1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
//! Implementation of B tree pages for Unsized types, or types with an
//! dynamically-sized representation (for example enums with widely
//! different sizes).
//!
//! This module follows the same organisation as the sized
//! implementation, and contains types shared between the two
//! implementations.
//!
//! The types that can be used with this implementation must implement
//! the [`UnsizedStorable`] trait, which essentially replaces the
//! [`core::mem`] functions for determining the size and alignment of
//! values.
//!
//! One key difference is the implementation of leaves (internal nodes
//! have the same format): indeed, in this implementation, leaves have
//! almost the same format as internal nodes, except that their
//! offsets are written on the page as little-endian-encoded [`u16`]
//! (with only the 12 LSBs used, i.e. 4 bits unused).

use super::*;
use crate::btree::del::*;
use crate::btree::put::*;
use core::cmp::Ordering;

// The header is the same as for the sized implementation, so we share
// it here.
pub(super) mod header;

// Like in the sized implementation, we have the same three submodules.
mod alloc;

// This is a common module with the sized implementation.
pub(super) mod cursor;

mod put;
pub(super) mod rebalance;
use alloc::*;
use cursor::*;
use header::*;
use rebalance::*;

#[derive(Debug)]
pub struct Page<K: ?Sized, V: ?Sized> {
    k: core::marker::PhantomData<K>,
    v: core::marker::PhantomData<V>,
}

// Many of these functions are the same as in the Sized implementations.
impl<K: UnsizedStorable + ?Sized, V: UnsizedStorable + ?Sized> super::BTreePage<K, V>
    for Page<K, V>
{
    fn is_empty(c: &Self::Cursor) -> bool {
        c.cur >= c.total as isize
    }

    fn is_init(c: &Self::Cursor) -> bool {
        c.cur < 0
    }
    type Cursor = PageCursor;
    fn cursor_before(p: &crate::CowPage) -> Self::Cursor {
        PageCursor::new(p, -1)
    }
    fn cursor_after(p: &crate::CowPage) -> Self::Cursor {
        PageCursor::after(p)
    }

    // Split a cursor, returning two cursors `(a, b)` where b is the
    // same as `c`, and `a` is a cursor running from the first element
    // of the page to `c` (excluding `c`).
    fn split_at(c: &Self::Cursor) -> (Self::Cursor, Self::Cursor) {
        (
            PageCursor {
                cur: 0,
                total: c.cur.max(0) as usize,
                is_leaf: c.is_leaf,
            },
            *c,
        )
    }

    fn move_next(c: &mut Self::Cursor) -> bool {
        if c.cur < c.total as isize {
            c.cur += 1;
            true
        } else {
            false
        }
    }
    fn move_prev(c: &mut Self::Cursor) -> bool {
        if c.cur > 0 {
            c.cur -= 1;
            true
        } else {
            c.cur = -1;
            false
        }
    }

    // This function is the same as the sized implementation for
    // internal nodes, since the only difference between leaves and
    // internal nodes in this implementation is the size of offsets (2
    // bytes for leaves, 8 bytes for internal nodes).
    fn current<'a, T: LoadPage>(
        txn: &T,
        page: crate::Page<'a>,
        c: &Self::Cursor,
    ) -> Option<(&'a K, &'a V, u64)> {
        if c.cur < 0 || c.cur >= c.total as isize {
            None
        } else if c.is_leaf {
            unsafe {
                let off =
                    u16::from_le(*(page.data.as_ptr().add(HDR + c.cur as usize * 2) as *const u16));
                let (k, v) = read::<T, K, V>(txn, page.data.as_ptr().add(off as usize));
                Some((
                    K::from_raw_ptr(txn, k as *const u8),
                    V::from_raw_ptr(txn, v as *const u8),
                    0,
                ))
            }
        } else {
            unsafe {
                let off =
                    u64::from_le(*(page.data.as_ptr().add(HDR + c.cur as usize * 8) as *const u64));
                let (k, v) = read::<T, K, V>(txn, page.data.as_ptr().add((off & 0xfff) as usize));
                Some((
                    K::from_raw_ptr(txn, k as *const u8),
                    V::from_raw_ptr(txn, v as *const u8),
                    off & !0xfff,
                ))
            }
        }
    }

