, I, T> Sample for TryConvert<P, F, I>
where
P: Sample,
F: Fn(P::Output) -> T,
I: Fn(T) -> Option<P::Output>,
{
type Output = T;
fn generate(&mut self, g: &mut Random) -> Self::Output {
(self.from)(P::generate(&mut self.inner, g))
}
fn shrink(&self, v: Self::Output) -> Shrunk<Self::Output> {
Box::new(
(self.try_into)(v)
.into_iter()
.flat_map(|v| P::shrink(&self.inner, v))
.map(&self.from),
)
}
}
/// See [`Sample::zip`].
#[derive(Clone)]
pub struct Zip<A, B> {
t: (A, B),
}
impl<A, B> Sample for Zip<A, B>
where
A: Sample,
B: Sample,
A::Output: Clone,
B::Output: Clone,
{
type Output = (A::Output, B::Output);
fn generate(&mut self, g: &mut Random) -> Self::Output {
self.t.generate(g)
}
fn shrink(&self, v: Self::Output) -> Shrunk<Self::Output> {
self.t.shrink(v)
}
}
macro_rules! replace_expr {
($_t:tt $sub:expr) => {
$sub
};
}
macro_rules! none_pad {
(($cur:ident) $($post: ident)*) => {
(Some($cur), $(replace_expr!($post None)),*)
};
($($pre:ident)+ ($cur:ident) $($post: ident)*) => {
($(replace_expr!($pre None)),*, Some($cur), $(replace_expr!($post None)),*)
};
}
macro_rules! shrink_tuple {
($v:ident () $($sample: ident)*) => {
let ($(casey::lower!($sample)),*) = $v.clone();
let r = std::iter::empty();
shrink_tuple!(r $v () ($($sample)*));
};
($r:ident $v:ident () ($cur:ident $($sample: ident)*)) => {
let (casey::lower!(ref $cur), $(casey::lower!(ref $sample)),*) = $v;
let r = $r.chain(
$cur.shrink(casey::lower!($cur).clone()).map(move |$cur| {
none_pad!(($cur) $($sample)*)
})
);
shrink_tuple!(r $v ($cur) ($($sample)*));
};
($r:ident $v:ident ($($pre:ident)+) ($cur:ident $($sample: ident)*)) => {
let ($(casey::lower!(ref $pre)),*, casey::lower!(ref $cur), $(casey::lower!(ref $sample)),*) = $v;
let r = $r.chain(
$cur.shrink(casey::lower!($cur).clone()).map(move |$cur| {
none_pad!($($pre)* ($cur) $($sample)*)
})
);
shrink_tuple!(r $v ($($pre)* $cur) ($($sample)*));
};
($r:ident $v:ident ($($pre:ident)*) ()) => {
let ($(casey::lower!($pre)),*) = $v;
return Box::new($r.map(move |($($pre),*)| {
($($pre.unwrap_or(casey::lower!($pre).clone())),*)
}))
};
}
macro_rules! sample_tuple {
($($name: ident),*) => {
impl<$($name),*> Sample for ($($name),*,)
where
$($name: Sample),*,
$($name::Output: Clone),*,
{
type Output = ($($name::Output),*,);
#[allow(non_snake_case)]
fn generate(&mut self, r: &mut Random) -> Self::Output {
let ($(casey::lower!($name)),*,) = self;
($(casey::lower!($name).generate(r)),*,)
}
#[allow(non_snake_case)]
fn shrink(&self, v: Self::Output) -> Shrunk<Self::Output> {
let ($($name),*,) = self;
shrink_tuple!(v () $($name)*);
}
}
}
}
impl<A> Sample for (A,)
where
A: Sample,
{
type Output = (A::Output,);
fn generate(&mut self, g: &mut Random) -> Self::Output {
(self.0.generate(g),)
}
fn shrink(&self, v: Self::Output) -> Shrunk<Self::Output> {
Box::new(self.0.shrink(v.0).map(|v| (v,)))
}
}
sample_tuple!(A, B);
sample_tuple!(A, B, C);
sample_tuple!(A, B, C, D);
sample_tuple!(A, B, C, D, E);
sample_tuple!(A, B, C, D, E, F);
sample_tuple!(A, B, C, D, E, F, G);
sample_tuple!(A, B, C, D, E, F, G, H);
/// See [`Sample::chain_resample`].
