1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607
#![no_std]
//! This crate defines tools to implement datastructures that can live
//! in main memory or on-disk, meaning that their natural habitat is
//! memory-mapped files, but if that environment is threatened, they
//! might seek refuge in lower-level environments.
//!
//! One core building block of this library is the notion of virtual
//! memory pages, which are allocated and freed by an
//! externally-provided allocator (see how the `sanakirja` crate does
//! this). The particular implementation used here is meant to allow a
//! transactional system with readers reading the structures
//! concurrently with one writer at a time.
//!
//! At the moment, only B trees are implemented, as well as the
//! following general traits:
//!
//! - [`LoadPage`] is a trait used to get a pointer to a page. In the
//! most basic version, this may just return a pointer to the file,
//! offset by the requested offset. In more sophisticated versions,
//! this can be used to encrypt and compress pages.
//! - [`AllocPage`] allocates and frees pages, because as
//! datastructures need to be persisted on disk, we can't rely on
//! Rust's memory management to do it for us. Users of this crate
//! don't have to worry about this though.
//!
//! Moreover, two other traits can be used to store things on pages:
//! [`Storable`] is a simple trait that all `Sized + Ord` types
//! without references can readily implement (the [`direct_repr!`]
//! macro does that). For types containing references to pages
//! allocated in the database, the comparison function can be
//! customised. Moreover, these types must supply an iterator over
//! these references, in order for reference-counting to work properly
//! when the datastructures referencing these types are forked.
//!
//! Dynamically-sized types, or types that need to be represented in a
//! dynamically-sized way, can use the [`UnsizedStorable`] format.
pub mod btree;
/// There's a hard-coded assumption that pages have 4K bytes. This is
/// true for normal memory pages on almost all platforms.
pub const PAGE_SIZE: usize = 4096;
/// Types that can be stored on disk. This trait may be used in
/// conjunction with `Sized` in order to determine the on-disk size,
/// or with [`UnsizedStorable`] when special arrangements are needed.
///
/// The size limit for an entry depends on the datastructure. For B
/// trees, nodes are guaranteed to be at least half-full (i.e. at
/// least 2kiB), and we need at least two entries in each page in
/// order to be able to rebalance in a deletion. A sufficient
/// condition for this is that the size of any entry is less than
/// 1/4th of the blocks. Now, internal nodes need 16 bytes of block
/// header, and then 8 extra bytes for each entry. Entries must
/// therefore not exceed 4080/4 - 8 = 1012 bytes.
pub trait Storable: core::fmt::Debug {
/// This is required for B trees, not necessarily for other
/// structures. The default implementation panics.
fn compare<T: LoadPage>(&self, _txn: &T, _b: &Self) -> core::cmp::Ordering {
unimplemented!()
}
/// If this value is an offset to another page at offset `offset`,
/// return `Some(offset)`. Return `None` else.
fn page_references(&self) -> Self::PageReferences;
/// If this value is an offset to another page at offset `offset`,
/// return `Some(offset)`. Return `None` else.
///
/// # Safety
///
/// The caller must not keep any reference to the deleted value.
unsafe fn drop<T: AllocPage>(&self, txn: &mut T) -> Result<(), T::Error> {
for p in self.page_references() {
txn.decr_rc(p)?;
}
Ok(())
}
/// An iterator over the offsets to pages contained in this
/// value. Only values from this crate can generate non-empty
/// iterators, but combined values (like tuples) must chain the
/// iterators returned by method `page_offsets`.
type PageReferences: Iterator<Item = u64>;
}
/// A trait to serialize the identity of complex types and check the
/// validity of database schemas.
#[cfg(feature = "typeids")]
pub trait TypeId {
fn type_id() -> [u8; 32];
}
#[cfg(feature = "typeids")]
pub use sha2;
#[cfg(feature = "typeids")]
use sha2::Digest;
#[cfg(feature = "typeids")]
impl TypeId for () {
fn type_id() -> [u8; 32] {
[0; 32]
}
}
/// A macro to implement [`Storable`] on "plain" types,
/// i.e. fixed-sized types that are `repr(C)` and don't hold
/// references.