    // These methods are the same as in the sized implementation.
    fn left_child(page: crate::Page, c: &Self::Cursor) -> u64 {
        assert!(c.cur >= 0);
        if c.is_leaf {
            0
        } else {
            assert!(c.cur >= 0 && HDR as isize + c.cur * 8 - 8 <= 4088);
            let off =
                unsafe { *(page.data.as_ptr().offset(HDR as isize + c.cur * 8 - 8) as *const u64) };
            u64::from_le(off) & !0xfff
        }
    }
    fn right_child(page: crate::Page, c: &Self::Cursor) -> u64 {
        assert!(c.cur < c.total as isize);
        if c.is_leaf {
            0
        } else {
            assert!(c.cur < c.total as isize && HDR as isize + c.cur * 8 - 8 <= 4088);
            let off =
                unsafe { *(page.data.as_ptr().offset(HDR as isize + c.cur * 8) as *const u64) };
            u64::from_le(off) & !0xfff
        }
    }

    fn set_cursor<'a, T: LoadPage>(
        txn: &'a T,
        page: crate::Page,
        c: &mut PageCursor,
        k0: &K,
        v0: Option<&V>,
    ) -> Result<(&'a K, &'a V, u64), usize> {
        unsafe {
            // `lookup` has the same semantic as
            // `core::slice::binary_search`, i.e. it returns either
            // `Ok(n)`, where `n` is the position where `(k0, v0)` was
            // found, or `Err(n)` where `n` is the position where
            // `(k0, v0)` can be inserted to preserve the order.
            match lookup(txn, page, c, k0, v0) {
                Ok(n) => {
                    c.cur = n as isize;
                    if c.is_leaf {
                        let off =
                            u16::from_le(*(page.data.as_ptr().add(HDR + n * 2) as *const u16));
                        let (k, v) = read::<T, K, V>(txn, page.data.as_ptr().add(off as usize));
                        Ok((K::from_raw_ptr(txn, k), V::from_raw_ptr(txn, v), 0))
                    } else {
                        let off =
                            u64::from_le(*(page.data.as_ptr().add(HDR + n * 8) as *const u64));
                        let (k, v) =
                            read::<T, K, V>(txn, page.data.as_ptr().add(off as usize & 0xfff));
                        Ok((
                            K::from_raw_ptr(txn, k),
                            V::from_raw_ptr(txn, v),
                            off & !0xfff,
                        ))
                    }
                }
                Err(n) => {
                    c.cur = n as isize;
                    Err(n)
                }
            }
        }
    }
}

// There quite some duplicated code in the following function, because
// we're forming a slice of offsets, and the using the core library's
// `binary_search_by` method on slices.
unsafe fn lookup<T: LoadPage, K: UnsizedStorable + ?Sized, V: UnsizedStorable + ?Sized>(
    txn: &T,
    page: crate::Page,
    c: &mut PageCursor,
    k0: &K,
    v0: Option<&V>,
) -> Result<usize, usize> {
    let hdr = header(page);
    c.total = hdr.n() as usize;
    c.is_leaf = hdr.is_leaf();
    if c.is_leaf {
        lookup_leaf(txn, page, k0, v0, hdr)
    } else {
        lookup_internal(txn, page, k0, v0, hdr)
    }
}

