scale_info/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
// Copyright 2019-2022 Parity Technologies (UK) Ltd.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#![cfg_attr(not(feature = "std"), no_std)]
#![deny(missing_docs)]
//! Efficient and space-efficient serialization of Rust types.
//!
//! This library provides structures to easily retrieve compile-time type
//! information at runtime and also to serialize this information in a
//! space-efficient form, aka `PortableForm`.
//!
//! # Registry
//!
//! At the heart of its functionality is the [`Registry`](`crate::Registry`)
//! that acts as a cache for known types in order to efficiently deduplicate
//! types and ensure a space-efficient serialization.
//!
//! # Type Information
//!
//! Information about types is provided via the [`TypeInfo`](`crate::TypeInfo`)
//! trait.
//!
//! This trait should be implemented for all types that are serializable.
//! `scale-info` provides implementations for all commonly used Rust standard
//! types and a derive macro for implementing of custom types.
//!
//! ## Deriving `TypeInfo`
//!
//! Enable the `derive` feature of this crate:
//!
//! ```toml
//! scale-info = { version = "2.0.0", features = ["derive"] }
//! ```
//!
//! ```ignore
//! use scale_info::TypeInfo;
//!
//! #[derive(TypeInfo)]
//! struct MyStruct {
//! a: u32,
//! b: MyEnum,
//! }
//!
//! #[derive(TypeInfo)]
//! enum MyEnum {
//! A(bool),
//! B { f: Vec<u8> },
//! C,
//! }
//! ```
//!
//! ### Attributes
//!
//! #### `#[scale_info(bounds(..))]`
//!
//! Replace the auto-generated `where` clause bounds for the derived `TypeInfo` implementation.
//!
//! ```ignore
//! #[derive(TypeInfo)]
//! #[scale_info(bounds(T: TypeInfo + 'static))]
//! struct MyStruct<T> {
//! a: Vec<T>,
//! }
//! ```
//!
//! The derive macro automatically adds `TypeInfo` bounds for all type parameters, and all field
//! types containing type parameters or associated types.
//!
//! This is naive and sometimes adds unnecessary bounds, since on a syntactical level there is no
//! way to differentiate between a generic type constructor and a type alias with a generic argument
//! e.g.
//!
//! ```ignore
//! trait MyTrait {
//! type A;
//! }
//!
//! type MyAlias<T> = <T as MyTrait>::A;
//!
//! #[derive(TypeInfo)]
//! struct MyStruct<T> {
//! a: MyAlias<T>,
//! b: Vec<T>,
//! }
//! ```
//!
//! So for the above, since a `MyAlias<T>: TypeInfo` bound is required, and we can't distinguish
//! between `MyAlias<T>` and `Vec<T>`, then the `TypeInfo` bound is simply added for all
//! fields which contain any type param. In this case the redundant `Vec<T>: TypeInfo`
//! would be added.
//!
//! This is usually okay, but in some circumstances can cause problems, for example with the
//! [`overflow evaluating the requirement`] error [here](https://github.com/paritytech/scale-info/blob/master/test_suite/tests/ui/pass_custom_bounds_fix_overflow.rs).
//!
//! The `bounds` attribute provides an ["escape hatch"](https://serde.rs/attr-bound.html) to allow
//! the programmer control of the `where` clause on the generated `impl`, to solve this and other
//! issues that can't be foreseen by the auto-generated bounds heuristic.
//!
//! #### `#[scale_info(skip_type_params(..))]`
//!
//! Remove the requirement for the specified type params to implement `TypeInfo`.
//!
//! Consider a simple example of a type parameter which is used for associated types, but the type
//! itself does not carry any type information. Consider this common pattern:
//!
//! ```ignore
//! trait Config {
//! type Balance;
//! }
//!
//! struct Runtime; // doesn't implement `TypeInfo`
//!
//! impl Config for Runtime {
//! type Balance = u64;
//! }
//!
//! #[allow(unused)]
//! #[derive(TypeInfo)]
//! #[scale_info(skip_type_params(T))]
//! struct A<T: Config> {
//! balance: T::Balance,
//! marker: core::marker::PhantomData<T>,
//! }
//!
//! fn assert_type_info<T: scale_info::TypeInfo + 'static>() {}
//!
//! fn main() {
//! // without the `skip_type_params` attribute this will fail.
//! assert_type_info::<A<Runtime>>();
//! }
//! ```
//!
//! By default, the derived `TypeInfo` implementation will add the type of all type parameters to
//! the `TypeParameter` specification e.g.
//!
//! `type_params(vec![TypeParameter::new("T", Some(MetaType::new::<T>()))])`
//!
//! In the example above, this will cause a compiler error because `Runtime` is the concrete tyoe
//! for `T`, which does not satisfy the `TypeInfo` requirement of `MetaType::new::<T>()`.