#[macro_export]
macro_rules! direct_repr {
($t: ty) => {
impl Storable for $t {
type PageReferences = core::iter::Empty<u64>;
fn page_references(&self) -> Self::PageReferences {
core::iter::empty()
}
fn compare<T>(&self, _: &T, b: &Self) -> core::cmp::Ordering {
self.cmp(b)
}
}
impl UnsizedStorable for $t {
const ALIGN: usize = core::mem::align_of::<$t>();
/// If `Self::SIZE.is_some()`, this must return the same
/// value. The default implementation is `Self;:SIZE.unwrap()`.
fn size(&self) -> usize {
core::mem::size_of::<Self>()
}
/// Read the size from an on-page entry.
unsafe fn onpage_size(_: *const u8) -> usize {
core::mem::size_of::<Self>()
}
unsafe fn write_to_page(&self, p: *mut u8) {
core::ptr::copy_nonoverlapping(self, p as *mut Self, 1)
}
unsafe fn from_raw_ptr<'a, T>(_: &T, p: *const u8) -> &'a Self {
&*(p as *const Self)
}
}
};
}
direct_repr!(());
direct_repr!(u8);
direct_repr!(i8);
direct_repr!(u16);
direct_repr!(i16);
direct_repr!(u32);
direct_repr!(i32);
direct_repr!(u64);
direct_repr!(i64);
direct_repr!([u8; 16]);
#[cfg(feature = "std")]
extern crate std;
#[cfg(feature = "std")]
direct_repr!(std::net::Ipv4Addr);
#[cfg(feature = "std")]
direct_repr!(std::net::Ipv6Addr);
#[cfg(feature = "std")]
direct_repr!(std::net::IpAddr);
#[cfg(feature = "std")]
direct_repr!(std::net::SocketAddr);
#[cfg(feature = "std")]
direct_repr!(std::time::SystemTime);
#[cfg(feature = "std")]
direct_repr!(std::time::Duration);
#[cfg(feature = "uuid")]
direct_repr!(uuid::Uuid);
#[cfg(feature = "ed25519")]
direct_repr!(ed25519_zebra::VerificationKeyBytes);
/// Types that can be stored on disk.
pub trait UnsizedStorable: Storable {
const ALIGN: usize;
/// If `Self::SIZE.is_some()`, this must return the same
/// value. The default implementation is `Self;:SIZE.unwrap()`.
fn size(&self) -> usize;
/// Read the size from an on-page entry. If `Self::SIZE.is_some()`
/// this must be the same value.
unsafe fn onpage_size(_: *const u8) -> usize;
/// Write to a page. Must not overwrite the allocated size, but
/// this isn't checked (which is why it's unsafe).
unsafe fn write_to_page(&self, _: *mut u8) {
unimplemented!()
}
/// Write to a page. Must not overwrite the allocated size, but
/// this isn't checked (which is why it's unsafe).
///
/// This is similar to `write_to_page`, but allows the user to
/// allocate a value as needed when inserting the value into the
/// base; do not implement both methods, since only
/// `write_to_page_alloc` gets called by the library.
///
/// The default implementation just calls `write_to_page`.