unsafe fn lookup_internal<T: LoadPage, K: UnsizedStorable + ?Sized, V: UnsizedStorable + ?Sized>(
    txn: &T,
    page: crate::Page,
    k0: &K,
    v0: Option<&V>,
    hdr: &header::Header,
) -> Result<usize, usize> {
    let s =
        core::slice::from_raw_parts(page.data.as_ptr().add(HDR) as *const u64, hdr.n() as usize);
    if let Some(v0) = v0 {
        s.binary_search_by(|&off| {
            let off = u64::from_le(off) & 0xfff;
            let (k, v) = read::<T, K, V>(txn, page.data.as_ptr().offset(off as isize & 0xfff));
            let k = K::from_raw_ptr(txn, k);
            match k.compare(txn, k0) {
                Ordering::Equal => {
                    let v = V::from_raw_ptr(txn, v);
                    v.compare(txn, v0)
                }
                cmp => cmp,
            }
        })
    } else {
        match s.binary_search_by(|&off| {
            let off = u64::from_le(off) & 0xfff;
            let (k, _) = read::<T, K, V>(txn, page.data.as_ptr().offset(off as isize & 0xfff));
            let k = K::from_raw_ptr(txn, k);
            k.compare(txn, k0)
        }) {
            Err(i) => Err(i),
            Ok(mut i) => {
                // Rewind if there are multiple matching keys.
                while i > 0 {
                    let off = u64::from_le(s[i - 1]) & 0xfff;
                    let (k, _) = read::<T, K, V>(txn, page.data.as_ptr().offset(off as isize));
                    let k = K::from_raw_ptr(txn, k);
                    if let Ordering::Equal = k.compare(txn, k0) {
                        i -= 1
                    } else {
                        break;
                    }
                }
                Ok(i)
            }
        }
    }
}

unsafe fn lookup_leaf<T: LoadPage, K: UnsizedStorable + ?Sized, V: UnsizedStorable + ?Sized>(
    txn: &T,
    page: crate::Page,
    k0: &K,
    v0: Option<&V>,
    hdr: &header::Header,
) -> Result<usize, usize> {
    let s =
        core::slice::from_raw_parts(page.data.as_ptr().add(HDR) as *const u16, hdr.n() as usize);
    if let Some(v0) = v0 {
        s.binary_search_by(|&off| {
            let off = u16::from_le(off);
            let (k, v) = read::<T, K, V>(txn, page.data.as_ptr().offset(off as isize));
            let k = K::from_raw_ptr(txn, k as *const u8);
            match k.compare(txn, k0) {
                Ordering::Equal => {
                    let v = V::from_raw_ptr(txn, v as *const u8);
                    v.compare(txn, v0)
                }
                cmp => cmp,
            }
        })
    } else {
        match s.binary_search_by(|&off| {
            let off = u16::from_le(off);
            let (k, _) = read::<T, K, V>(txn, page.data.as_ptr().offset(off as isize));
            let k = K::from_raw_ptr(txn, k);
            k.compare(txn, k0)
        }) {
            Err(e) => Err(e),
            Ok(mut i) => {
                // Rewind if there are multiple matching keys.
                while i > 0 {
                    let off = u16::from_le(s[i - 1]);
                    let (k, _) = read::<T, K, V>(txn, page.data.as_ptr().offset(off as isize));
                    let k = K::from_raw_ptr(txn, k);
                    if let Ordering::Equal = k.compare(txn, k0) {
                        i -= 1
                    } else {
                        break;
                    }
                }
                Ok(i)
            }
        }
    }
}

impl<
        K: UnsizedStorable + ?Sized + core::fmt::Debug,
        V: UnsizedStorable + ?Sized + core::fmt::Debug,
    > super::BTreeMutPage<K, V> for Page<K, V>
{
    // The init function is straightforward.
    fn init(page: &mut MutPage) {
        let h = header_mut(page);
        h.init();
    }