#[derive(Clone, Debug)]
pub struct ChainResample<S, F> {
supersampler: S,
transform: F,
subsamples: usize,
}
/// Capture the `seed` used to generate the given `value`.
#[derive(Clone, Debug)]
pub struct Chained<S, V> {
seed: S,
pub value: V,
}
impl<S, F, SS> Sample for ChainResample<S, F>
where
S: Sample,
S::Output: Clone,
SS: Sample + 'static,
F: Fn(S::Output) -> SS,
{
type Output = Chained<S::Output, SS::Output>;
fn generate(&mut self, g: &mut Random) -> Self::Output {
let seed = self.supersampler.generate(g);
let value = (self.transform)(seed.clone()).generate(g);
Chained { seed, value }
}
fn shrink(&self, v: Self::Output) -> Shrunk<Self::Output> {
Box::new(self.supersampler.shrink(v.seed).flat_map(|shrunk_seed| {
let mut g = Random::new();
let mut sampler = (self.transform)(shrunk_seed.clone());
(0..self.subsamples).map(move |_| Chained {
seed: shrunk_seed.clone(),
value: sampler.generate(&mut g),
})
}))
}
}
impl<T> Sample for Box<dyn Sample<Output = T>> {
type Output = T;
fn generate(&mut self, g: &mut Random) -> Self::Output {
self.as_mut().generate(g)
}
fn shrink(&self, v: Self::Output) -> Shrunk<'_, Self::Output> {
self.as_ref().shrink(v)
}
}
impl<T> Sample for Box<dyn Sample<Output = T> + Send + Sync> {
type Output = T;
fn generate(&mut self, g: &mut Random) -> Self::Output {
self.as_mut().generate(g)
}
fn shrink(&self, v: Self::Output) -> Shrunk<'_, Self::Output> {
self.as_ref().shrink(v)
}
}
/// Generate a boolean value with the specified probability (in the range
/// `0..=1`).
#[derive(Debug, Clone)]
pub struct Chance(pub f32);
impl Sample for Chance {
type Output = bool;
fn generate(&mut self, g: &mut Random) -> Self::Output {
g.gen_range(0.0..1.0) < self.0
}
}
/// Bridge for creating a [`Sample`] from an [`Arbitrary`] type.
pub struct ArbitrarySampler<T> {
gen: Gen,
phantom: PhantomData<T>,
validate: fn(&T) -> bool,
}
impl<T> Clone for ArbitrarySampler<T> {
fn clone(&self) -> Self {
ArbitrarySampler {
gen: Gen::new(self.gen.size()),
phantom: self.phantom.clone(),
validate: self.validate.clone(),
}
}
}
impl<T: Arbitrary> Sample for ArbitrarySampler<T> {
type Output = T;
fn generate(&mut self, _: &mut Random) -> Self::Output {
for _ in 0..1000 {
let value = Arbitrary::arbitrary(&mut self.gen);
if (self.validate)(&value) {
return value;
}
}
panic!("could not find valid value after 1000 iterations")
}
fn shrink(&self, v: Self::Output) -> Shrunk<'_, Self::Output> {
Arbitrary::shrink(&v)
}
}
/// Sampler for any type implementing [`Arbitrary`].
pub fn arbitrary<T: Arbitrary>() -> ArbitrarySampler<T> {
ArbitrarySampler {
gen: Gen::new(100),
phantom: PhantomData,
validate: |_| true,
}
}
/// Sampler for non-NaN [f32]
pub fn valid_f32() -> ArbitrarySampler<f32> {
ArbitrarySampler {
gen: Gen::new(100),
phantom: PhantomData,
validate: |f| !f.is_nan(),
}
}
/// Sampler for non-NaN [f64]
pub fn valid_f64() -> ArbitrarySampler<f64> {
ArbitrarySampler {
gen: Gen::new(100),
phantom: PhantomData,
validate: |f| !f.is_nan(),
}
}
/// Sampler that always generates a fixed value.