unsafe fn write_to_page_alloc<T: AllocPage>(&self, _: &mut T, p: *mut u8) {
self.write_to_page(p)
}
unsafe fn from_raw_ptr<'a, T>(_: &T, p: *const u8) -> &'a Self;
}
#[derive(Debug, Clone, Copy)]
#[repr(C)]
struct Ref {
p: u64,
len: u64,
}
pub union Slice<'b> {
len: u16,
page: Ref,
mem: Mem<'b>,
}
#[derive(Clone, Copy)]
#[repr(C)]
struct Mem<'b> {
_len: u16,
m: &'b [u8],
}
impl<'a> core::fmt::Debug for Slice<'a> {
fn fmt(&self, fmt: &mut core::fmt::Formatter) -> core::fmt::Result {
write!(fmt, "Slice({:?})", unsafe { self.len })
}
}
impl<'a> core::convert::From<&'a [u8]> for Slice<'a> {
fn from(m: &'a [u8]) -> Slice<'a> {
let s = Slice {
mem: Mem { _len: 513, m },
};
s
}
}
impl<'a> Slice<'a> {
pub fn as_bytes<T: LoadPage>(&self, txn: &T) -> Result<&[u8], T::Error> {
Ok(unsafe {
let len = u16::from_le(self.len) & 0xfff;
if len == 512 {
// Stored externally
let p = txn.load_page(u64::from_le(self.page.p) & !0xfff)?;
core::slice::from_raw_parts(p.data, u64::from_le(self.page.len) as usize)
} else if len == 513 {
// Stored in memory, not on any page
self.mem.m
} else {
core::slice::from_raw_parts(
(&self.len as *const u16 as *const u8).add(2),
len as usize,
)
}
})
}
}
#[cfg(feature = "typeids")]
impl<'a> TypeId for Slice<'a> {
fn type_id() -> [u8; 32] {
let mut h = sha2::Sha256::new();
h.update(b"sanakirja-core::Slice");
h.finalize().into()
}
}
impl<'a> Storable for Slice<'a> {
type PageReferences = Pages;
fn page_references(&self) -> Self::PageReferences {
unsafe {
let len = u16::from_le(self.len);
if len == 512 {
let plen = u64::from_le(self.page.len);
let len_up = ((plen + PAGE_SIZE as u64 - 1) / PAGE_SIZE as u64) * PAGE_SIZE as u64;
let offset = u64::from_le(self.page.p) & !0xfff;
Pages {
offset,
limit: offset + len_up,
}
} else {
Pages {
offset: 0,
limit: 0,
}
}
}
}
fn compare<T: LoadPage>(&self, t: &T, b: &Self) -> core::cmp::Ordering {
self.as_bytes(t).unwrap().cmp(b.as_bytes(t).unwrap())
}
}
pub struct Pages {
offset: u64,
limit: u64,
}
impl Iterator for Pages {
type Item = u64;
fn next(&mut self) -> Option<Self::Item> {
if self.offset >= self.limit {
None
} else {
let o = self.offset;
self.offset += PAGE_SIZE as u64;
Some(o)
}
}
}
impl<'b> UnsizedStorable for Slice<'b> {
const ALIGN: usize = 8;
fn size(&self) -> usize {
let s = unsafe {
if u16::from_le(self.len) == 512 {
// Stored externally
16
} else if u16::from_le(self.len) == 513 {
// Stored in memory, not on any page
if self.mem.m.len() > 510 {
16
} else {
2 + self.mem.m.len()
}
} else {
u16::from_le(self.len) as usize
}
};
s
}
unsafe fn from_raw_ptr<'a, T>(_: &T, p: *const u8) -> &'a Self {
&*(p as *const Self)
}
unsafe fn onpage_size(p: *const u8) -> usize {
let p = &*(p as *const Self);
if u16::from_le(p.len) == 512 {
// Stored externally
16
} else if u16::from_le(p.len) == 513 {
// Stored in memory, not on any page
2 + p.mem.m.len()
} else {
u16::from_le(p.len) as usize
}
}
unsafe fn write_to_page_alloc<T: AllocPage>(&self, t: &mut T, p: *mut u8) {
if self.len == 512 {
// Stored externally
core::ptr::copy(&self.page as *const Ref as *const u8, p, 16)
} else if self.len == 513 {
// Alloc ?