    // Deletions in internal nodes of a B tree need to replace the
    // deleted value with a value from a leaf.
    //
    // In this implementation of pages, we never actually wipe any
    // data from pages, we're even only appending data, or cloning the
    // pages to compact them. Therefore, raw pointers to leaves are
    // always valid for as long as the page isn't freed, which can
    // only happen at the very last step of an insertion or deletion.
    type Saved = (*const K, *const V);
    fn save_deleted_leaf_entry(k: &K, v: &V) -> Self::Saved {
        (k as *const K, v as *const V)
    }

    unsafe fn from_saved<'a>(s: &Self::Saved) -> (&'a K, &'a V) {
        (&*s.0, &*s.1)
    }

    // As in the sized implementation, `put` is split into its own submodule.
    unsafe fn put<'a, T: AllocPage>(
        txn: &mut T,
        page: CowPage,
        mutable: bool,
        replace: bool,
        c: &PageCursor,
        k0: &'a K,
        v0: &'a V,
        k1v1: Option<(&'a K, &'a V)>,
        l: u64,
        r: u64,
    ) -> Result<crate::btree::put::Put<'a, K, V>, T::Error> {
        debug_assert!(c.cur >= 0);
        debug_assert!(k1v1.is_none() || replace);
        if r == 0 {
            put::put::<_, _, _, Leaf>(
                txn,
                page,
                mutable,
                replace,
                c.cur as usize,
                k0,
                v0,
                k1v1,
                0,
                0,
            )
        } else {
            put::put::<_, _, _, Internal>(
                txn,
                page,
                mutable,
                replace,
                c.cur as usize,
                k0,
                v0,
                k1v1,
                l,
                r,
            )
        }
    }

    unsafe fn put_mut<T: AllocPage>(
        txn: &mut T,
        page: &mut MutPage,
        c: &mut Self::Cursor,
        k0: &K,
        v0: &V,
        r: u64,
    ) {
        let mut n = c.cur;
        if r == 0 {
            Leaf::alloc_write(txn, page, k0, v0, 0, r, &mut n);
        } else {
            Internal::alloc_write(txn, page, k0, v0, 0, r, &mut n);
        }
        c.total += 1;
    }

    unsafe fn set_left_child(page: &mut MutPage, c: &Self::Cursor, l: u64) {
        let off = (page.0.data.add(HDR) as *mut u64).offset(c.cur - 1);
        *off = (l | (u64::from_le(*off) & 0xfff)).to_le();
    }

    // Update the left child of the entry pointed to by cursor `c`.
    unsafe fn update_left_child<T: AllocPage>(
        txn: &mut T,
        page: CowPage,
        mutable: bool,
        c: &Self::Cursor,
        l: u64,
    ) -> Result<crate::btree::put::Ok, T::Error> {
        assert!(!c.is_leaf);
        let freed;
        let page = if mutable && page.is_dirty() {
            // If the page is dirty (allocated by this transaction)
            // and isn't shared, just make it mutable.
            freed = 0;
            MutPage(page)
        } else {
            // Else, clone the page:
            let mut new = txn.alloc_page()?;
            <Page<K, V> as BTreeMutPage<K, V>>::init(&mut new);
            // Copy the left child
            let l = header(page.as_page()).left_page() & !0xfff;
            let hdr = header_mut(&mut new);
            hdr.set_left_page(l);
            // Copy all the entries
            let s = Internal::offset_slice(page.as_page());
            clone::<K, V, Internal>(page.as_page(), &mut new, s, &mut 0);
            // Mark the old version for freeing.
            freed = page.offset | if page.is_dirty() { 1 } else { 0 };
            new
        };
        // Finally, update the left children of the cursor. We know
        // that all valid positions of a cursor except the leftmost
        // one (-1) have a left child.
        assert!(c.cur >= 0);
        unsafe {
            let off = (page.0.data.add(HDR) as *mut u64).offset(c.cur as isize - 1);
            *off = (l | (u64::from_le(*off) & 0xfff)).to_le();
        }
        Ok(Ok { page, freed })
    }