//!
//! Simply adding a `TypeInfo` derive to `Runtime` is one way of solving this, but that could be
//! misleading (why does it need `TypeInfo` if a value of that type is never encoded?), and can
//! sometimes require adding `TypeInfo` bounds in other impl blocks.
//!
//! The `skip_type_params` attribute solves this, providing an additional "escape hatch" which
//! prevents the given type parameter's type information being required:
//!
//! `type_params(vec![TypeParameter::new("T", None)])`
//!
//! The generated type params do not now require `T` to implement `TypeInfo`, so the auto-generated
//! bound is not added to the generated `TypeInfo` `where` clause.
//!
//! #### Combining `bounds` and `skip_type_params`
//!
//! These two attributes can complement one another, particularly in the case where using `bounds`
//! would still require manually adding a `TypeInfo` bound for the type parameter:
//!
//! ```ignore
//! #[derive(TypeInfo)]
//! #[scale_info(bounds(), skip_type_params(T))]
//! struct A<T> {
//! marker: core::marker::PhantomData<T>,
//! }
//! ```
//!
//! Without `skip_type_params` in the example above, it would require the `TypeInfo` bounds for `T`
//! to be added manually e.g. `#[scale_info(bounds(T: TypeInfo + 'static))]`. Since the intention of
//! the empty bounds is to **remove** all type bounds, then the addition of `skip_type_params`
//! allows this to compile successfully.
//!
//! ##### Precedence
//!
//! When used independently, both attributes modify the `where` clause of the derived `TypeInfo`
//! impl. When used together, the predicates supplied in the `bounds` attribute replaces *all*
//! auto-generated bounds, and `skip_type_params` will have no effect on the resulting `where`
//! clause.
//!
//! **Note:** When using `bounds` without `skip_type_params`, it is therefore required to manually
//! add a `TypeInfo` bound for any non skipped type parameters. The compiler will let you know.
//!
//! #### `#[scale_info(capture_docs = "default|always|never")]`
//!
//! Docs for types, fields and variants can all be captured by the `docs` feature being enabled.
//! This can be overridden using the `capture_docs` attribute:
//!
//! `#[scale_info(capture_docs = "default")]` will capture docs iff the `docs` feature is enabled.
//! This is the default if `capture_docs` is not specified.
//!
//! `#[scale_info(capture_docs = "always")]` will capture docs for the annotated type even if the
//! `docs` feature is *not* enabled.
//!
//! `#[scale_info(capture_docs = "never")]` will *not* capture docs for the annotated type even if
//! the `docs` is enabled.
//!
//! This is useful e.g. when compiling metadata into a Wasm blob, and it is desirable to keep the
//! binary size as small as possible, so the `docs` feature would be disabled. In case the docs for
//! some types is necessary they could be enabled on a per-type basis with the above attribute.
//!
//! #### `#[scale_info(crate = path::to::crate)]`
//!
//! Specify a path to the scale-info crate instance to use when referring to the APIs from generated
//! code. This is normally only applicable when invoking re-exported scale-info derives from a public
//! macro in a different crate. For example:
//! ```ignore
//! use scale_info_reexport::info::TypeInfo;
//!
//! #[derive(TypeInfo)]
//! #[scale_info(crate = scale_info_reexport::info)]
//! enum TestEnum {
//! FirstVariant,
//! SecondVariant,
//! }
//! ```
//!
//! #### `#[scale_info(replace_segment("search", "replace"))]`
//!
//! Specify to rename a segment in the `path` returned by the [`TypeInfo::path`] function.
//! Normally the path is generated by using the `module_path!` macro. This path includes
//! the crate name and all the modules up to the declaration of the type. Sometimes it
//! is useful to replace one of these segments to ensure that for example a renaming
//! of the crate isn't propagated to downstream users. Be aware that if a `crate-name`
//! contains an hypen, the actual segment is `crate_name`. The `replace` name needs
//! to be a valid Rust identifier. The attribute is allowed to be passed multiple
//! times to replace multiple segments.
//!
//! Example:
//! ```ignore
//! use scale_info_reexport::info::TypeInfo;
//!
//! #[derive(TypeInfo)]
//! #[scale_info(replace_segment("something", "better_name"))]
//! #[scale_info(replace_segment("TestEnum", "BetterEnumName"))]
//! enum TestEnum {
//! FirstVariant,
//! SecondVariant,
//! }
//! ```
//!
//! # Forms
//!
//! To bridge between compile-time type information and runtime the
//! [`MetaForm`](`crate::form::MetaForm`) is used to easily retrieve all
//! information needed to uniquely identify types.
//!
//! The `MetaForm` and its associated `Registry` can be transformed into the
//! space-efficient form by the [`IntoPortable`](`crate::IntoPortable`) trait; it is
//! used internally by the [`Registry`](`crate::Registry`) in order to convert
//! the expanded types into their space-efficient form.