if self.mem.m.len() > 510 {
let len = self.mem.m.len();
let page = t
.alloc_contiguous((((len + PAGE_SIZE - 1) / PAGE_SIZE) * PAGE_SIZE) as u64)
.unwrap();
assert!(page.0.offset > 0);
core::ptr::copy_nonoverlapping(self.mem.m.as_ptr(), page.0.data, len);
let p = &mut *(p as *mut Ref);
p.len = (self.mem.m.len() as u64).to_le();
p.p = (page.0.offset | 512).to_le();
} else {
let len = self.mem.m.len();
*(p as *mut u16) = (len as u16).to_le();
core::ptr::copy_nonoverlapping(self.mem.m.as_ptr(), p.add(2), len)
}
} else {
core::ptr::copy(
&self.len as *const u16 as *const u8,
p,
2 + u16::from_le(self.len) as usize,
)
}
}
}
impl Storable for [u8] {
type PageReferences = core::iter::Empty<u64>;
fn page_references(&self) -> Self::PageReferences {
core::iter::empty()
}
fn compare<T>(&self, _: &T, b: &Self) -> core::cmp::Ordering {
self.cmp(b)
}
}
impl UnsizedStorable for [u8] {
const ALIGN: usize = 2;
fn size(&self) -> usize {
2 + self.len()
}
unsafe fn from_raw_ptr<'a, T>(_: &T, p: *const u8) -> &'a Self {
let len = u16::from_le(*(p as *const u16));
assert_ne!(len, 0);
assert_eq!(len & 0xf000, 0);
core::slice::from_raw_parts(p.add(2), len as usize)
}
unsafe fn onpage_size(p: *const u8) -> usize {
let len = u16::from_le(*(p as *const u16));
2 + len as usize
}
unsafe fn write_to_page_alloc<T: AllocPage>(&self, _txn: &mut T, p: *mut u8) {
assert!(self.len() <= 510);
*(p as *mut u16) = (self.len() as u16).to_le();
core::ptr::copy_nonoverlapping(self.as_ptr(), p.add(2), self.len())
}
}
unsafe fn read<T: LoadPage, K: UnsizedStorable + ?Sized, V: UnsizedStorable + ?Sized>(
_txn: &T,
k: *const u8,
) -> (*const u8, *const u8) {
let s = K::onpage_size(k);
let v = k.add(s);
let al = v.align_offset(V::ALIGN);
let v = v.add(al);
(k, v)
}
unsafe fn entry_size<K: UnsizedStorable + ?Sized, V: UnsizedStorable + ?Sized>(
k: *const u8,
) -> usize {
assert_eq!(k.align_offset(K::ALIGN), 0);
let ks = K::onpage_size(k);
// next multiple of va, assuming va is a power of 2.
let v_off = (ks + V::ALIGN - 1) & !(V::ALIGN - 1);
let v_ptr = k.add(v_off);
let vs = V::onpage_size(v_ptr);
let ka = K::ALIGN.max(V::ALIGN);
let size = v_off + vs;
(size + ka - 1) & !(ka - 1)
}
/// Representation of a mutable or shared page. This is an owned page
/// (like `Vec` in Rust's std), but we do not know whether we can
/// mutate it or not.
///
/// The least-significant bit of the first byte of each page is 1 if
/// and only if the page was allocated by the current transaction (and
/// hence isn't visible to any other transaction, meaning we can write
/// on it).
#[derive(Debug)]
#[repr(C)]
pub struct CowPage {
pub data: *mut u8,
pub offset: u64,
}
/// Representation of a borrowed, or immutable page, like a slice in
/// Rust.
#[derive(Debug, Clone, Copy)]
#[repr(C)]
pub struct Page<'a> {
pub data: &'a [u8; PAGE_SIZE],
pub offset: u64,
}
impl CowPage {
/// Borrows the page.
pub fn as_page(&self) -> Page {
Page {
data: unsafe { &*(self.data as *const [u8; PAGE_SIZE]) },
offset: self.offset,
}
}
#[cfg(feature = "crc32")]
pub unsafe fn crc(&self, hasher: &crc32fast::Hasher) -> u32 {
crc(self.data, hasher)
}
#[cfg(feature = "crc32")]
pub unsafe fn crc_check(&self, hasher: &crc32fast::Hasher) -> bool {
crc_check(self.data, hasher)
}
}
/// An owned page on which we can write. This is just a wrapper around
/// `CowPage` to avoid checking the "dirty" bit at runtime.