    // Here is how deletions work: if the page is dirty and mutable,
    // we "unlink" the value by moving the end of the offset array to
    // the left by one offset (2 bytes in leaves, 8 bytes in internal
    // nodes).
    unsafe fn del<T: AllocPage>(
        txn: &mut T,
        page: crate::CowPage,
        mutable: bool,
        c: &PageCursor,
        l: u64,
    ) -> Result<(MutPage, u64), T::Error> {
        // Check that the cursor is at a valid position for a deletion.
        debug_assert!(c.cur >= 0 && c.cur < c.total as isize);
        if mutable && page.is_dirty() {
            let p = page.data;
            let mut page = MutPage(page);
            let hdr = header_mut(&mut page);
            let n = hdr.n();
            if c.is_leaf {
                unsafe {
                    let ptr = p.add(HDR + c.cur as usize * 2) as *mut u16;
                    // Get the offset in the page of the key/value data.
                    let off = u16::from_le(*ptr);
                    assert_eq!(off & 0xf000, 0);
                    // Erase the offset by shifting the last (`n -
                    // c.cur - 1`) offsets. The reasoning against
                    // "off-by-one errors" is that if the cursor is
                    // positioned on the first element (`c.cur == 0`),
                    // there are `n-1` elements to shift.
                    core::ptr::copy(ptr.offset(1), ptr, n as usize - c.cur as usize - 1);
                    // Remove the size of the actualy key/value, plus
                    // 2 bytes (the offset).
                    hdr.decr(2 + entry_size::<K, V>(p.add(off as usize)));
                }
            } else {
                unsafe {
                    let ptr = p.add(HDR + c.cur as usize * 8) as *mut u64;
                    // Offset to the key/value data.
                    let off = u64::from_le(*ptr);
                    // Shift the offsets like in the leaf case above.
                    core::ptr::copy(ptr.offset(1), ptr, n as usize - c.cur as usize - 1);
                    if l > 0 {
                        // In an internal node, we may have to update
                        // the left child of the current
                        // position. After the move, the current
                        // offset is at `ptr`, so we need to find the
                        // offset one step to the left.
                        let p = ptr.offset(-1);
                        *p = (l | (u64::from_le(*p) & 0xfff)).to_le();
                    }
                    // Remove the size of the key/value, plus 8 bytes
                    // (the offset).
                    hdr.decr(8 + entry_size::<K, V>(p.add((off & 0xfff) as usize)));
                }
            };
            hdr.set_n(n - 1);
            // Return the page, and 0 for "nothing was freed".
            Ok((page, 0))
        } else {
            // If the page cannot be mutated, we allocate a new page and clone.
            let mut new = txn.alloc_page()?;
            <Page<K, V> as BTreeMutPage<K, V>>::init(&mut new);
            if c.is_leaf {
                // In a leaf, this is just a matter of getting the
                // offset slice, removing the current position and
                // cloning.
                let s = Leaf::offset_slice(page.as_page());
                let (s0, s1) = s.split_at(c.cur as usize);
                let (_, s1) = s1.split_at(1);
                let mut n = 0;
                clone::<K, V, Leaf>(page.as_page(), &mut new, s0, &mut n);
                clone::<K, V, Leaf>(page.as_page(), &mut new, s1, &mut n);
            } else {
                // In an internal node, things are a bit trickier,
                // since we might need to update the left child.
                //
                // First, clone the leftmost child of the page.
                let hdr = header(page.as_page());
                let left = hdr.left_page() & !0xfff;
                unsafe {
                    *(new.0.data.add(HDR) as *mut u64).offset(-1) = left.to_le();
                }
                // Then, clone the first half of the page.
                let s = Internal::offset_slice(page.as_page());
                let (s0, s1) = s.split_at(c.cur as usize);
                let (_, s1) = s1.split_at(1);
                let mut n = 0;
                clone::<K, V, Internal>(page.as_page(), &mut new, s0, &mut n);
                // Update the left child, which was written by the
                // call to `clone` as the right child of the last
                // entry in `s0`.
                if l > 0 {
                    unsafe {
                        let off = (new.0.data.add(HDR) as *mut u64).offset(n - 1);
                        *off = (l | (u64::from_le(*off) & 0xfff)).to_le();
                    }
                }
                // Then, clone the second half of the page.
                clone::<K, V, Internal>(page.as_page(), &mut new, s1, &mut n);
            }
            // Return the new page, and the offset of the freed page.
            Ok((new, page.offset))
        }
    }