#[derive(Debug, Clone)]
pub struct Always<T>(pub T);
impl<T: Clone> Sample for Always<T> {
type Output = T;
fn generate(&mut self, _: &mut Random) -> Self::Output {
self.0.clone()
}
}
/// Sample from a list of `choice` values.
///
/// [`Sample::shrink`] will attempt to shrink down to the first element in the
/// [`Choice`]:
///
/// ```
/// use sample_std::{Random, Sample, choice};
///
/// let mut sampler = choice(["cora", "coraline"]);
/// let name = sampler.generate(&mut Random::new());
/// assert!(name.starts_with("cora"));
///
/// assert_eq!(sampler.shrink("coraline").next(), Some("cora"));
/// ```
pub fn choice<T, II>(choices: II) -> Choice<T>
where
T: Clone + PartialEq,
II: IntoIterator<Item = T>,
{
Choice {
choices: choices.into_iter().collect(),
}
}
/// See [choice].
#[derive(Clone, Debug)]
pub struct Choice<T> {
pub choices: Vec<T>,
}
impl<T> Sample for Choice<T>
where
T: Clone + PartialEq,
{
type Output = T;
fn generate(&mut self, g: &mut Random) -> Self::Output {
g.choose(&self.choices).unwrap().clone()
}
fn shrink(&self, v: Self::Output) -> Shrunk<'_, Self::Output> {
let ix = self.choices.iter().position(|el| el == &v).unwrap_or(0);
Box::new((0..ix).map(|shrunk_ix| self.choices[shrunk_ix].clone()))
}
}
/// Sample values from a sampler randomly drawn from a list of `choices`.
///
/// `shrink` attempts to run the [`Sample::shrink`] method from each specified
/// sampler in order. This allows [`sampler_choice`] to work with choices that
/// generate `enum` variants (e.g. via [`Sample::try_convert`]):
///
/// ```
/// use std::boxed::Box;
/// use sample_std::{Sample, sampler_choice};
///
/// #[derive(Clone)]
/// enum Widget {
/// Bib(usize),
/// Bob(usize)
/// }
///
/// type WidgetSampler = Box<dyn Sample<Output = Widget>>;
///
/// let bibs: WidgetSampler = Box::new((0..100).try_convert(Widget::Bib, |v| match v {
/// Widget::Bib(u) => Some(u),
/// _ => None,
/// }));
///
/// let bobs: WidgetSampler = Box::new((100..200).try_convert(Widget::Bob, |v| match v {
/// Widget::Bob(u) => Some(u),
/// _ => None,
/// }));
///
/// let widgets = sampler_choice([bibs, bobs]);
/// ```
///
/// This may lead to unexpected shrinking behavior if every sampler in the
/// [`SamplerChoice`] can shrink a given value.
pub fn sampler_choice<C, II>(choices: II) -> SamplerChoice<C>
where
II: IntoIterator<Item = C>,
C: Sample,
<C as Sample>::Output: Clone,
{
SamplerChoice {
choices: choices.into_iter().collect(),
}
}
/// See [`sampler_choice`].
#[derive(Clone, Debug)]
pub struct SamplerChoice<C> {
pub choices: Vec<C>,
}
impl<C> SamplerChoice<C> {
pub fn or(self, other: Self) -> Self {
Self {
choices: self
.choices
.into_iter()
.chain(other.choices.into_iter())
.collect(),
}
}
}
impl<C, T> Sample for SamplerChoice<C>
where
C: Sample<Output = T>,
T: Clone + 'static,
{
type Output = T;
fn generate(&mut self, g: &mut Random) -> Self::Output {
let ix = g.gen_range(0..self.choices.len());
self.choices[ix].generate(g)
}
fn shrink(&self, v: Self::Output) -> Shrunk<'_, Self::Output> {
Box::new(self.choices.iter().flat_map(move |c| c.shrink(v.clone())))
}
}
impl<T, I> Sample for Range<T>
where
T: SampleUniform + Clone + PartialOrd + 'static,
Range<T>: IntoIterator<IntoIter = I>,
I: DoubleEndedIterator<Item = T> + 'static,
{
type Output = T;
fn generate(&mut self, g: &mut Random) -> Self::Output {
g.gen_range(self.clone())
}
fn shrink(&self, v: Self::Output) -> Shrunk<'_, Self::Output> {
if self.start != v {
Box::new(
std::iter::once(self.start.clone())
.chain((self.start.clone()..v.clone()).into_iter().rev().take(1)),
)
} else {
Box::new(std::iter::empty())
}
}
}
/// Sample strings given a "valid" regular expression.