#[derive(Debug)]
pub struct MutPage(pub CowPage);
impl MutPage {
#[cfg(not(feature = "crc32"))]
pub unsafe fn clear_dirty(&mut self) {
*self.0.data &= 0xfe
}
#[cfg(feature = "crc32")]
pub unsafe fn clear_dirty(&mut self, hasher: &crc32fast::Hasher) {
*self.0.data &= 0xfe;
let crc_ = (self.0.data as *mut u32).add(1);
*crc_ = crc(self.0.data, hasher)
}
}
#[cfg(feature = "crc32")]
pub unsafe fn crc(data: *mut u8, hasher: &crc32fast::Hasher) -> u32 {
let mut hasher = hasher.clone();
hasher.reset();
// Hash the beginning and the end of the page (i.e. remove
// the CRC).
unsafe {
// Remove the dirty bit.
let x = [(*data) & 0xfe];
hasher.update(&x[..]);
hasher.update(core::slice::from_raw_parts(data.add(1), 3));
hasher.update(core::slice::from_raw_parts(data.add(8), PAGE_SIZE - 8));
}
hasher.finalize()
}
#[cfg(feature = "crc32")]
pub unsafe fn crc_check(data: *mut u8, hasher: &crc32fast::Hasher) -> bool {
let crc_ = unsafe { u32::from_le(*(data as *const u32).add(1)) };
crc(data, hasher) == crc_
}
#[cfg(not(feature = "crc32"))]
pub fn clear_dirty(p: *mut u8) {
unsafe { *p &= 0xfe }
}
#[cfg(feature = "crc32")]
pub fn clear_dirty(p: *mut u8, hasher: &crc32fast::Hasher) {
unsafe {
*p &= 0xfe;
let crc_ = (p as *mut u32).add(1);
*crc_ = crc(p, hasher)
}
}
unsafe impl Sync for CowPage {}
unsafe impl Send for CowPage {}
impl CowPage {
/// Checks the dirty bit of a page.
pub fn is_dirty(&self) -> bool {
unsafe { (*self.data) & 1 != 0 }
}
}
/// Trait for loading a page.
pub trait LoadPage {
type Error: core::fmt::Debug;
/// Loading a page.
unsafe fn load_page(&self, off: u64) -> Result<CowPage, Self::Error>;
/// Loading multiple pages written contiguously in the underlying
/// storage media.
///
/// If the type also implements `AllocPage`, attention must be
/// paid to the compatibility with `alloc_contiguous`.
unsafe fn load_page_contiguous(&self, _off: u64, _len: u64) -> Result<CowPage, Self::Error> {
unimplemented!()
}
/// Reference-counting. Since reference-counts are designed to be
/// storable into B trees by external allocators, pages referenced
/// once aren't stored, and hence are indistinguishable from pages
/// that are never referenced. The default implementation returns
/// 0.
///
/// This has the extra benefit of requiring less disk space, and
/// isn't more unsafe than storing the reference count, since we
/// aren't supposed to hold a reference to a page with "logical
/// RC" 0, so storing "1" for that page would be redundant anyway.
fn rc(&self, _off: u64) -> Result<u64, Self::Error> {
Ok(0)
}
}
/// Trait for allocating and freeing pages.
pub trait AllocPage: LoadPage {
/// Allocate a new page.
unsafe fn alloc_page(&mut self) -> Result<MutPage, Self::Error>;
/// Allocate a new page, in a context where we cannot use the
/// "dirty bit" trick directly on the page.
unsafe fn alloc_page_no_dirty(&mut self) -> Result<MutPage, Self::Error> {
unimplemented!()
}
/// Allocate many contiguous pages, return the first one. The
/// dirty bit is not needed.
unsafe fn alloc_contiguous(&mut self, length: u64) -> Result<MutPage, Self::Error>;
/// Increment the page's reference count.
fn incr_rc(&mut self, off: u64) -> Result<usize, Self::Error>;
/// Decrement the page's reference count, assuming the page was
/// first allocated by another transaction. If the RC reaches 0,
/// free the page. Must return the new RC (0 if freed).
unsafe fn decr_rc(&mut self, off: u64) -> Result<usize, Self::Error>;
/// Same as [`Self::decr_rc`], but for pages allocated by the current
/// transaction. This is an important distinction, as pages
/// allocated by the current transaction can be reused immediately
/// after being freed.
unsafe fn decr_rc_owned(&mut self, off: u64) -> Result<usize, Self::Error>;
}