    // Decide what to do with the concatenation of two neighbouring
    // pages, with a middle element.
    //
    // This is highly similar to the sized case.
    unsafe fn merge_or_rebalance<'a, T: AllocPage>(
        txn: &mut T,
        m: Concat<'a, K, V, Self>,
    ) -> Result<Op<'a, T, K, V>, T::Error> {
        // First evaluate the size of the middle element on a
        // page. Contrarily to the sized case, the offsets are
        // aligned, so the header is always the same size (no
        // padding).
        let mid_size = if m.modified.c0.is_leaf {
            2 + alloc_size::<K, V>(m.mid.0, m.mid.1)
        } else {
            8 + alloc_size::<K, V>(m.mid.0, m.mid.1)
        };

        // Evaluate the size of the modified page of the concatenation
        // (which includes the header).
        let mod_size = size::<K, V>(&m.modified);
        // Add the "occupied" size (which excludes the header).
        let occupied = {
            let hdr = header(m.other.as_page());
            (hdr.left_page() & 0xfff) as usize
        };
        if mod_size + mid_size + occupied <= PAGE_SIZE {
            // If the concatenation fits on a page, merge.
            return if m.modified.c0.is_leaf {
                merge::<_, _, _, _, Leaf>(txn, m)
            } else {
                merge::<_, _, _, _, Internal>(txn, m)
            };
        }

        // If we can't merge, evaluate the size of the first binding
        // on the other page, to see if we can rebalance.
        let first_other = PageCursor::new(&m.other, 0);
        let first_other_size = current_size::<K, V>(m.other.as_page(), &first_other);

        // If the modified page is at least half-full, or if removing
        // the first entry on the other page would make that other
        // page less than half-full, don't rebalance. See the Sized
        // implementation to see cases where this happens.
        if mod_size >= PAGE_SIZE / 2 || HDR + occupied - first_other_size < PAGE_SIZE / 2 {
            if let Some((k, v)) = m.modified.ins {
                return Ok(Op::Put(Self::put(
                    txn,
                    m.modified.page,
                    m.modified.mutable,
                    m.modified.skip_first,
                    &m.modified.c1,
                    k,
                    v,
                    m.modified.ins2,
                    m.modified.l,
                    m.modified.r,
                )?));
            } else if m.modified.skip_first {
                debug_assert!(m.modified.ins2.is_none());
                let (page, freed) = Self::del(
                    txn,
                    m.modified.page,
                    m.modified.mutable,
                    &m.modified.c1,
                    m.modified.l,
                )?;
                return Ok(Op::Put(Put::Ok(Ok { page, freed })));
            } else {
                let mut c1 = m.modified.c1.clone();
                let mut l = m.modified.l;
                if l == 0 {
                    Self::move_next(&mut c1);
                    l = m.modified.r;
                }
                return Ok(Op::Put(Put::Ok(Self::update_left_child(
                    txn,
                    m.modified.page,
                    m.modified.mutable,
                    &c1,
                    l,
                )?)));
            }
        }
        // Finally, if we're here, we can rebalance. There are four
        // (relatively explicit) cases, see the `rebalance` submodule
        // to see how this is done.
        if m.mod_is_left {
            if m.modified.c0.is_leaf {
                rebalance_left::<_, _, _, Leaf>(txn, m)
            } else {
                rebalance_left::<_, _, _, Internal>(txn, m)
            }
        } else {
            rebalance_right::<_, _, _, Self>(txn, m)
        }
    }
}