///
/// Shrinking is done by shortening the string and testing if the expression
/// still matches.
#[derive(Clone, Debug)]
pub struct Regex {
pub dist: rand_regex::Regex,
pub re: regex::Regex,
}
impl Regex {
/// Create a new [Regex] sampler with the given `pattern` string.
pub fn new(pattern: &str) -> Self {
Regex {
dist: rand_regex::Regex::compile(pattern, 100).unwrap(),
re: regex::Regex::new(pattern).unwrap(),
}
}
}
impl Sample for Regex {
type Output = String;
fn generate(&mut self, g: &mut Random) -> Self::Output {
self.dist.sample(&mut g.rng)
}
fn shrink(&self, v: Self::Output) -> Shrunk<'_, Self::Output> {
let re = self.re.clone();
// this obviously could be improved via deeper integration with the
// underlying regex, but the generation library does not appear to
// expose interfaces to do so
Box::new(Iterator::flat_map(0..v.len(), move |ix| {
let mut shrunk: String = String::with_capacity(v.len());
shrunk.push_str(&v[0..ix]);
shrunk.push_str(&v[ix..]);
if re.is_match(&shrunk) {
Some(shrunk)
} else {
None
}
}))
}
}
/// Sample a [`Vec`] with a length drawn from a `usize` [`Sample`] and elements
/// drawn from the `el` sampler.
///
/// Shrinking attempts to first shrink the length, and then shrink each element
/// within the [`Vec`].
#[derive(Debug, Clone)]
pub struct VecSampler<S, I> {
pub length: S,
pub el: I,
}
impl<S, I, T> Sample for VecSampler<S, I>
where
S: Sample<Output = usize>,
I: Sample<Output = T>,
T: Clone + 'static,
{
type Output = Vec<T>;
fn generate(&mut self, g: &mut Random) -> Self::Output {
Iterator::map(0..self.length.generate(g), |_| self.el.generate(g)).collect()
}
fn shrink(&self, v: Self::Output) -> Shrunk<'_, Self::Output> {
Box::new(self.length.shrink(v.len()).flat_map(move |new_len| {
assert!(new_len < v.len());
let gap = v.len() - new_len;
let iv = v.clone();
let iv2 = v.clone();
Iterator::map(0..new_len, move |cut| {
iv[0..cut]
.iter()
.chain(iv[cut + gap..].iter())
.cloned()
.collect()
})
.chain(Iterator::flat_map(0..v.len(), move |ix| {
let vref = iv2.clone();
let el = vref[ix].clone();
self.el.shrink(el).map(move |shrunk| {
let mut copy: Vec<T> = vref.clone();
copy[ix] = shrunk.clone();
copy.clone()
})
}))
}))
}
}
/// Use a [`Vec`] of `samplers` to generate a new [`Vec`] of equal length, where
/// each sampler in the [`Vec`] is used to sample the value at its corresponding
/// position.
///
/// Shrinking proceeds per-element within the generated [`Vec`] in index order.
pub fn sample_all<S>(samplers: Vec<S>) -> SampleAll<S>
where
S: Sample,
{
SampleAll { samplers }
}
/// See [`sample_all`].
pub struct SampleAll<S> {
pub samplers: Vec<S>,
}
impl<S> Sample for SampleAll<S>
where
S: Sample,
S::Output: Clone,
{
type Output = Vec<S::Output>;
fn generate(&mut self, g: &mut Random) -> Self::Output {
self.samplers.iter_mut().map(|s| s.generate(g)).collect()
}
fn shrink(&self, v: Self::Output) -> Shrunk<'_, Self::Output> {
Box::new((0..self.samplers.len()).flat_map(move |ix| {
let mut updated = v.clone();
self.samplers[ix]
.shrink(updated[ix].clone())
.map(move |sv| {
updated[ix] = sv;
updated.clone()
})
}))
}
}
#[cfg(test)]
mod tests {}