scale_info/
registry.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
// Copyright 2019-2022 Parity Technologies (UK) Ltd.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//! The registry stores type definitions in a space-efficient manner.
//!
//! This is done by deduplicating common types in order to reuse their
//! definitions which otherwise can grow arbitrarily large. A type is uniquely
//! identified by its type identifier that is therefore used to refer to types
//! and their definitions.
//!
//! Types with the same name are uniquely identifiable by introducing
//! namespaces. The normal Rust namespace of a type is used, except for the Rust
//! prelude types that live in the so-called root namespace which is empty.

use crate::{
    form::Form,
    prelude::{any::TypeId, collections::BTreeMap, fmt::Debug, vec::Vec},
};

use crate::{
    form::PortableForm,
    interner::{Interner, UntrackedSymbol},
    meta_type::MetaType,
    Type,
};

/// Convert the type definition into the portable form using a registry.
pub trait IntoPortable {
    /// The portable version of `Self`.
    type Output;

    /// Convert `self` to the portable form by using the registry for caching.
    fn into_portable(self, registry: &mut Registry) -> Self::Output;
}

impl IntoPortable for &'static str {
    type Output = <PortableForm as Form>::String;

    fn into_portable(self, _registry: &mut Registry) -> Self::Output {
        self.into()
    }
}

/// The registry for space-efficient storage of type identifiers and
/// definitions.
///
/// The registry consists of a cache for type identifiers and definitions.
///
/// When adding a type to  the registry, all of its sub-types are registered
/// recursively as well. A type is considered a sub-type of another type if it
/// is used by its identifier or structure.
///
/// # Note
///
/// A type can be a sub-type of itself. In this case the registry has a builtin
/// mechanism to stop recursion and avoid going into an infinite loop.
#[derive(Debug, PartialEq, Eq)]
pub struct Registry {
    /// The cache for already registered types.
    ///
    /// This is just an accessor to the actual database
    /// for all types found in the `types` field.
    type_table: Interner<TypeId>,
    /// The database where registered types reside.
    ///
    /// The contents herein is used for serlialization.
    types: BTreeMap<UntrackedSymbol<TypeId>, Type<PortableForm>>,
}

impl Default for Registry {
    fn default() -> Self {
        Self::new()
    }
}

impl Registry {
    /// Creates a new empty registry.
    pub fn new() -> Self {
        Self {
            type_table: Interner::new(),
            types: BTreeMap::new(),
        }
    }

    /// Registers the given type ID into the registry.
    ///
    /// Returns `false` as the first return value if the type ID has already
    /// been registered into this registry.
    /// Returns the associated type ID symbol as second return value.
    ///
    /// # Note
    ///
    /// This is an internal API and should not be called directly from the
    /// outside.
    fn intern_type_id(&mut self, type_id: TypeId) -> (bool, UntrackedSymbol<TypeId>) {
        let (inserted, symbol) = self.type_table.intern_or_get(type_id);
        (inserted, symbol.into_untracked())
    }

    /// Registers the given type into the registry and returns
    /// its associated type ID symbol.
    ///
    /// # Note
    ///
    /// Due to safety requirements the returns type ID symbol cannot
    /// be used later to resolve back to the associated type definition.
    /// However, since this facility is going to be used for serialization
    /// purposes this functionality isn't needed anyway.
    pub fn register_type(&mut self, ty: &MetaType) -> UntrackedSymbol<TypeId> {
        let (inserted, symbol) = self.intern_type_id(ty.type_id());
        if inserted {
            let portable_id = ty.type_info().into_portable(self);
            self.types.insert(symbol, portable_id);
        }
        symbol
    }

    /// Calls `register_type` for each `MetaType` in the given `iter`.
    pub fn register_types<I>(&mut self, iter: I) -> Vec<UntrackedSymbol<TypeId>>
    where
        I: IntoIterator<Item = MetaType>,
    {
        iter.into_iter()
            .map(|i| self.register_type(&i))
            .collect::<Vec<_>>()
    }

    /// Converts an iterator into a Vec of the equivalent portable
    /// representations.
    pub fn map_into_portable<I, T>(&mut self, iter: I) -> Vec<T::Output>
    where
        I: IntoIterator<Item = T>,
        T: IntoPortable,
    {
        iter.into_iter()
            .map(|i| i.into_portable(self))
            .collect::<Vec<_>>()
    }

    /// Returns an iterator over the types with their keys
    pub fn types(&self) -> impl Iterator<Item = (&UntrackedSymbol<TypeId>, &Type<PortableForm>)> {
        self.types.iter()
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::{build::Fields, meta_type, Path, TypeDef, TypeInfo};

    #[test]
    fn recursive_struct_with_references() {
        #[allow(unused)]
        struct RecursiveRefs<'a> {
            boxed: Box<RecursiveRefs<'a>>,
            reference: &'a RecursiveRefs<'a>,
            mutable_reference: &'a mut RecursiveRefs<'a>,
        }

        impl TypeInfo for RecursiveRefs<'static> {
            type Identity = Self;

            fn type_info() -> Type {
                Type::builder()
                    .path(Path::new("RecursiveRefs", module_path!()))
                    .composite(
                        Fields::named()
                            .field(|f| {
                                f.ty::<Box<RecursiveRefs>>()
                                    .name("boxed")
                                    .type_name("Box < RecursiveRefs >")
                            })
                            .field(|f| {
                                f.ty::<&'static RecursiveRefs<'static>>()
                                    .name("reference")
                                    .type_name("&RecursiveRefs")
                            })
                            .field(|f| {
                                f.ty::<&'static mut RecursiveRefs<'static>>()
                                    .name("mutable_reference")
                                    .type_name("&mut RecursiveRefs")
                            }),
                    )
            }
        }

        let mut registry = Registry::new();
        let type_id = registry.register_type(&meta_type::<RecursiveRefs>());

        let recursive = registry.types.get(&type_id).unwrap();
        if let TypeDef::Composite(composite) = &recursive.type_def {
            for field in &composite.fields {
                assert_eq!(field.ty, type_id)
            }
        } else {
            panic!("Should be a composite type definition")
        }
    }
}