/// Size of a modified page (including the header).
fn size<K: UnsizedStorable + ?Sized, V: UnsizedStorable + ?Sized>(
    m: &ModifiedPage<K, V, Page<K, V>>,
) -> usize {
    let mut total = {
        let hdr = header(m.page.as_page());
        (hdr.left_page() & 0xfff) as usize
    };
    total += HDR;

    // Extra size for the offsets.
    let extra = if m.c1.is_leaf { 2 } else { 8 };
    if let Some((k, v)) = m.ins {
        total += extra + alloc_size(k, v) as usize;
        if let Some((k, v)) = m.ins2 {
            total += extra + alloc_size(k, v) as usize;
        }
    }
    if m.skip_first {
        total -= current_size::<K, V>(m.page.as_page(), &m.c1) as usize;
    }
    total
}

// Size of a pair of type `(K, V)`. This is computed in the same way
// as a struct with fields of type `K` and `V` in C.
fn alloc_size<K: UnsizedStorable + ?Sized, V: UnsizedStorable + ?Sized>(k: &K, v: &V) -> usize {
    let s = ((k.size() + V::ALIGN - 1) & !(V::ALIGN - 1)) + v.size();
    let al = K::ALIGN.max(V::ALIGN);
    (s + al - 1) & !(al - 1)
}

// Total size of the entry for that cursor position, including the
// offset size.
fn current_size<K: UnsizedStorable + ?Sized, V: UnsizedStorable + ?Sized>(
    page: crate::Page,
    c: &PageCursor,
) -> usize {
    if c.is_leaf {
        Leaf::current_size::<K, V>(page, c.cur)
    } else {
        Internal::current_size::<K, V>(page, c.cur)
    }
}

pub(super) trait AllocWrite<K: ?Sized, V: ?Sized> {
    fn alloc_write<T: AllocPage>(
        txn: &mut T,
        new: &mut MutPage,
        k0: &K,
        v0: &V,
        l: u64,
        r: u64,
        n: &mut isize,
    );
    fn set_left_child(new: &mut MutPage, n: isize, l: u64);
}

/// Perform the modifications on a page, by copying it onto page `new`.
fn modify<
    T: LoadPage + AllocPage,
    K: core::fmt::Debug + ?Sized,
    V: core::fmt::Debug + ?Sized,
    P: BTreeMutPage<K, V>,
    L: AllocWrite<K, V>,
>(
    txn: &mut T,
    new: &mut MutPage,
    m: &mut ModifiedPage<K, V, P>,
    n: &mut isize,
) {
    let mut l = P::left_child(m.page.as_page(), &m.c0);
    while let Some((k, v, r)) = P::next(txn, m.page.as_page(), &mut m.c0) {
        L::alloc_write(txn, new, k, v, l, r, n);
        l = 0;
    }
    let mut rr = m.r;
    if let Some((k, v)) = m.ins {
        if let Some((k2, v2)) = m.ins2 {
            L::alloc_write(txn, new, k, v, l, m.l, n);
            L::alloc_write(txn, new, k2, v2, 0, m.r, n);
        } else if m.l > 0 {
            L::alloc_write(txn, new, k, v, m.l, m.r, n);
        } else {
            L::alloc_write(txn, new, k, v, l, m.r, n);
        }
        l = 0;
        rr = 0;
    } else if m.l > 0 {
        l = m.l
    }
    let mut c1 = m.c1.clone();
    if m.skip_first {
        P::move_next(&mut c1);
    }
    // Here's a confusing thing: if the first element of `c1` is the
    // last element of a page, we may be updating its right child (in
    // which case m.r > 0) rather than its left child like for all
    // other elements.
    //
    // This case only ever happens for this function when we're
    // updating the last child of a page p, and then merging p with
    // its right neighbour.
    while let Some((k, v, r)) = P::next(txn, m.page.as_page(), &mut c1) {
        if rr > 0 {
            L::alloc_write(txn, new, k, v, l, rr, n);
            rr = 0;
        } else {
            L::alloc_write(txn, new, k, v, l, r, n);
        }
        l = 0;
    }
    if l != 0 {
        // The while loop above didn't run, i.e. the insertion
        // happened at the end of the page. In this case, we haven't
        // had a chance to update the left page, so do it now.
        L::set_left_child(new, *n, l)
    }
}