//!
//! # Symbols and Namespaces
//!
//! To differentiate two types sharing the same name, namespaces are used.
//! Commonly the namespace is equal to the one where the type has been defined
//! in. For Rust prelude types such as [`Option`](`std::option::Option`) and
//! [`Result`](`std::result::Result`) the root namespace (empty namespace) is
//! used.
//!
//! To use this library simply use the [`MetaForm`](`crate::form::MetaForm`)
//! initially with your own data structures; make them generic over the
//! [`Form`](`crate::form::Form`) trait just as has been done in this crate with
//! [`TypeInfo`](`crate::TypeInfo`) in order to get a simple implementation of
//! [`IntoPortable`](`crate::IntoPortable`). Use a single instance of the
//! [`Registry`](`crate::Registry`) for compaction and provide this registry
//! instance upon serialization.
//!
//! A usage example can be found in ink! here:
//! https://github.com/paritytech/ink/blob/master/abi/src/specs.rs
/// Takes a number of types and returns a vector that contains their respective
/// [`MetaType`](`crate::MetaType`) instances.
///
/// This is useful for places that require inputs of iterators over [`MetaType`](`crate::MetaType`)
/// instances and provide a way out of code bloat in these scenarios.
///
/// # Example
///
/// ```
/// # use scale_info::tuple_meta_type;
/// assert_eq!(
/// tuple_meta_type!(i32, [u8; 32], String),
/// {
/// use scale_info::MetaType;
/// let mut vec = Vec::new();
/// vec.push(MetaType::new::<i32>());
/// vec.push(MetaType::new::<[u8; 32]>());
/// vec.push(MetaType::new::<String>());
/// vec
/// }
/// );
/// ```
#[macro_export]
macro_rules! tuple_meta_type {
( $($ty:ty),* ) => {
{
$crate::prelude::vec![
$(
$crate::MetaType::new::<$ty>(),
)*
]
}
}
}
/// Construct a vector of `TypeParameter`s from pairs of the name and the concrete type.
///
/// # Example
///
/// ```
/// # use scale_info::{named_type_params, MetaType, TypeParameter};
/// assert_eq!(
/// named_type_params![(T, u8), (U, u32)],
/// vec! [
/// TypeParameter::new("T", Some(MetaType::new::<u8>())),
/// TypeParameter::new("U", Some(MetaType::new::<u32>())),
/// ]
/// );
/// ```
#[macro_export]
macro_rules! named_type_params {
( $(($tp:ty, $ty:ty)),* ) => {
{
$crate::prelude::vec![
$(
$crate::TypeParameter::<$crate::form::MetaForm>::new(
::core::stringify!($tp),
Some($crate::MetaType::new::<$ty>())
),
)*
]
}
}
}
/// Construct a vector of [`TypeParameter`] instances with the name of the type parameter,
/// together with its concrete [`MetaType`].
#[macro_export]
macro_rules! type_params {
( $($ty:ty),* ) => {
$crate::named_type_params!{ $( ($ty, $ty) ),* }
}
}
pub mod prelude;
pub mod build;
pub mod form;
mod impls;
pub mod interner;
mod meta_type;
mod portable;
mod registry;
mod ty;
mod utils;
#[doc(hidden)]
pub use scale;
pub use self::{
meta_type::MetaType,
portable::{PortableRegistry, PortableRegistryBuilder, PortableType},
registry::{IntoPortable, Registry},
ty::*,
};
#[cfg(feature = "derive")]
pub use scale_info_derive::TypeInfo;
/// Implementors return their meta type information.
pub trait TypeInfo {
/// The type identifying for which type info is provided.
///
/// # Note
///
/// This is used to uniquely identify a type via [`core::any::TypeId::of`]. In most cases it
/// will just be `Self`, but can be used to unify different types which have the same encoded
/// representation e.g. reference types `Box<T>`, `&T` and `&mut T`.
type Identity: ?Sized + 'static;
/// Returns the static type identifier for `Self`.
fn type_info() -> Type;
}
/// Convenience trait for implementors, combining `TypeInfo` and `'static` bounds.
///
/// # Note
///
/// Currently because of the `'static` constraint on [`std::any::TypeId::of`] (see [`MetaType`]),
/// `TypeInfo` constraints must also be accompanied by a `'static` bound. This trait is useful to
/// implementors so only a single constraint is required.
pub trait StaticTypeInfo: TypeInfo + 'static {}
impl<T> StaticTypeInfo for T where T: TypeInfo + 'static {}
/// Returns the runtime bridge to the types compile-time type information.
pub fn meta_type<T>() -> MetaType
where
T: ?Sized + TypeInfo + 'static,
{
MetaType::new::<T>()
}
#[cfg(test)]
mod tests;