/// The very unsurprising `merge` function
pub(super) fn merge<
    'a,
    T: AllocPage + LoadPage,
    K: ?Sized + core::fmt::Debug,
    V: ?Sized + core::fmt::Debug,
    P: BTreeMutPage<K, V>,
    L: AllocWrite<K, V>,
>(
    txn: &mut T,
    mut m: Concat<K, V, P>,
) -> Result<Op<'a, T, K, V>, T::Error> {
    // Here, we first allocate a page, then clone both pages onto it,
    // in a different order depending on whether the modified page is
    // the left or the right child.
    //
    // Note that in the case that this merge happens immediately after
    // a put that reallocated the two sides of the merge in order to
    // split (not all splits do that), we could be slightly more
    // efficient, but with considerably more code.
    let mut new = unsafe { txn.alloc_page()? };
    P::init(&mut new);

    let mut n = 0;
    if m.mod_is_left {
        modify::<_, _, _, _, L>(txn, &mut new, &mut m.modified, &mut n);
        let mut rc = P::cursor_first(&m.other);
        let l = P::left_child(m.other.as_page(), &rc);
        L::alloc_write(txn, &mut new, m.mid.0, m.mid.1, 0, l, &mut n);
        while let Some((k, v, r)) = P::next(txn, m.other.as_page(), &mut rc) {
            L::alloc_write(txn, &mut new, k, v, 0, r, &mut n);
        }
    } else {
        let mut rc = P::cursor_first(&m.other);
        let mut l = P::left_child(m.other.as_page(), &rc);
        while let Some((k, v, r)) = P::next(txn, m.other.as_page(), &mut rc) {
            L::alloc_write(txn, &mut new, k, v, l, r, &mut n);
            l = 0;
        }
        L::alloc_write(txn, &mut new, m.mid.0, m.mid.1, 0, 0, &mut n);
        modify::<_, _, _, _, L>(txn, &mut new, &mut m.modified, &mut n);
    }

    let b0 = if m.modified.page.is_dirty() { 1 } else { 0 };
    let b1 = if m.other.is_dirty() { 1 } else { 0 };
    Ok(Op::Merged {
        page: new,
        freed: [m.modified.page.offset | b0, m.other.offset | b1],
        marker: core::marker::PhantomData,
    })
}

fn clone<K: UnsizedStorable + ?Sized, V: UnsizedStorable + ?Sized, L: Alloc>(
    page: crate::Page,
    new: &mut MutPage,
    s: Offsets<L::Offset>,
    n: &mut isize,
) {
    for off in s.0.iter() {
        let (r, off): (u64, usize) = (*off).into();
        unsafe {
            let ptr = page.data.as_ptr().add(off);
            let size = entry_size::<K, V>(ptr);
            // Reserve the space on the page
            let hdr = header_mut(new);
            let data = hdr.data() as u16;
            let off_new = data - size as u16;
            hdr.set_data(off_new);
            hdr.set_n(hdr.n() + 1);
            if hdr.is_leaf() {
                hdr.incr(2 + size);
                let ptr = new.0.data.offset(HDR as isize + *n * 2) as *mut u16;
                *ptr = (off_new as u16).to_le();
            } else {
                hdr.incr(8 + size);
                // Set the offset to this new entry in the offset
                // array, along with the right child page.
                let ptr = new.0.data.offset(HDR as isize + *n * 8) as *mut u64;
                *ptr = (r | off_new as u64).to_le();
            }
            core::ptr::copy_nonoverlapping(ptr, new.0.data.offset(off_new as isize), size);
        }
        *n += 1;
    }
}